Xem Nhiều 5/2023 #️ Bài 1,2,3 Trang 6 Sgk Toán Lớp 9 Tập 1: Căn Bậc Hai # Top 11 Trend | Caffebenevietnam.com

Xem Nhiều 5/2023 # Bài 1,2,3 Trang 6 Sgk Toán Lớp 9 Tập 1: Căn Bậc Hai # Top 11 Trend

Cập nhật thông tin chi tiết về Bài 1,2,3 Trang 6 Sgk Toán Lớp 9 Tập 1: Căn Bậc Hai mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.

Hướng dẫn Giải và đáp án bài 1,2,3 trang 6 SGK toán lớp 9 tập 1 ( Bài tập căn bậc hai) – Chương 1: Căn bậc hai, căn bậc ba. Bài 1:

Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng 121; 144; 169; 225; 256; 324; 361; 400.

giải bài 1:

√121 = 11. Hai căn bậc hai của 121 là 11 và -11.

√144 = 12. Hai căn bậc hai của 144 là 12 và -12.

√169 = 13. Hai căn bậc hai của 169 là 13 và -13.

√225 = 15. Hai căn bậc hai của 225 là 15 và -15.

√256 = 16. Hai căn bậc hai của 256 là 16 và -16.

√324 = 18. Hai căn bậc hai của 324 là 18 và -18.

√361 = 19. Hai căn bậc hai của 361 là 19 và -19.

√400 = 20. Hai căn bậc hai của 400 là 20 và -20.

Bài 2.

So sánh

a) 2 và √3 ; b) 6 và √41 ; c) 7 và √47.

giải bài 2:

Viết mỗi số nguyên thành căn bậc hai của một số.

b) ĐS: 6 < √41

Bài 3.

Dùng máy tính bỏ túi, tính giá trị gần đúng của nghiệm mỗi phương trình sau (làm tròn đến chữ số thập phân thứ 3):

a) X 2 = 2; b) X 2 = 3;

c) X 2 = 3,5; d) X 2 = 4,12;

giải bài 3:

Nghiệm của phương trình X 2 = a (với a ≥ 0) là căn bậc hai của a.

ĐS. a) x = √2 ≈ 1,414, x = -√2 ≈ -1,414.

b) x = √3 ≈ 1,732, x = -√3 ≈ 1,732.

c) x = √3,5 ≈ 1,871, x = √3,5 ≈ 1,871.

d) x = √4,12 ≈ 2,030, x = √4,12 ≈ 2,030.

Ôn lại lý thuyết về căn bậc hai

Ở lớp 7, ta đã biết:

Căn bậc hai của một số a không âm là số x sao cho x2 = a.

Số dương a có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là √a và số âm kí hiệu là -√a.

Số 0 có đúng một căn bậc hai là chính số 0, ta viết √0 = 0.

Với số dương a, số √a được gọi là căn bậc hai số học của a.

Số 0 cũng được gọi là căn bậc hai số học của 0.

Chú ý. Với a ≥ 0, ta có:

Nếu x = √a thì x ≥ 0 và x 2 = a;

Nếu x ≥ 0 và x 2 = a thì x = √a.

2. So sánh các căn bậc hai số học

Ta đã biết: Với hai số a và b không âm, nếu a < b thì √a < √b.

Ta có thể chứng minh được: Với hai số a và b không âm, nếu √a < √b thì a < b. Như vậy ta có định lí sau đây.

ĐỊNH LÍ

Giải Bài Tập Trang 6 Sgk Toán Lớp 9 Tập 1: Căn Bậc Hai

Giải bài tập trang 6 SGK Toán lớp 9 tập 1: Căn bậc hai

Giải bài tập môn Toán lớp 9

với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa môn Toán lớp 9, các bài giải tương ứng với từng bài học trong sách giúp cho các em học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán.

Bài 1. (trang 6 SGK toán lớp 9 tập 1)

Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng 121; 144; 169; 225; 256; 324; 361; 400.

Đáp án và hướng dẫn giải bài 1:

√121 = 11. Hai căn bậc hai của 121 là 11 và -11.

√144 = 12. Hai căn bậc hai của 144 là 12 và -12.

√169 = 13. Hai căn bậc hai của 169 là 13 và -13.

√225 = 15. Hai căn bậc hai của 225 là 15 và -15.

√256 = 16. Hai căn bậc hai của 256 là 16 và -16.

√324 = 18. Hai căn bậc hai của 324 là 18 và -18.

√361 = 19. Hai căn bậc hai của 361 là 19 và -19.

√400 = 20. Hai căn bậc hai của 400 là 20 và -20.

Bài 2. (trang 6 SGK toán lớp 9 tập 1)

So sánh

a) 2 và √3 b) 6 và √41 c) 7 và √47.

Đáp án và hướng dẫn giải bài 2:

Viết mỗi số nguyên thành căn bậc hai của một số.

b) ĐS: 6 < √41

Bài 3. (trang 6 SGK toán lớp 9 tập 1)

Dùng máy tính bỏ túi, tính giá trị gần đúng của nghiệm mỗi phương trình sau (làm tròn đến chữ số thập phân thứ 3):

a) X 2 = 2; b) X 2 = 3;

c) X 2 = 3,5; d) X 2 = 4,12;

Đáp án

Nghiệm của phương trình X 2 = a (với a ≥ 0) là căn bậc hai của a.

ĐS. a) x = √2 ≈ 1,414, x = -√2 ≈ -1,414.

b) x = √3 ≈ 1,732, x = -√3 ≈ 1,732.

c) x = √3,5 ≈ 1,871, x = √3,5 ≈ 1,871.

d) x = √4,12 ≈ 2,030, x = √4,12 ≈ 2,030.

Ôn lại lý thuyết về căn bậc hai

Căn bậc hai số học

Ở lớp 7, ta đã biết:

Căn bậc hai của một số a không âm là số x sao cho x 2 = a.

Số dương a có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là √a và số âm kí hiệu là -√a.

Số 0 có đúng một căn bậc hai là chính số 0, ta viết √0 = 0.

ĐỊNH NGHĨA 1. Với số dương a, số √a được gọi là căn bậc hai số học của a.

Số 0 cũng được gọi là căn bậc hai số học của 0.

Chú ý. Với a ≥ 0, ta có:

Nếu x = √a thì x ≥ 0 và x2 = a;

Nếu x ≥ 0 và x 2 = a thì x = √a.

2. So sánh các căn bậc hai số học

Ta đã biết: Với hai số a và b không âm, nếu a < b thì √a < √b.

Ta có thể chứng minh được: Với hai số a và b không âm, nếu √a < √b thì a < b. Như vậy ta có định lí sau đây.

Giải Bài Tập Trang 6 Sgk Toán Lớp 9 Tập 1: Căn Bậc Hai Giải Bài Tập Môn Toán Lớp 9

Giải bài tập trang 6 SGK Toán lớp 9 tập 1: Căn bậc hai Giải bài tập môn Toán lớp 9

Giải bài tập trang 6 SGK Toán lớp 9 tập 1: Căn bậc hai với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa môn Toán lớp 9, các bài giải tương ứng với từng bài học trong sách giúp cho các em học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán.

Bài 1. (trang 6 SGK toán lớp 9 tập 1)

Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng 121; 144; 169; 225; 256; 324; 361; 400.

Đáp án và hướng dẫn giải bài 1:

√121 = 11. Hai căn bậc hai của 121 là 11 và -11.

√144 = 12. Hai căn bậc hai của 144 là 12 và -12.

√169 = 13. Hai căn bậc hai của 169 là 13 và -13.

√225 = 15. Hai căn bậc hai của 225 là 15 và -15.

√256 = 16. Hai căn bậc hai của 256 là 16 và -16.

√324 = 18. Hai căn bậc hai của 324 là 18 và -18.

√361 = 19. Hai căn bậc hai của 361 là 19 và -19.

√400 = 20. Hai căn bậc hai của 400 là 20 và -20.

Bài 2. (trang 6 SGK toán lớp 9 tập 1)

So sánh

a) 2 và √3 b) 6 và √41 c) 7 và √47.

Đáp án và hướng dẫn giải bài 2:

Viết mỗi số nguyên thành căn bậc hai của một số.

b) ĐS: 6 < √41

Bài 3. (trang 6 SGK toán lớp 9 tập 1)

Dùng máy tính bỏ túi, tính giá trị gần đúng của nghiệm mỗi phương trình sau (làm tròn đến chữ số thập phân thứ 3):

a) X 2 = 2; b) X 2 = 3;

c) X 2 = 3,5; d) X 2 = 4,12;

Đáp án

Nghiệm của phương trình X 2 = a (với a ≥ 0) là căn bậc hai của a.

ĐS. a) x = √2 ≈ 1,414, x = -√2 ≈ -1,414.

b) x = √3 ≈ 1,732, x = -√3 ≈ 1,732.

c) x = √3,5 ≈ 1,871, x = √3,5 ≈ 1,871.

d) x = √4,12 ≈ 2,030, x = √4,12 ≈ 2,030.

Ôn lại lý thuyết về căn bậc hai

Căn bậc hai số học

Ở lớp 7, ta đã biết:

Căn bậc hai của một số a không âm là số x sao cho x 2 = a.

Số dương a có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là √a và số âm kí hiệu là -√a.

Số 0 có đúng một căn bậc hai là chính số 0, ta viết √0 = 0.

ĐỊNH NGHĨA 1. Với số dương a, số √a được gọi là căn bậc hai số học của a.

Số 0 cũng được gọi là căn bậc hai số học của 0.

Chú ý. Với a ≥ 0, ta có:

Nếu x = √a thì x ≥ 0 và x2 = a;

Nếu x ≥ 0 và x 2 = a thì x = √a.

2. So sánh các căn bậc hai số học

Ta đã biết: Với hai số a và b không âm, nếu a < b thì √a < √b.

Ta có thể chứng minh được: Với hai số a và b không âm, nếu √a < √b thì a < b. Như vậy ta có định lí sau đây.

Giải Bài Tập Sbt Toán 9 Bài 1: Căn Bậc Hai

Giải bài tập môn Toán Đại số lớp 9

Bài tập môn Toán lớp 9

Giải bài tập SBT Toán 9 bài 1: Căn bậc hai được VnDoc sưu tầm và đăng tải, tổng hợp lý thuyết. Đây là lời giải hay cho các câu hỏi trong sách bài tập nằm trong chương trình giảng dạy môn Toán lớp 9. Hi vọng rằng đây sẽ là những tài liệu hữu ích trong công tác giảng dạy và học tập của quý thầy cô và các em học sinh.

Ngoài ra, chúng tôi đã thành lập group chia sẻ tài liệu học tập THCS miễn phí trên Facebook: Tài liệu học tập lớp 9. Mời các bạn học sinh tham gia nhóm, để có thể nhận được những tài liệu mới nhất.

Câu 1: Tính căn bậc hai số học của:

a, 0,01 b, 0,04 c, 0,49 d, 0,64

e, 0,25 f, 0,81 g, 0,09 h, 0,16

Lời giải:

a, √0,01 = 0,1 vì 0,1 ≥ 0 và (0,1)2 = 0,01

b, √0,04 = 0,2 vì 0,2 ≥ 0 và (0,2)2 = 0,04

c, √0,49 = 0,7 vì 0,7 ≥ 0 và (0,7)2 = 0,49

d, √0,64 = 0,8 vì 0,8 ≥ 0 và (0,8)2 = 0,64

e, √0,25 = 0,5 vì 0,5 ≥ 0 và (0,5)2 = 0,25

f, √0,81 = 0,9 vì 0,9 ≥ 0 và (0,9)2 = 0,81

g, √0,09 = 0,3 vì 0,3 ≥ 0 và (0,3)2 = 0,09

h, √0,16 = 0,4 vì 0,4 ≥ 0 và (0,4)2 = 0,16

Câu 2 bài 1 Toán lớp 9: Dùng máy tính bỏ túi tim x thỏa mãn đẳng thức (làm tròn đến chữ số thập phân thứ ba).

Lời giải:

a, x 2 = 5 ⇒ x1 = 5 và x2 = -5

Ta có: x1 = 5 ≈ 2,236 và x2 = – 5 = -2,236

b, x 2 = 6 ⇒ x1 = 6 và x2 = – 6

Ta có: x1 = 6 ≈ 2,449 và x2 = – 6 = -2,449

c, x 2 = 2,5 ⇒ x1 = √2,5 và x2 = – √2,5

Ta có: x1 = √2,5 ≈ 1,581 và x2 = – √2,5 = -1,581

d, x 2 = 5 ⇒ x1 = √(√5) và x2 = √(√5)

Ta có: x1 = √(√5) ≈ 1,495 và x2 = – √(√5) = -1,495

Câu 3: Số nào có căn bậc hai là:

a, √5 b, 1,5 c, -0,1 d, -√9

Lời giải:

a, Số 5 có căn bậc hai là √5

b, Số 2,25 có căn bậc hai là 1,5

c, Số 0,01 có căn bậc hai là -0,1

d, Số 9 có căn bậc hai là -√9

Câu 4: Tìm x không âm biết:

a, √x = 3 b, √x = √5 c, √x = 0 d, √x = -2

Lời giải:

a, √x = 3 ⇒ x = 3 2 ⇒ x = 9

b, √x = √5 ⇒ x = (√5) 2 ⇒ x = 5

c, √x = 0 ⇒ x = 0 2 ⇒ x = 0

d, Căn bậc hai số học là số không âm nên không tồn tại giá trị nào của √x thỏa mãn x = -2

Câu 5: So sánh (không dùng bảng số hay máy tính bỏ túi)

a, 2 và √2 + 1 b, 1 và √3 – 1

c, 2√31 và 10 d, -√3.11 và -12

Lời giải:

a, Ta có: 1 < 2 ⇒ √1 < √2 ⇒ 1 < √2

Suy ra: 1 + 1 < √2 + 1

Vậy 2 < √2 + 1

d, Ta có: 11 < 16 ⇒ √11 < √16 ⇒ √11 < 4

Câu 6: Tìm những khẳng định đúng trong các khẳng định sau:

a, Căn bậc hai của 0,36 là 0,6

b, Căn bậc hai của 0,36 là 0,06

c, √0,36 = 0,6

d, Căn bậc hai của 0,36 là 0,6 và -0,6

e, √0,36 = ± 0,6

Lời giải:

Câu a và c đúng,

Câu 7: Cho hai số a, b không âm. Chứng minh:

a, Nếu √a < √b thì a < b

b, Nếu a < b thì √a < √b

Lời giải:

Mặt khác: a – b = (√a) 2 – (√b) 2 = (√a + √b)(√a – √b)

Vì a < b nên a – b < 0

Suy ra: (√a + √b)(√a – √b) < 0 (2)

Từ (1) và (2) suy ra: √a – √b < 0 ⇒ √a < √b

(√a + √b)(√a – √b) < 0

Câu 8: Cho số m dương, Chứng minh:

Lời giải:

b, Ta có: m < 1 ⇒ √m < √1 ⇒ √m < 1

Bạn đang xem bài viết Bài 1,2,3 Trang 6 Sgk Toán Lớp 9 Tập 1: Căn Bậc Hai trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!