Cập nhật thông tin chi tiết về Bai Tap Kinh Te Vi Mo Co Loi Giai mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.
Published on
1. Bài 1: Trong những năm 2005, sản xuất đường ở Mỹ: 11,4 tỷ pao; tiêu dùng 17,8 tỷ pao; giá cả ở Mỹ 22 xu/pao; giá cả thế giới 8,5 xu/pao…Ở những giá cả và số lượng ấy có hệ số co dãn của cầu và cung là Ed = -0,2; Es = 1,54. Yêu cầu: 1. Xác định phương trình đường cung và đường cầu về đường trên thị trường Mỹ. Xác định giá cả cân bằng đường trên thị trường Mỹ. 2. Để đảm bảo lợi ích của ngành đường, chính phủ đưa ra mức hạn ngạch nhập khẩu là 6,4 tỷ pao. Hãy xác định số thay đổi trong thặng dư của người tiêu dung, của người sản xuất, của Chính phủ, và số thay đổi trong phúc lợi xã hội. 3. Nếu giả sử chính phủ đánh thuế nhập khẩu 13,5 xu/pao. Điều này tác động đến lợi ích của mọi thành viên ra sao? So sánh với trường hợp hạn ngạch, theo bạn chính phủ nên áp dụng biện pháp gì? Bài giải Qs = 11,4 tỷ pao Qd = 17,8 tỷ pao P = 22 xu/pao PTG = 805 xu/pao Ed = -0,2 Es = 1,54 1. Phương trình đường cung, đường cầu? Pcb? Ta có: phương trình đường cung, đường cầu có dạng như sau: QS = aP + b QD = cP + d Ta lại có công thức tính độ co dãn cung, cầu: ES = (P/QS).(∆Q/∆P) ED = (P/QD). (∆Q/∆P) (1) Trong đó: ∆Q/∆P là sự thay đổi lượng cung hoặc cầu gây ra bởi thay đổi về giá, từ đó, ta có ∆Q/∆P là hệ số gốc của phương trình đường cung, đường cầu ES = a.(P/QS) ED = c. (P/QD) a = (ES.QS)/P c = (ED.QD)/P a = (1,54 x 11,4)/22 = 0,798 c = (-0,2 x 17,8)/22 = – 0,162
4. P S D 22 a t c b d Pw 8..5 0.627 11.4 17.8 19.987 Q Khi chính phủ đánh thuế nhập khẩu thì tác động cũng giống như trường hợp trên. Tuy nhiên nếu như trên chính phủ bị thiệt hại phần diện tích hình c +d do thuộc về những nhà nhập khẩu thì ở trường hợp này chính phủ được thêm một khoản lợi từ việc đánh thuế nhập khẩu ( hình c + d ). Tổn thất xã hội vẫn là 87,487 * So sánh hai trường hợp : Những thay đổi trong thặng dư tiêu dùng và thặng dư sản xuất là như nhau dưới tác động của hạn ngạch và của thuế quan. Tuy nhiên nếu đánh thuế nhập khẩu chính phủ sẽ thu được lợi ích từ thuế. Thu nhập này có thể được phân phối lại trong nền kinh tế ( ví dụ như giảm thuế, trợ cấp …). Vì thế chính phủ sẽ chọn cách đánh thuế nhập khẩu bởi vì tổn thất xã hội không đổi nhưng chính phủ được lợi thêm một khoản từ thuế nhập khẩu.
5. Bài 2: Thị trường về lúa gạo ở Việt Nam được cho như sau: – Trong năm 2002, sản lượng sản xuất được là 34 triệu tấn lúa, được bán với giá 2.000 đ/kg cho cả thị trường trong nước và xuất khẩu; mức tiêu thụ trong nước là 31 triệu tấn. – Trong năm 2003, sản lượng sản xuất được là 35 triệu tấn lúa, được bán với giá 2.200 đ/kg cho cả thị trường trong nước và xuất khẩu, mức tiêu thụ trong nước là 29 triệu tấn. Giả sử đường cung và đường cầu về lúa gạo của Việt Nam là đường thẳng, đơn vị tính trong các phương trình đường cung và cầu được cho là Q tính theo triệu tấn lúa; P được tính là 1000 đồng/kg. 1. Hãy xác định hệ số co dãn của đường cung và cầu tương ứng với 2 năm nói trên. 2. Xây dựng phương trình đường cung và đường cầu lúa gạo của Việt Nam. 3. Trong năm 2003, nếu chính phủ thực hiện chính sách trợ cấp xuất khẩu là 300 đ/kg lúa, hãy xác định số thay đổi trong thặng dư của người tiêu dùng, của người sản xuất, của chính phủ và phúc lợi xã hội trong trường hợp này. 4. Trong năm 2003, nếu bây giờ chính phủ áp dụng hạn ngạch xuất khẩu là 2 triệu tấn lúa mỗi năm, mức giá và sản lượng tiêu thụ và sản xuất trong nước thay đổi như thế nào? Lợi ích của mọi thành viên thay đổi ra sao? 5. Trong năm 2003, giả định chính phủ áp dụng mức thuế xuất khẩu là 5% giá xuất khẩu, điều này làm cho giá cả trong nước thay đổi ra sao? Số thay đổi trong thặng dư của mọi thành viên sẽ như thế nào? 6. Theo các bạn, giữa việc đánh thuế xuất khẩu và áp dụng quota xuất khẩu, giải pháp nào nên được lựa chọn. Bài giải 2002 2003 P 2 2,2 QS 34 35 QD 31 29 1. Xác định hệ số co dãn của đường cung và cầu tương ứng với 2 năm nói trên. Hệ số co dãn cung cầu được tính theo công thức: ES = (P/Q) x (∆QS/∆P) ED = (P/Q) x (∆QD/∆P) Vì ta xét thị trường trong 2 năm liên tiếp nên P,Q trong công thức tính độ co dãn cung cầu là P,Q bình quân. ES = (2,1/34,5) x [(35 – 34)/(2,2 – 2)] = 0,3 ED = (2,1/30) x [(29 – 31)/(2,2 – 2)] = 0,7 2. Xây dựng phương trình đường cung và đường cầu lúa gạo của Việt Nam.
6. Ta có : QS = aP + b QD = cP + d Trong đó: a = ∆QS/∆P = (35 – 34) / (2,2 – 2) = 5 b = ∆QD/∆P = (29 -31) / (2,2 – 2) = -10 Ta có: QS = aP + b b = QS – aP = 34 – 5.2 = 24 và QD = cP + d d = QD – cP = 31 +10.2 = 51 Phương trình đường cung, đường cầu lúa gạo ở Việt Nam có dạng: QS = 5P + 24 QD = -10P + 51 3. trợ cấp xuất khẩu là 300 đ/kg lúa, xác định số thay đổi trong thặng dư của người tiêu dùng, của người sản xuất, của chính phủ và phúc lợi xã hội Khi thực hiện trợ cấp xuất khẩu, thì: PD1 = PS1 – 0,3 Tại điểm cân bằng: QD1 = QS1 5PS1 + 24 = -10 (PS1 – 0,3) + 51 PS1 = 2 PD1 = 1,7 QD1 = 34 4. Quota xuất khẩu là 2 triệu tấn lúa mỗi năm, mức giá và sản lượng tiêu thụ và sản xuất trong nước thay đổi như thế nào? Lợi ích của mọi thành viên thay đổi ra sao? Khi chưa có quota , điểm cân bằng thị trường: QS = Q D 5P + 24 = -10P + 51 15P = 27 PO = 1,8 QO = 33 Khi có quota xuất khẩu, phương trình đường cầu thay đổi như sau: QD’ = QD + quota = -10P + 51 + 2 = -10P + 53 Điểm cân bằng mới khi có quota xuất khẩu:
7. QS = QD’ 5P + 24 = -10P +53 15P = 29 P = 1,93 Q = 5P + 24 = 33,65 * P S D P = 2,2 P = 2,09 1,93 1,8 D +quota 29 33 33,65 Thặng dư: – ∆ CS = + a + b là phần diện tích hình thang ABCD SABCD = 1/2 x (AB + CD) x AD Trong đó : AD = 2,2 – 1,93 = 0,27 AB = QD(P=2,2) = -10 x 2,2 +51 = 29 CD = QD(P=1,93) = -10 x 1,93 + 51 = 31,7 SABCD = 1/2 x (29 + 31,7) x 0,27 = 8,195 ∆ CS = a + b = 8,195 – ∆ PS = -(a + b + c + d + f) là phần diện tích hình thang AEID SAEID = 1/2 x (AE + ID) x AD Trong đó: AE = QS(P=2,2) = 5 x 2,2 + 24 = 35 ID = QS(P=1,93) = 5 x 1,93 + 24 = 33,65 SAEID = 1/2 x (35 + 33,65) x 0,27 = 9,268 Q
8. ∆ PS = -(a + b + c + d +f) = -9,268 – Người có quota XK: ∆ XK = d là diện tích tam giác CHI SCHI = 1/2 x (CH x CI) Trong đó: CH =AD = 0,27 CI = DI – AH = 33,65 – QD(P=2,2) = 33,65 – (-10 x 2,2 +53) = 33,65 -31 =2,65 S CHI = 1/2 x (0,27 x 2,65) = 0,358 ∆ XK = d = 0,358 – ∆ NW = ∆ CS + ∆ PS + ∆ XK = 8,195 – 9,268 + 0,358 = -0,715 5. chính phủ áp dụng mức thuế xuất khẩu là 5% giá xuất khẩu, giá cả trong nước thay đổi ra sao? Số thay đổi trong thặng dư của mọi thành viên sẽ như thế nào? Khi chính phủ áp đặt mức thuế xuất khẩu bằng 5% giá xuất khẩu thì giá của lượng xuất khẩu sẽ giảm: 2,2 – 5% x 2,2 = 2,09. – ∆ CS = 1/2 x (29 + QD(P=2,09)) x (2,2 – 2,09) = 1/2 x [29 + (-10 x 2,09 + 51)] x 0,11 = 1/2 x (29 + 30,1) x 0,11 = 3,25 – ∆ PS = – { 1/2 x (AE + QS(P=2,09)) x (2,2 – 2,09) = – {1/2 x [35 + (5 x 2,09 +24)] x 0,11 = – [1/2 x (35 + 34,45) x 0,11)] = -3,82 – Chính phủ: ∆ CP = 1/2 x (2,2 – 2,09) x (QS(P=2,09) – QD(P=2,09)) = 1/2 x 0,11 x (34,45 – 30,1) = 0,239 – ∆ NW = ∆ CS + ∆ PS + ∆ CP = 3,25 -3,82 + 0,239 = -0,33 6. Giữa việc đánh thuế xuất khẩu và áp dụng quota xuất khẩu, giải pháp nào nên được lựa chọn Theo tính toán của câu 4,5 (quota = 2 và TXK = 5% giá xuất khẩu) thì Chính phủ nên chọn giải pháp đánh thuế xuất khẩu. Vì rõ ràng khi áp dụng mức thuế này phúc lợi xã hội bị thiệt hại ít hơn khi áp dụng quota = 2, đồng thời chính phủ thu được 1 phần từ việc đánh thuế (0,39).
10. 3. giải pháp nào có lợi nhất Giải pháp 1: P max = 8đ/đvsp & PNkhẩu lượng sp thiếu hụt = 11đ/đvsp P Toån thaát voâ ích P =14.74 S B P0=9. 8 C D Pmax =8 Thieáu huït Q1s=1.1 4 Q 0 D Q1D = 1.89 Ta có : Pmax = 8đ/đvsp (S) : P = 4 + 3,5Q 8 = 4 + 3,5Q Q1S = 1,14 Tương tự : thế P = 8đ/đvsp vào (D) (D) : P = 25 – 9Q 8 = 25 – 9Q Q1D = 1,89 Vậy tổng sản lượng thiếu hụt trong trường hợp này là: Q1D – Q1S = 1,89 – 1,14 = 0,75 Vậy số tiền chính phủ phải bỏ ra để nhập khẩu sản lượng thiếu hụt là: P x ( Q1D – Q1S ) = 11 x 0,75 = 8,25 tỷ Người tiêu dùng tiết kiệm được là: ΔCS = C-B = 1.14*(9.8-8) – (1.68-1.14)*(14.74-9.8) = – 0.616 tỷ Q
15. P S PS1 A C s B P0 =PD1 D Q0 Q1 3. Chính sách nào nên được lựa chọn thích hợp? Chính sách trợ giá sẽ được ưu tiên lựa chọn, vì chính sách này đảm bảo được quyền lợi của người sản xuất và người tiêu dùng. Cả hai chính sách đều làm cho chính phủ chi tiêu nhiều hơn để hỗ trợ cho người sản xuất, và người tiêu dùng. Nhưng nếu dùng chính sách giá tối thiểu, người nông dân sẽ có xu hướng tạo ra càng nhiều sản phẩm dư thừa càng tốt, vì chính phủ cam kết mua hết sản phẩm thừa, thiệt hại không cần thiết cho chính phủ. Để giới hạn sản xuất và đảm bảo được quyền lợi cả hai, chính phủ sẽ chọn giải pháp trợ giá. Q
16. Bài 1: Giả sử độ co dãn của cầu theo thu nhập đối với thực phẩm là 0,5 ; và độ co dãn của cầu theo giá là -1,0. Một người phụ nữ chi tiêu 10.000$ một năm cho thực phẩm và giá thực phẩm là 2$/đv, thu nhập của bà ta là 25.000$. 1. Chính phủ đánh thuế vào thực phẩm làm giá thực phẩm tăng gấp đôi, tính lượng thực phẩm được tiêu dùng và chi tiêu vào thực phẩm của người tiêu dùng này. 2. Giả sử người ta cho bà ta số tiền cấp bù là 5.000$ để làm nhẹ bớt ảnh hưởng của thuế. Lượng thực phẩm được tiêu dùng và chi tiêu vào thực phẩm của phụ nữ này sẽ thay đổi như thế nào? 3. Liệu khoản tiền này có đưa bà ta trợ lại được mức thỏa mãn ban đầu hay không? Hãy chứng minh (minh họa bằng đồ thị) Bài giả i 1. Chính phuû ñaùnh thueá vaøo thöïc phaåm laøm giaù thöïc phaåm taêng gaáp ñoâi, tính löôïng thöïc phaåm ñ öôïc tieâu duøng vaø chi tieâu vaøo thöïc phaåm cuûa ngöôøi tieâu duøng naøy Ta coù coâng thöùc tính ñoä co giaûn cuûa caàu theo giaù E(P)= (Q/ P)x (P/Q) ( 1) do ñeà baøi cho giaù thöïc phaàm taêng gaáp ñoâi töø 2 leân 4 neân ta giaû söû ñoä co giaûn laø co giaûn hình cung vôùi: * Q= (Q+(Q+Q))/2 * P=(P+(P+P))/2 Theá vaøo (1) ta coù: E(P)= (Q/ P) x (2P+P)/(2Q+Q) Theo ñeà baøi ta coù: * E(P)=-1 * P=2 * P=2 * Q=10.000/2 =5000 Theá vaøo ( 2 ) ta tính ñöôïc Q (Q/ 2) x (2×2+2)/(2×5.000+Q) =-1 (2)
18. Theo số liệu bài này, ta thấc C vẫn nằm dưới đường ngân sách ban đầu nên ta kết luận khoaûn tieàn trợ cấp naøy vẫn không ñöa baø ta trôû laïi ñöôïc möùc thoaû maõn ban ñaàu. Y (I=30.0 00) (I=25.0 00) U 1 100 0 500 750 0 0 U 2 X
19. Bài 4: An có thu nhập ở kỳ hiện tại là 100 triệu đồng và thu nhập ở kỳ tương lai là 154 triệu đồng. Nhằm mục đích đơn giản hóa tính toán, giả định rằng An có thể đi vay và cho vay với cùng 1 lãi suất 10% trong suốt thời kỳ từ hiện tại đến tương lai. 1. Hãy vẽ đường ngân sách, thể hiện rõ mức tiêu dùng tối đa trong hiện tại cũng như trong tương lai. 2. Giả sử An dang sử dụng những khoản thu nhập của mình đúng với thời gian của chúng, hãy biểu diễn bằng đồ thị điểm cân bằng tiêu dùng của anh ta 3. Nếu lãi suất tăng đến 40% thì An có thay đổi quyết định tiêu dùng của mình không? Minh họa bằng đồ thị. 4. Từ câu số 1, giả sử hiện An đang vay 50 triệu đồng để tiêu dùng, anh ta sẽ còn bao nhiêu tiền để tiêu dùng trong tương lai?Nếu lãi suất tăng từ 10% lên 20% thì anh ta có thay đổi mức vay này không?Biễu diễn trên đồ thị. Bài giải 1. Hãy vẽ đường ngân sách, thể hiện rõ mức tiêu dùng tối đa trong hiện tại cũng như trong tương lai. X: thu nhập hiện tại : 100triệu Y: thu nhập tương lai : 154 triệu Lãi suất : r = 10% Ta có : * số tiền mà An có thể tiệu dùng tối đa trong hiện tại là : 100 + 154/(1+r) = 100 + 154 /(1 +0.1) = 240 triệu * số tiền mà An có thể dùng tối đa trong tương lai là: 154 + 100(1+0.1) = 264 triệu Thu nhập tương lai BC1 26 4 15 4 E1 I1 100 Thu nhập hiện tại Đường giới hạn ngân sách của An là đường gấp khúc BC. Khi đó, nếu An sử dụng hết khoản thu nhập hiện tại là 100 triệu thì trong tương lai thu nhập của An sẽ là
22. Thu nhập tương lai 20 9 15 4 99 100 150 Thu nhập hiện tại
23. Bài 5: Một người tiêu dùng điển hình có hàm thỏa dụng U = f(X,Y) trong đó X là khí tự nhiên và Y là thực phẩm. Cả X và Y đều là các hàng thông thường. Thu nhập của người tiêu dùng là $100,00. Khi giá của X là $1 và giá của Y là $1, anh ta tiêu dùng 50 đv hàng X và 50 đv hàng Y. 1. Hãy vẽ đường giới hạn ngân quỹ và trên đường bàng quan tương ứng với tình thế này. Chính phủ muốn người tiêu dùng này giảm tiêu dùng khí tự nhiên của mình từ 50 đv còn 30 đv và đang xem xét 2 cách làm việc này: i. không thay đổi giá khí đốt, nhưng không cho phép người tiêu dùng mua nhiều hơn 30 đv khí đốt ii. Tăng giá khí tự nhiên bằng cách đánh thuế cho tới khi người tiêu dùng mua đúng 30 đv Hãy chỉ ra bằng đồ thị các tác động của 2 đề xuất này lên phúc lợi của cá nhân này. 2. Phương án nào trong 2 phương án này sẽ được người tiêu dùng ưa thích hơn? Hãy giải thích vì sao? Bài giải 1. Vẽ đường giới hạn ngân quỹ và trên đường bàng quan tương ứng với tình thế này. i.Không thay đổi giá khí đốt nhưng không cho phép người tiêu dùng mua nhiều hơn 30 đơn vị khí đốt. Y 100 C B 85 70 A 50 15 30 50 100 X Khi không thay đổi giá khí đốt, đường thu nhập I không thay đổi. Người tiêu dùng chỉ mua khí đốt ở mức cho phép ( không vượt quá 30 đơn vị ) và tăng mua thực phẩm. Ta thấy sự kết hợp tối ưu từ điểm A di chuyển đến điểm B, điểm C,… 20 30 X 50 100
28. P = 31 ngàn USD Sản lượng bán trên từng thị trường: QE = 18.000 – 400 x 31 = 5.600 QU = 5.500 – 100 x 31 = 2.400 Lợi nhuận của BMW khi định giá giống nhau trên 2 thị trường: π = TR – TC Trong đó: TR = Q x P = 8.000 x 31 = 248.000 ngàn USD TC = C + V = 20.000 + (8.000 x 15) = 140.000 ngàn USD π = TR – TC = 248.000 – 140.000 = 108.000 ngàn USD = 108 triệu USD
29. Bài 5: Với tư cách là chủ một câu lạc bộ tennis duy nhất ở 1 cộng đồng biệt lập giàu có, bạn phải quyết định lệ phí hội viên và lệ phí cho mỗi buổi tối chơi. Có hai loại khách hàng. Nhóm “nghiêm túc” có cầu: Q 1 = 6 – P trong đó Q là thời gian chơi/tuần và P là lệ phí mỗi giờ cho mỗi cá nhân. Cũng có những khách chơi không thường xuyên với cầu Q2 = 3 – (1/2)P Giả sử rằng có 1000 khách hàng chơi mỗi loại. Bạn có rất nhiều sân, do đó chi phí biên của thời gian thuê sân bằng không. Bạn có chi phí cố định là 5000USD/tuần. Những khách hàng nghiêm túc và khách hàng chơi không thường xuyên trông như nhau và như vậy bạn phải định giá giống nhau: 1. Giả sử để duy trì không khí chuyên nghiệp, bạn muốn hạn chế số lượng hội viên cho những người chơi nghiêm túc. Bạn cần ấn định phí hội viên hang năm và lệ phí cho mỗi buổi thuê sân như thế nào?(giả sử 52 tuần/năm) để tối đa hóa lợi nhuận, hãy lưu ý sự hạn chế này chỉ áp dụng cho những người chơi nghiêm túc. Mức lợi nhuận mỗi tuần sẽ là bao nhiêu? 2. Một người nói với bạn rằng bạn có thể thu được nhiều lợi nhuận hơn bằng cách khuyến khích cả hai đối tượng tham gia. Ý kiến của người đó đúng không?Mức hội phí và lệ phí thuê sân là bao nhiêu để có thể tối đa hóa lợi nhuận mỗi tuần? Mức lợi nhuận đó là bao nhiêu? 3. Giả sử sau vài năm số nhà chuyên môn trẻ tài năng chuyển đến cộng đồng của bạn. Họ đều là những khách chơi nghiêm túc. Ban tin rằng bây giờ có 3.000 khách chơi nghiêm túc và 1.000 khách chơi không thường xuyên. Liệu còn có lợi nếu bạn còn tiếp tục phục vụ những khách chơi không thường xuyên?Mức hội phí hang năm và phí thuê sân là bao nhiêu để có thể tối đa hóa lợi nhuận? Mức lợi nhuận mỗi tuần là bao nhiêu?
Bai Tap Co Loi Giai Xac Suat Thong Ke
Published on
1. NGUYỄN VĂN THÌN 9/2011 BÀI TẬP XÁC SUẤT VÀ THỐNG KÊ TOÁN
3. MỤC LỤC 3 6.3 Tổng hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7 Kiểm định giả thuyết thống kê 39 7.1 So sánh kì vọng với một số cho trước . . . . . . . . . . . . . . . . . . . . . . . . 39 7.2 So sánh hai kì vọng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.3 So sánh tỉ lệ với một số cho trước . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.4 So sánh hai tỉ lệ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 II BÀI GIẢI 46
4. Phần I BÀI TẬP
5. Chương 1 Tập hợp – Giải tích tổ hợp 1.1 Tập hợp Bài tập 1.1. Cho dãy tập hợp A1, A2, . . . , An, . . .. Chứng minh rằng luôn luôn tồn tại dãy tập hợp B1, B2, . . . , Bn, . . ., sao cho: (a) Các Bi từng đôi một rời nhau; (b) ∞ i=1 Ai = ∞ k=1 Bk. Bài tập 1.2. Chứng minh rằng các hệ thức sau đây tương đương nếu A và B là tập hợp con của Ω: A ∪ B = Ω, A ⊂ B, B ⊂ A. Bài tập 1.3. Khẳng định cho rằng nếu A, B, C là tập hợp con của tập hợp Ω sao cho A ⊂ B ∪ C và B ⊂ A ∪ C, thì B = ∅, có đúng không? Bài tập 1.4. Chứng minh rằng nếu A, B, C là các tập hợp con của tập hợp Ω, sao cho A ∩ B ⊂ C và A ∪ C ⊂ B, thì A ∩ C = ∅ Bài tập 1.5. Tìm biểu thức đơn giản của các biểu thức sau: (a) (A ∪ B)(A ∪ C) (b) (A ∪ B)(A ∪ B); (c) (A ∪ B)(A ∪ B)(A ∪ B) (d) (A ∪ B)(A ∪ B)(A ∪ B)
6. 1.2 Giải tích tổ hợp 2 (e) (A ∪ B)(B ∪ C) Bài tập 1.6. Hệ thức nào trong các hệ thức sau đây đúng (a) A ∪ B ∪ C = A ∪ (B AB) ∪ (C AC) (b) A ∪ B = (A AB) ∪ B (c) (A ∪ B) A = B (d) (A ∪ B) C = A ∪ (B C) (e) ABC = AB(C ∪ B) (f) AB ∪ BC ∪ CA ⊃ ABC (g) (AB ∪ BC ∪ CA) ⊂ (A ∪ B ∪ C) (h) ABC ⊂ A ∪ B (i) A ∪ BC = AC ∪ BC (j) A ∪ BC = C (C(A ∪ B)) Bài tập 1.7. Chứng minh rằng: (a) A ∪ B ∪ A ∪ B = A (b) (A ∪ B)AB = AB ∪ BA Bài tập 1.8. Chứng minh (a) Nếu A ∪ B = AB thì A = B (b) A ∪ BC ⊃ (A ∪ B)C (c) Nếu A1 ⊂ A, B1 ⊂ B và A ∩ B = ∅ thì A1 ∩ B1 = ∅ 1.2 Giải tích tổ hợp Bài tập 1.9. Một lô hàng có 50 sản phẩm. (a) Có bao nhiêu cách chọn ngẫu nhiên cùng lúc 5 sản phẩm để kiểm tra? (b) Có bao nhiêu cách chọn ngẫu nhiên lần lượt 5 sản phẩm? Bài tập 1.10. Trong một hệ thống điện thoại nội bộ 3 số
7. 1.2 Giải tích tổ hợp 3 (a) có bao nhiêu máy có các chữ số khác nhau? (b) Có bao nhiêu máy có số 9 ở cuối còn các chữ số còn lại đều khác nhau? Bài tập 1.11. Một lớp học có 40 học sinh gồm 20 nam và 20 nữ. Có bao nhiêu cách chia để trong mỗi nửa lớp có 10 nam sinh và 10 nữ sinh? Bài tập 1.12. Nếu một người có 6 đôi vớ khác nhau và 4 đôi giày khác nhau. Có bao nhiêu cách kết hợp giữa vớ và giày? Bài tập 1.13. Năm người A, B, C, D, E sẽ phát biểu trong một hội nghị. Có bao nhiêu cách sắp xếp để: (a) Người B phát biểu sau A. (b) Người A phát biểu xong thì đến lượt B. Bài tập 1.14. Có 6 học sinh được sắp xếp ngồi vào 6 chỗ đã ghi số thứ tự trên một bàn dài. Tìm số cách xếp (a) 6 học sinh vào bàn. (b) 6 học sinh này vào bàn sao cho 2 học sinh A, B ngồi cạnh nhau. (c) 6 học sinh này ngồi vào bàn sao cho 2 học sinh A, B không ngồi cạnh nhau. Bài tập 1.15. Một lớp có 40 học sinh. Giáo viên chủ nhiệm muốn chọn ra một ban cán sự lớp: 1 lớp trưởng, 1 lớp phó, 1 thủ quỹ. Hỏi giáo viên chủ nhiệm có bao nhiêu cách chọn ban cán sự lớp? Bài tập 1.16. Một hộp có 8 bi đỏ, 6 bi trắng, 4 bi vàng. Người ta chọn ra 6 bi từ hộp đó. Hỏi có bao nhiêu cách chọn nếu: (a) Không yêu cầu gì thêm. (b) Phải có 2 bi đỏ, 2 bi trắng, 2 bi vàng. (c) Có đúng 2 bi vàng. Bài tập 1.17. Một đồn cảnh sát khu vực có 9 người. Trong ngày cần cử 3 người làm nhiệm vụ ở địa điểm A, 2 người ở địa điểm B còn 4 người trực tại đồn. Hỏi có bao nhiêu cách phân công? Bài tập 1.18. Một tổ sản xuất có 12 người, trong đó có 4 nữ, cần chia thành 4 nhóm đều nhau. Hãy tìm số cách phân chia sao cho mỗi nhóm có 1 nữ? Bài tập 1.19. Xếp 12 hành khách lên 4 toa tàu. Tìm số cách sắp xếp: (a) Mỗi toa có 3 hành khách.
8. 1.2 Giải tích tổ hợp 4 (b) Một toa có 6 hành khách, một toa có 4 hành khách, 2 toa còn lại mỗi toa có 1 hành khách. Bài tập 1.20. Giả sử m, n, r là các số nguyên dương. Chứng minh rằng C0 mCr n−m + C1 mCr−1 n−m + · · · + Cr mC0 n−m = Cr n Bài tập 1.21. Chứng minh rằng (a) C1 n + 2C2 n + · · · + nCn n = n2n−1 (b) 2.1.C2 n + 3.2.C3 n + · · · + n(n − 1)Cn n = n(n − 1)2n−2 Bài tập 1.22. Cho m, n, r là các số nguyên dương. Chứng minh rằng (a) m k=0 Cr n−k = Cr+1 n+1 − Cr+1 n−m (b) m k=0 (−1)k Ck n = (−1)m Cm n−1 Bài tập 1.23. Chứng minh rằng C0 n 2 + C1 n 2 + · · · + (Cn n )2 = Cn 2n Bài tập 1.24. Chứng minh rằng n k=0 2n! (k!)2[(n − k)!]2 = (Cn 2n)2
9. Chương 2 Biến cố và xác suất 2.1 Biến cố Bài tập 2.1. Khi nào thì có các đẳng thức sau: (a) A + B = A (b) AB = A (c) A + B = AB Hai sự kiện A và A + B có xung khắc không? Bài tập 2.2. Một chiếc tàu thủy gồm một bánh lái, 4 nồi hơi, 2 tuốc bin. Gọi A, Bi(i = 1, . . . , 4), Cj(j = 1, 2) lần lượt là các sự kiện bánh lái hoạt động tốt, nồi hơi thứ i hoạt động tốt, tuốc bin thứ j hoạt động tốt. Biết rằng tàu hoạt động tốt khi và chỉ khi bánh lái, ít nhất 1 nồi hơi và ít nhất một tuốc bin đều hoạt động tốt. Gọi D là sự kiện tàu hoạt động tốt. Hãy biểu diễn D và D qua A, Bi, Cj. Bài tập 2.3. Có 4 sinh viên làm bài thi. Kí hiệu Bi(i = 1, . . . , 4) là biến cố sinh viên thứ i làm bài thi đạt yêu cầu. Hãy biểu diễn các biến cố sau đây: (a) Có đúng một sinh viên đạt yêu cầu. (b) Có đúng ba sinh viên đạt yêu cầu. (c) Có ít nhất một sinh viên đạt yêu cầu. (d) Không có sinh viên nào đạt yêu cầu. Bài tập 2.4. Xét phép thử: Gieo một xúc xắc 2 lần. Mô tả không gian biến cố sơ cấp ứng với phép thử trên?
10. 2.2 Xác suất cổ điển 6 Gọi A: “Tổng số nốt chia hết cho 3”, B: “Trị tuyệt đối của hiệu số nốt là số chẵn”. Biểu diễn A, B? Bài tập 2.5. Cho A, B là hai biến cố ngẫu nhiên đã biết. Tìm biến cố X từ hệ thức: X + A + X + A = B Bài tập 2.6. Xét phép thử: Bắn không hạn chế vào 1 bia cho đến khi trúng bia lần đầu tiên thì dừng. Biểu diễn không gian biến cố sơ cấp của biến cố trên. Chỉ ra một hệ đầy đủ các biến cố. Bài tập 2.7. Gieo hai con xúc xắc cân đối và đồng chất. Gọi Ai là biến cố xảy ra khi số nốt ở mặt trên con xúc xắc thứ nhất là i(i = 1, . . . , 6), Bk biến cố xảy ra khi số nốt ở mặt trên con xúc xắc thứ hai là k(k = 1, . . . , 6). (a) Hãy mô tả các biến cố A6B6, A3B5 (b) Viết bằng kí hiệu các biến cố: * A: “hiệu giữa số nốt ở mặt trên con xúc xắc thứ nhất và thứ hai có trị số tuyệt đối bằng ba”. * B: “số nốt ở mặt trên hai con xúc xắc bằng nhau”. (c) Hãy chỉ ra một nhóm đầy đủ các biến cố. 2.2 Xác suất cổ điển Bài tập 2.8. Một nhóm n người xếp ngẫu nhiên thành một hàng dài. (a) Tìm xác suất để 2 người định trước đứng cạnh nhau. (b) Tìm xác suất để 2 người đó đứng cách nhau 2 người. (c) Tìm xác suất để 2 người đó đứng cách nhau r người (0 < r < n − 2). (d) Xét trường hợp khi họ xếp thành một vòng tròn. Bài tập 2.9. Thang máy của một tòa nhà 7 tầng, xuất phát từ tầng một với 3 người khách. Tính xác suất để: (a) Tất cả cùng ra ở tầng bốn. (b) Tất cả cùng ra ở một tầng. (c) Mỗi người ra một tầng khác nhau.
11. 2.3 Xác suất hình học 7 Bài tập 2.10. Có n quả cầu được phân ngẫu nhiên lần lượt vào n hộp, mỗi hộp có thể chứa nhiều quả cầu. Khi phân biệt hộp và cầu, tìm xác suất để mỗi hộp chứa một quả cầu. Bài tập 2.11. Cho một lô hàng gồm n sản phẩm trong đó có m sản phẩm xấu. Lấy ngẫu nhiên từ lô hàng đó k sản phẩm. Tìm xác suất sao cho trong số sản phẩm lấy ra có đúng s sản phẩm xấu (s < k). Bài tập 2.12. Ta gieo liên tiếp 4 lần một đồng tiền cân đối đồng chất. Tìm xác suất của các biến cố: (a) A: “Có hai mặt sấp”. (b) B: “Có ba mặt ngửa”. (c) C: “Có ít nhất một mặt sấp”. Bài tập 2.13. Mười hai sản phẩm được sắp ngẫu nhiên vào ba hộp. Tìm xác suất để hộp thứ nhất có chứa ba sản phẩm. Bài tập 2.14. Gieo đồng thời hai con xúc xắc đồng chất cân đối n lần liên tiếp.Tìm xác suất để xuất hiện ít nhất một lần hai mặt trên cùng có 6 nốt. 2.3 Xác suất hình học Bài tập 2.15. Một thanh sắt thẳng được bẻ thành ba khúc một cách ngẫu nhiên. Tìm xác suất để ba khúc đó tạo được thành một tam giác. Biết rằng thanh sắt dài l (đơn vị dài.) Bài tập 2.16. (Bài toán Butffon) Trên mặt phẳng có các đường thẳng song song cách đều nhau 2a, gieo ngẫu nhiên một cây kim có độ dài 2l (l < a). Tìm xác suất để cây kim cắt một đường thẳng nào đó. Bài tập 2.17. Trên đường tròn bán kính R có một điểm A cố định, chọn ngẫu nhiên một điểm B. Tìm xác suất để cung AB không quá R. Bài tập 2.18. Trên đoạn thẳng OA ta gieo một cách ngẫu nhiên hai điểm B, C có tọa độ tương ứng là OB = x, OC = y(y ≥ x). Tìm xác suất sao cho độ dài của đoạn BC bé hơn độ dài của đoạn OB. 2.4 Các công thức tính xác suất cơ bản Bài tập 2.19. Một hệ thống được cấu tạo bởi 3 bộ phận độc lập nhau. Hệ thống sẽ hoạt động nếu ít nhất 2 trong 3 bộ phận còn hoạt động. Nếu độ tin cậy của mỗi bộ phận là 0.95 thì độ tin cậy của hệ thống là bao nhiêu?
12. 2.4 Các công thức tính xác suất cơ bản 8 Bài tập 2.20. Một hộp có 7 bi đỏ và 3 bi đen. (a) Lấy ngẫu nhiên 1 viên bi từ hộp ra để kiểm tra. Tính xác suất nhận được bi đen. (b) Lấy ngẫu nhiên lần lượt có hoàn lại 2 bi. Tính xác suất để lấy được 2 bi đen. (c) Lấy ngẫu nhiên ra 2 viên bi từ hộp. Tính xác suất để lấy được 2 bi đen. Bài tập 2.21. Cho P(A) = 1 3 , P(B) = 1 2 và P(A + B) = 3 4 . Tính P(AB), P(A.B), P(A + B), P(AB), P(AB). Bài tập 2.22. Tỷ lệ người mắc bệnh tim trong một vùng dân cư là 9%, mắc bệnh huyết áp là 12%, mắc cả hai bệnh là 7%. Chọn ngẫu nhiên một người trong vùng. Tính xác suất để người đó (a) Bị bệnh tim hay bị bệnh huyết áp. (b) Không bị bệnh tim cũng không bị bệnh huyết áp. (c) Không bị bệnh tim hay không bị bệnh huyết áp. (d) Bị bệnh tim nhưng không bị bệnh huyết áp. (e) Không bị bệnh tim nhưng bị bệnh huyết áp. Bài tập 2.23. Bạn quên mất số cuối cùng trong số điện thoại cần gọi (số điện thoại gồm 6 chữ số) và bạn chọn số cuối cùng này một cách ngẫu nhiên. Tính xác suất để bạn gọi đúng số điện thoại này mà không phải thử quá 3 lần. Nếu biết số cuối cùng là số lẻ thì xác suất này là bao nhiêu ? Bài tập 2.24. (a) Cho A, B là hai biến cố độc lập. Chứng minh rằng A, B; A, B và A, B đều là các cặp biến cố độc lập. (b) Cho A1, A2, . . . , An là n biến cố độc lập. Chứng minh rằng A1, A2, . . . , An cũng là n biến cố độc lập. Từ đó suy ra rằng nếu xét n biến cố B1, B2, . . . , Bn với Bi = Ai hoặc Bi = Ai thì B1, B2, . . . , Bn cũng là n biến cố độc lập. Bài tập 2.25. Một đợt xổ số phát hành N vé, trong đó có M vé có thưởng. Một người mua r vé (r < N − M). Tính xác suất để người đó có ít nhất một vé trúng thưởng. Bài tập 2.26. Một người có 3 con gà mái, 2 con gà trống nhốt chung một lồng. Một người đến mua, người bán bắt ngẫu nhiên ra một con. Người mua chấp nhận mua con đó. (a) Tìm xác suất để người đó mua được con gà mái. Người thứ hai đến mua, người bán lại bắt ngẫu nhiên ra một con.
13. 2.4 Các công thức tính xác suất cơ bản 9 (b) Tìm xác suất người thứ hai mua được gà trống, biết rằng người thứ nhất mua được gà mái. (c) Xác suất trên bằng bao nhiêu nếu người bán gà quên mất rằng con gà bán cho người thứ nhất là gà trống hay gà mái? Bài tập 2.27. Có một nhóm n sinh viên, mỗi người có một áo mưa giống hệt nhau. Một hôm trời mưa, cả nhóm cùng đến lớp và treo áo ở mắc áo. Lúc ra về vì vội vàng mỗi người lấy hú họa một cái áo. Tính xác suất có ít nhất một sinh viên chọn đúng áo của mình. Bài tập 2.28. Một người viết n lá thư và bỏ n lá thư này vào trong n phong bì đã viết sẵn địa chỉ. Tìm xác suất sao cho có ít nhất một lá thư được bỏ đúng vào phong bì của nó. Bài tập 2.29. Ba xạ thủ, mỗi người bắn một viên đạn vào mục tiêu với xác suất trúng đích của mỗi người là 0.6; 0.7; 0.8. Tìm xác suất (a) chỉ có người thứ hai bắn trúng. (b) có đúng một người bắn trúng. (c) có ít nhất một người bắn trúng. (d) cả ba người đều bắn trúng. (e) có đúng hai người bắn trúng. (f) có ít nhất hai người bắn trúng. (g) có không quá hai người bắn trúng. Bài tập 2.30. Cho hai biến cố xung khắc A và B, sao cho P(A) = 0, P(B) = 0. Chứng minh rằng A và B phụ thuộc nhau. Bài tập 2.31. Ba con ngựa a, b, c trong một cuộc đua ngựa. Nếu xuất hiện bac có nghĩa là b đến đích trước, sau đó là a và về cuối là c. Khi đó tập hợp tất cả các khả năng xuất hiện là Ω = {abc, acb, bac, bca, cab, cba}. Giả sử rằng P[{abc}] = P[{acb}] = 1/18 và bốn khả năng còn lại đều có xác suất xảy ra là 2/9. Hơn nữa, ta định nghĩa các biến cố A = “a đến đích trước b” và B = “a đến đích trước c” (a) Hai biến cố A và B có tạo thành một hệ đầy đủ của Ω? (b) Hai biến cố A và B có độc lập nhau? Bài tập 2.32. Có tồn tại hai biến cố xung khắc và độc lập không?
16. 2.5 Công thức xác suất đầy đủ, công thức Bayes 12 Bài tập 2.49. Có hai lô sản phẩm, lô thứ nhất có 10 sản phẩm loại I và 2 sản phẩm loại II. Lô thứ hai có 16 sản phẩm loại I và 4 sản phẩm loại II. Từ mỗi lô ta lấy ngẫu nhiên một sản phẩm. Sau đó, từ 2 sản phẩm thu được lấy hú họa ra một sản phẩm. Tìm xác suất để sản phẩm lấy ra sau cùng là sản phẩm loại I. Bài tập 2.50. Có 2 lô gà. Lô thứ nhất gồm 15 con, trong đó có 3 con gà trống. Lô thứ hai gồm 20 con, trong đó có 4 gà trống. Một con từ lô thứ hai nhảy sang lô thứ nhất. Sau đó từ lô thứ nhất ta bắt ngẫu nhiên ra một con. Tìm xác suất để con gà bắt ra là gà trống. Bài tập 2.51. Ba máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất 25%, máy II sản xuất 30% và máy III sản xuất 45% tổng sản lượng. Tỷ lệ phế phẩm của các máy lần lượt là 0.1%; 0.2%; 0.4%. Tìm xác suất để khi chọn ngẫu nhiên ra 1 sản phẩm từ kho thì (a) được chi tiết phế phẩm. (b) chi tiết phế phẩm đó do máy II sản xuất. Bài tập 2.52. Giả sử 3 máy M1, M2, M3 sản xuất lần lượt 500, 1000, 1500 linh kiện mỗi ngày với tỉ lệ phế phẩm tương ứng là 5%, 6% và 7%. Vào cuối ngày làm việc nào đó, người ta lấy một linh kiện được sản xuất bởi một trong 3 máy trên một cách ngẫu nhiên, kết quả là được một phế phẩm. Tìm xác suất linh kiện này được sản xuất bởi máy M3. Bài tập 2.53. Ba khẩu pháo cùng bắn vào một mục tiêu với xác suất trúng đích của mỗi khẩu là 0.4; 0.7; 0.8. Biết rằng xác suất để mục tiêu bị tiêu diệt khi trúng một phát đạn là 30%, khi trúng 2 phát đạn là 70%, còn trúng 3 phát đạn thì chắc chắn mục tiêu bị tiêu diệt. Giả sử mỗi khẩu pháo bắn 1 phát. (a) Tính xác suất để mục tiêu bị tiêu diệt. (b) Biết rằng mục tiêu đã bị tiêu diệt. Tính xác suất để khẩu thứ 3 có đóng góp vào thành công đó. Bài tập 2.54. Hộp I có 10 linh kiện trong đó có 3 bị hỏng. Hộp II có 15 linh kiện trong đó có 4 bị hỏng. Lấy ngẫu nhiên từ mỗi hộp ra một linh kiện. (a) Tính xác suất để cả 2 linh kiện lấy ra đều hỏng. (b) Số linh kiện còn lại trong 2 hộp đem bỏ vào hộp III. Từ hộp III lấy ngẫu nhiên ra 1 linh kiện. Tính xác suất để linh kiện lấy ra từ hộp III bị hỏng. (c) Biết linh kiện lấy ra từ hộp III là hỏng. Tính xác suất để 2 linh kiện lấy ra từ hộp I và II lúc ban đầu là hỏng. Bài tập 2.55. Có 3 cửa hàng I, II, III cùng kinh doanh sản phẩm Y , trong đó thị phần của cửa hàng I, III như nhau và gấp đôi thị phần của cửa hàng II. Tỉ lệ sản phẩm loại A trong 3 cửa hàng lần lượt là 70%, 75% và 50%. Một khách hàng chọn ngẫu nhiên 1 cửa hàng và tử đó mua một sản phẩm.
17. 2.5 Công thức xác suất đầy đủ, công thức Bayes 13 (a) Tính xác suất để khách hàng mua được sản phẩm loại A. (b) Giả sử khách hàng đã mua được sản phẩm loại A, hỏi khả năng người ấy đã mua được ở cửa hàng nào là nhiều nhất. Bài tập 2.56. Cho ε là một phép thử ngẫu nhiên với 3 biến cố sơ cấp có thể xảy ra là A, B và C. Giả sử ta tiến hành ε vô hạn lần và độc lập nhau. Tính theo P(A), P(B) xác suất biến cố A xuất hiện trước B.
22. 18 Bài tập 3.15. Tuổi thọ của một loại côn trùng nào đó là một biến ngẫu nhiên liên tục X (đơn vị tháng) có hàm mật độ f(x) = kx2 (4 − x) khi 0 ≤ x ≤ 4 0 nơi khác (a) Tìm hằng số k. (b) Tìm F(x). (c) Tìm E (X), Var (X) và Mod(X). (d) Tính xác suất để côn trùng chết trước một tháng tuổi. Bài tập 3.16. Biến ngẫu nhiên liên tục X có hàm mật độ f(x) = kx2 e−2x khi x ≥ 0 0 nơi khác (a) Tìm hằng số k. (b) Tìm hàm phân phối xác suất F(x). (c) Tìm E (X), Var (X) và Mod(X). Bài tập 3.17. Có hai thùng thuốc A và B, trong đó: – thùng A có 20 lọ gồm 2 lọ hỏng và 18 lọ tốt – thùng B có 20 lọ gồm 3 lọ hỏng và 17 lọ tốt. (a) Lấy ở mỗi thùng 1 lọ. Gọi X là số lọ hỏng trong hai lọ lấy ra. Tìm hàm mật độ của X. (b) Lấy ở thùng B ra 3 lọ. Gọi Y là số lọ hỏng trong 3 lọ lấy ra. Tìm hàm mật độ của Y . Bài tập 3.18. Một thùng đựng 10 lọ thuốc trong đó có 1 lọ hỏng. Ta kiểm tra từng lọ (không hoàn lại) cho tới khi phát hiện được lọ hỏng thì dừng. Gọi X là số lần kiểm tra. Tìm hàm mật độ của X. Tính kì vọng và phương sai. Bài tập 3.19. Một biến ngẫu nhiên liên tục có hàm mật độ xác suất sau: fX(x) = cxe−x/2 nếu x ≥ 0 0 nếu x < 0
27. Chương 4 Một số phân phối xác suất thông dụng 4.1 Phân phối Bernoulli, nhị thức Bài tập 4.1. Có 8000 sản phẩm trong đó có 2000 sản phẩm không đạt tiêu chuẩn kỹ thuật. Lấy ngẫu nhiên (không hoàn lại) 10 sản phẩm. Tính xác suất để trong 10 sản phẩm lấy ra có 2 sản phẩm không đạt tiêu chuẩn. Bài tập 4.2. Khi tiêm truyền một loại huyết thanh, trung bình có một trường hợp phản ứng trên 1000 trường hợp. Dùng loại huyết thanh này tiêm cho 2000 người. Tính xác suất để (a) có 3 trường hợp phản ứng, (b) có nhiều nhất 3 trường hợp phản ứng, (c) có nhiều hơn 3 trường hợp phản ứng. Bài tập 4.3. Giả sử tỷ lệ sinh con trai và con gái là bằng nhau và bằng 1 2 . Một gia đình có 4 người con. Tính xác suất để 4 đứa con đó gồm * 2 trai và 2 gái. * 1 trai và 3 gái. * 4 trai. Bài tập 4.4. Một nhà máy sản xuất với tỷ lệ phế phẩm là 7%. (a) Quan sát ngẫu nhiên 10 sản phẩm. Tính xác suất để i) có đúng một phế phẩm. ii) có ít nhất một phế phẩm.
29. 4.1 Phân phối Bernoulli, nhị thức 25 Bài tập 4.11. Trong trò chơi “bầu cua” có ba con xúc sắc, mỗi con có sáu mặt hình là: bầu, cua, hưu, nai, tôm và gà. Giả sử có hai người, một người chơi và một người làm cái. Nếu mỗi ván người chơi chỉ đặt ở một ô (một trong các hình: bầu, cua, hưu, nai, tôm và gà) sau khi chơi nhiều ván thì người nào sẽ thắng trong trò chơi này. Giả sử thêm mỗi ván người chơi đặt 1000 đ nếu thắng sẽ được 5000 đ, nếu thua sẽ mất 1000 đ. Hỏi trung bình mỗi ván người thắng sẽ thắng bao nhiêu? Bài tập 4.12. Có ba lọ giống nhau: hai lọ loại I, mỗi lọ có 3 bi trắng và 7 bi đen; một lọ loại II có 4 bi trắng và 6 bi đen. Một trò chơi được đặt ra như sau: Mỗi ván, người chơi chọn ngẫu nhiên một lọ và lấy ra hai bi từ lọ đó. Nếu lấy được đúng hai bi trắng thì người chơi thắng, ngược lại người chơi thua. (a) Người A chơi trò chơi này, tính xác suất người A thắng ở mỗi ván. (b) Giả sử người A chơi 10 ván, tính số ván trung bình người chơi thắng được và số ván người A thắng tin chắc nhất. (c) Người A phải chơi ít nhất bao nhiêu ván để xác suất thắng ít nhất một ván không dưới 0,99. Bài tập 4.13. Cho X và Y là hai đại lượng ngẫu nhiên độc lập. (a) Giả sử X ∼ B(1, 1 5 ), Y ∼ B(2, 1 5 ). Lập bảng phân phối xác suất của X + Y và kiểm tra rằng X + Y ∼ B(3, 1 5 ) (b) Giả sử X ∼ B(1, 1 2 ), Y ∼ B(2, 1 5 ). Tìm phân bố xác suất của X + Y . Chứng minh rằng X + Y không có phân bố nhị thức. Bài tập 4.14. Hai cầu thủ ném bóng vào rổ. Cầu thủ thứ nhất ném hai lần với xác suất trúng rổ của mỗi lần là 0.6. Cầu thủ thứ hai ném một lần với xác suất trúng rổ là 0.7. Gọi X là số lần trúng rổ của cả hai cầu thủ. Lập bảng phân phối xác suất của X, biết rằng kết quả của các lần ném rổ là độc lập với nhau. Bài tập 4.15. Bưu điện dùng một máy tự động đọc địa chỉ trên bì thư để phân loại từng khu vực gởi đi, máy có khả năng đọc được 5000 bì thư trong 1 phút. Khả năng đọc sai 1 địa chỉ trên bì thư là 0,04% (xem như việc đọc 5000 bì thư này là 5000 phép thử độc lập). (a) Tính số bì thư trung bình mỗi phút máy đọc sai. (b) Tính số bì thư tin chắc nhất trong mỗi phút máy đọc sai. (c) Tính xác suất để trong một phút máy đọc sai ít nhất 3 bì thư. Bài tập 4.16. Một bài thi trắc nghiệm gồm có 10 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng. Giả sử mỗi câu trả lời đúng được 4 điểm và câu trả lời sai bị trừ 2 điểm. Một sinh viên kém làm bài bằng cách chọn ngẫu nhiên một phương án cho mỗi câu hỏi.
31. 4.2 Phân phối Poisson 27 (d) Trung bình có bao nhiêu ôtô được thuê. (e) Cửa hàng cần có ít nhất bao nhiêu ôtô để xác suất không đáp ứng được nhu cầu thuê bé hơn 2% Bài tập 4.22. Một tổng đài bưu điện có các cuộc điện thoại gọi đến xuất hiện ngẫu nhiên, độc lập với nhau và có tốc độ trung bình 2 cuộc gọi trong 1 phút. Tìm xác suất để (a) có đúng 5 cuộc điện thoại trong 2 phút, (b) không có cuộc điện thoại nào trong khoảng thời gian 30 giây, (c) có ít nhất 1 cuộc điện thoại trong khoảng thời gian 10 giây. Bài tập 4.23. Các cuộc gọi điện đến tổng đài tuân theo phân phối Poisson với mức λ trên mỗi phút. Từ kinh nghiệm có được trong quá khứ, ta biết rằng xác suất nhận được chính xác một cuộc gọi trong một phút bằng ba lần xác suất không nhận được cuộc gọi nào trong cùng thời gian. (a) Gọi X là số cuộc gọi nhận được trong mỗi phút. Tính xác suất P(2 ≤ X ≤ 4). (b) Ta xét 100 khoảng thời gian một phút liên tiếp và gọi U là số khoảng thời gian một phút không nhận được cuộc gọi điện nào. Tính P(U ≤ 1). Bài tập 4.24. Tại một điểm bán vé máy bay, trung bình trong 10 phút có 4 người đến mua vé. Tính xác suất để: (a) Trong 10 phút có 7 người đến mua vé. (b) Trong 10 phút có không quá 3 người đến mua vé. Bài tập 4.25. Các khách hàng đến quầy thu ngân, theo phân phối Poisson, với số lượng trung bình 5 người mỗi phút. Tính xác suất xuất hiện ít nhất 10 khách hàng trong khoảng thời gian 3 phút. Bài tập 4.26. Số khách hàng đến quầy thu ngân tuân theo phân phối Poisson với tham số λ = 1 trong mỗi khoảng 2 phút. Tính xác suất thời gian đợi đến khi khách hàng tiếp theo xuất hiện (từ khách hàng trước đó) nhỏ hơn 10 phút. Bài tập 4.27. Số lượng nho khô trong một cái bánh quy bất kì có phân phối Poisson với tham số λ. Hỏi giá trị λ là bao nhiêu nếu ta muốn xác suất có nhiều nhất hai bánh quy, trong một hộp có 20 bánh, không chứa nho khô là 0.925? Bài tập 4.28. Một trạm cho thuê xe Taxi có 3 chiếc xe. Hàng ngày trạm phải nộp thuế 8 USD cho 1 chiếc xe (bất kể xe đó có được thuê hay không). Mỗi chiếc được cho thuê với giá 20USD. Giả sử số xe được yêu cầu cho thuê của trạm trong 1 ngày là đại lượng ngẫu nhiên có phân phối Poisson với µ = 2.8.
32. 4.3 Phân phối chuẩn 28 (a) Tính số tiền trung bình trạm thu được trong một ngày. (b) Giải bài toán trên trong trường hợp trạm có 4 chiếc xe. (c) Theo bạn, trạm nên có 3 hay 4 chiếc xe? Bài tập 4.29. Ta có 10 máy sản xuất (độc lập nhau), mỗi máy sản xuất ra 2% thứ phẩm (không đạt chuẩn). (a) Trung bình có bao nhiêu sản phẩm được sản xuất bởi máy đầu tiên trước khi nó tạo ra thứ phẩm đầu tiên? (b) Ta lấy ngẫu nhiên một sản phẩm từ mỗi máy sản xuất. Hỏi xác suất nhiều nhất hai thứ phẩm trong 10 sản phẩm này là bao nhiêu? (c) Làm lại câu (b) bằng cách sử dụng xấp xỉ Poisson. (d) Phải lấy ra ít nhất bao nhiêu sản phẩm được sản xuất bởi máy đầu tiên để xác suất đạt được ít nhất một thứ phẩm không nhỏ hơn 1/2 (giả sử rằng các sản phẩm là độc lập với nhau)? 4.3 Phân phối chuẩn Bài tập 4.30. Các kết quả của bài kiểm tra chỉ số thông minh (IQ) cho các học sinh của một trường tiểu học cho thấy điểm IQ của các học sinh này tuân theo phân phối chuẩn với các tham số là µ = 100 và σ2 = 225. Tỉ lệ học sinh có điểm IQ nhỏ hơn 91 hoặc lớn hơn 130 là bao nhiêu? Bài tập 4.31. Giả sử chiều dài X (đơn vị tính m) của một nơi đỗ xe bất kì tuân theo phân phối chuẩn N(µ, 0.01µ2 ). (a) Một người đàn ông sở hữu một chiếc xe hơi cao cấp có chiều dài lớn hơn 15% chiều dài trung bình của một chỗ đậu xe. Hỏi tỉ lệ chỗ đậu xe có thể sử dụng là bao nhiêu? (b) Giả sử rằng µ = 4. Hỏi chiều dài của xe là bao nhiêu nếu ta muốn chủ của nó có thể sử dụng 90% chỗ đậu xe? Bài tập 4.32. Đường kính của một chi tiết máy do một máy tiện tự động sản xuất có phân phối chuẩn với trung bình µ = 50 mm và độ lệch chuẩn σ = 0.05 mm. Chi tiết máy được xem là đạt yêu cầu nếu đường kính không sai quá 0.1 mm. (a) Tính tỷ lệ sản phẩm đạt yêu cầu. (b) Lấy ngẫu nhiên 3 sản phẩm. Tính xác suất có ít nhất một sản phẩm đạt yêu cầu.
34. 4.3 Phân phối chuẩn 30 Bài tập 4.37. Entropy H của một biến ngẫu nhiên liên tục X được định nghĩa là H = E[− ln fX(X)] với fX là hàm mật độ xác suất của biến ngẫu nhiên X và ln là logarit tự nhiên. Tính entropy của biến ngẫu nhiên Gauss với trung bình 0 và phương sai σ2 = 2.
35. Chương 5 Lí thuyết mẫu Bài tập 5.1. Số liệu về chiều cao của các sinh viên nữ (Đơn vị: inch) trong một lớp học như sau: 62 64 66 67 65 68 61 65 67 65 64 63 67 68 64 66 68 69 65 67 62 66 68 67 66 65 69 65 70 65 67 68 65 63 64 67 67 (a) Tính chiều cao trung bình và độ lệch tiêu chuẩn. (b) Trung vị của chiều cao sinh viên lớp này là bao nhiêu? Bài tập 5.2. Cho bộ dữ liệu sau: 4.2 4.7 4.7 5.0 3.8 3.6 3.0 5.1 3.1 3.8 4.8 4.0 5.2 4.3 2.8 2.0 2.8 3.3 4.8 5.0 Tính trung bình mẫu, phương sai mẫu và độ lệch tiêu chuẩn. Bài tập 5.3. Cho bộ dữ liệu sau: 43 47 51 48 52 50 46 49 45 52 46 51 44 49 46 51 49 45 44 50 48 50 49 50 Tính trung bình mẫu, phương sai mẫu và độ lệch tiêu chuẩn. Bài tập 5.4. Xét biểu thức y = n i=1(xi − a)2 . Với a nào thì y đạt giá trị nhỏ nhất?
36. 32 Bài tập 5.5. Xét yi = a + bxi, i = 1, . . . , n và a, b là các hằng số khác 0. Hãy tìm mối liên hệ giữa x và y, sx và sy. Bài tập 5.6. Giả sử ta có mẫu cỡ n gồm các giá trị quan trắc x1, x2, . . . , xn và đã tính được trung bình mẫu xn và phương sai mẫu s2 n. Quan trắc thêm giá trị thứ (n + 1) là xn+1, gọi xn+1 và s2 n+1 lần lượt là trung bình mẫu và phương sai mẫu ứng với mẫu có (n + 1) quan trắc. (a) Tính xn+1 theo xn và xn+1. (b) Chứng tỏ rằng ns2 n+1 = (n − 1)s2 n + n(xn+1 − xn)2 n + 1 Bài tập 5.7. Từ bảng các số ngẫu nhiên người ta lấy ra 150 số. Các số đó được phân thành 10 khoảng như sau: xi 1− 11− 21− 31− 41− 51− 61− 71− 81− 91− 10 20 30 40 50 60 70 80 90 100 ni 16 15 19 13 14 19 14 11 13 16 Xác định trung bình mẫu và phương sai mẫu. Bài tập 5.8. Khảo sát thu nhập của công nhân ở một công ty, cho bởi bảng sau (đơn vị ngàn đồng). Thu nhập [500, 600] [600, 700] [700, 800] [800, 900] [900, 1000] [1000, 1100][1100, 1200] Số người 2 10 15 30 25 14 4 Xác định thu nhập trung bình, độ lệch chuẩn. Bài tập 5.9. Đo lượng huyết tương của 8 người mạnh khoẻ, ta có 2, 863, 372, 752, 623, 503, 253, 123, 15 Hãy xác định các đặc trưng mẫu. Bài tập 5.10. Quan sát thời gian cần thiết để sản xuất một chi tiết máy, ta thu được số liệu cho bảng sau:
37. 33 Khoảng thời gian (phút) Số lần quan sát 20-25 2 25-30 14 30-35 26 35-40 32 40-45 14 45-50 8 50-55 4 Tính trung bình mẫu x, phương sai mẫu s2 . Bài tập 5.11. Đo độ dài của một loại trục xe, ta có kết quả Nhóm 18.4-18.6 18.6-18.8 18.8-19 19-19.2 19.2-19.4 19.4-19.6 19.6-19.8 ni 1 4 20 41 19 8 4 Hãy tính độ dài trung bình và phương sai mẫu.
38. Chương 6 Ước lượng tham số thống kê 6.1 Ước lượng trung bình tổng thể Bài tập 6.1. Trên tập mẫu gồm 100 số liệu, người ta tính được x = 0.1 s = 0.014. Xác định khoảng tin cậy 95% cho giá trị trung bình thật. Bài tập 6.2. Chọn ngẫu nhiên 36 công nhân của xí nghiệp thì thấy lương trung bình là 380 ngàn đ/tháng. Giả sử lương công nhân tuân theo phân phối chuẩn với σ = 14 ngàn đồng. Với độ tin cậy 95%, hãy ước lượng mức lương trung bình của công nhân trong toàn xí nghiệp. Bài tập 6.3. Đo sức bền chịu lực của một loại ống thí nghiệm, người ta thu được bộ số liệu sau 4500, 6500, 5200, 4800, 4900, 5125, 6200, 5375 Từ kinh nghiệm nghề nghiệp, người ta cũng biết rằng sức bền đó có phân phối chuẩn với độ lệch chuẩn σ = 300. Hãy xây dựng khoảng tin cậy 90% cho sức bền trung bình của loại ống trên. Bài tập 6.4. Sản lượng mỗi ngày của một phân xưởng là biến ngẫu nhiên tuân theo luật chuẩn. Kết quả thống kê của 9 ngày cho ta: 27, 26, 21, 28, 25, 30, 26, 23, 26 Hãy xác định các khoảng tin cậy 95% cho sản lượng trung bình. Bài tập 6.5. Quan sát chiều cao X (cm) của một số người, ta ghi nhận x (cm) 140-145 145-150 150-155 155-160 160-165 165-170 Số người 1 3 7 9 5 2 (a) Tính x và s2
39. 6.1 Ước lượng trung bình tổng thể 35 (b) Ước lượng µ ở độ tin cậy 0.95 Bài tập 6.6. Điểm trung bình môn toán của 100 thí sinh dự thi vào trường A là 5 với độ lệch chuẩn là 2.5. (a) Ước lượng điểm trung bình môn toán của toàn thể thí sinh với độ tin cậy là 95%. (b) Với sai số ước lượng điểm trung bình ở câu a) là 0.25 điểm, hãy xác định độ tin cậy. Bài tập 6.7. Tuổi thọ của một loại bóng đèn được biết theo quy luật chuẩn với độ lệch chuẩn 100 giờ. (a) Chọn ngẫu nhiên 100 bóng đèn để thử nghiệm, thấy mỗi bóng tuổi thọ trung bình là 1000 giờ. Hãy ước lượng tuổi thọ trung bình của bóng đèn xí nghiệp A sản xuất với độ tin cậy là 95%. (b) Với dung sai của ước lượng tuổi thọ trung bình là 15 giờ, hãy xác định độ tin cậy. (c) Để dung sai của ước lượng tuổi thọ trung bình không quá 25 giờ với độ tin cậy là 95% thì cần phải thử nghiệm ít nhất bao nhiêu bóng. Bài tập 6.8. Khối lượng các bao bột mì tại một cửa hàng lương thực tuân theo phân phối chuẩn. Kiểm tra 20 bao, thấy khối lượng trung bình của mỗi bao bột mì là 48kg, và phương sai mẫu s2 = (0.5 kg)2 . (a) Với độ tin cậy 95% hãy ước lượng khối lượng trung bình của một bao bột mì thuộc cửa hàng. (b) Với dung sai của ước lượng ở câu a) là 0.284 kg, hãy xác định độ tin cậy. (c) Để dung sai của ước lượng ở câu a) không quá 160 g với độ tin cậy là 95%, cần phải kiểm tra ít nhất bao nhiêu bao? Bài tập 6.9. Đo đường kính của một chi tiết máy do một máy tiện tự động sản xuất, ta ghi nhận được số liệu như sau: x 12.00 12.05 12.10 12.15 12.20 12.25 12.30 12.35 12.40 n 2 3 7 9 10 8 6 5 3 với n chỉ số trường hợp tính theo từng giá trị của X (mm). (a) Tính trung bình mẫu x và độ lệch chuẩn s của mẫu. (b) Ước lượng đường kính trung bình µ ở độ tin cậy 0.95.
41. 6.3 Tổng hợp 37 Bài tập 6.15. Để ước lượng xác suất mắc bệnh gan với độ tin cậy 90% và sai số không vượt quá 2% thì cần phải khám ít nhất bao nhiêu người, biết rằng tỷ lệ mắc bệnh gan thực nghiệm đã cho bằng 0,9. Bài tập 6.16. Giả sử quan sát 100 người thấy có 20 người bị bệnh sốt xuất huyết. Hãy ước lượng tỷ lệ bệnh sốt xuất huyết ở độ tin cậy 97%. Nếu muốn sai số ước lượng không quá 3% ở độ tin cậy 95% thì phải quan sát ít nhất bao nhiêu người? Bài tập 6.17. Một loại thuốc mới đem điều trị cho 50 người bị bệnh B, kết quả có 40 người khỏi bệnh. (a) Ước lượng tỷ lệ khỏi bệnh p nếu dùng thuốc đó điều trị với độ tin cậy 0.95 và 0.99. (b) Nếu muốn sai số ước lượng không quá 0.02 ở độ tin cậy 0.95 thì phải quan sát ít nhất mấy trường hợp? Bài tập 6.18. Ta muốn ước lượng tỷ lệ viên thuốc bị sức mẻ p trong một lô thuốc lớn. (a) Nếu muốn sai số ước lượng không quá 0.01 với độ tin cậy 0.95 thì phải quan sát ít nhất mấy viên? (b) Quan sát ngẫu nhiên 200 viên, thấy có 18 viên bị sứt mẻ. Hãy ước lượng p ở độ tin cậy 0.95. (c) Khi đó, nếu muốn sai số ước lượng không quá 0.01 với độ tin cậy 0.95 thì phải quan sát ít nhất mấy viên? Bài tập 6.19. Muốn biết trong ao có bao nhiêu cá, người ta bắt lên 2000 con, đánh dấu xong lại thả xuống hồ. Sau một thời gian, người ta bắt lên 500 con và thấy có 20 con cá có đánh dấu của lần bắt trước. Dựa vào kết quả đó hãy ước lượng số cá có trong hồ với độ tin cậy 95%. Bài tập 6.20. Để có thể dự đoán được số lượng chim thường nghỉ tại vườn nhà mình, người chủ bắt 89 con, đem đeo khoen cho chúng rồi thả đi. Sau một thời gian, ông bắt ngẫu nhiên được 120 con và thấy có 7 con có đeo khoen. Hãy dự đoán số chim giúp ông chủ vườn ở độ tin cậy 99%. 6.3 Tổng hợp Bài tập 6.21. Cân thử 100 quả cam, ta có bộ số liệu sau: Khối lượng (g) 32 33 34 35 36 37 38 39 40 Số quả 2 3 15 26 28 6 8 8 4
42. 6.3 Tổng hợp 38 (a) Hãy ước lượng khối lượng trung bình các quả cam ở độ tin cậy 95%. (b) Cam có khối lượng dưới 34 g được coi là cam loại 2. Tìm khoảng ước lượng cho tỷ lệ loại 2 với độ tin cậy 90%. Bài tập 6.22. Đem cân một số trái cây vừa thu hoạch, ta được kết quả sau: X (gam) 200-210 210-220 220-230 230-240 240-250 Số trái 12 17 20 18 15 (a) Tìm khoảng ước lượng của trọng lượng trung bình µ của trái cây với độ tin cậy 0.95 và 0.99. (b) Nếu muốn sai số ước lượng không quá ε = 2 gam ở độ tin cậy 99% thì phải quan sát ít nhất bao nhiêu trái? (c) Trái cây có khối lượng X ≥ 230 gam được xếp vào loại A. Hãy tìm khoảng ước lượng cho tỷ lệ p của trái cây loại A ở độ tin cậy 0.95 và 0.99. Nếu muốn sai số ước lượng không quá 0.04 ở độ tin cậy 0.99 thì phải quan sát ít nhất mấy trường hợp?
43. Chương 7 Kiểm định giả thuyết thống kê 7.1 So sánh kì vọng với một số cho trước Bài tập 7.1. Giám đốc một xí nghiệp cho biết lương trung bình của 1 công nhân thuộc xí nghiệp là 380 ngàn đ/tháng. Chọn ngẫu nhiên 36 công nhân thấy lương trung bình là 350 ngàn đ/tháng, với độ lệch chuẩn s = 40. Lời báo cáo của giám đốc có tin cậy được không, với mức có ý nghĩa là α = 5%. Bài tập 7.2. Trong thập niên 80, trọng lượng trung bình của thanh niên là 48 kg. Nay để xác định lại trọng lượng ấy, người ta chọn ngẫu nhiên 100 thanh niên đo trọng lượng trung bình là 50 kg và phương sai mẫu s2 = (10 kg)2 . Thử xem trọng lượng thanh niên hiện nay phải chăng có thay đổi, với mức có ý nghĩa là 1%? Bài tập 7.3. Một cửa hàng thực phẩm nhận thấy thời gian vừa qua trung bình một khách hàng mua 25 ngàn đồng thực phẩm trong ngày. Nay cửa hàng chọn ngẫu nhiên 15 khách hàng thấy trung bình một khách hàng mua 24 ngàn đồng trong ngày và phương sai mẫu là s2 = (2 ngàn đồng)2 . Với mức ý nghĩa là 5%, kiểm định xem có phải sức mua của khách hàng hiện nay thực sự giảm sút hay không. Biết rằng sức mua của khách hàng có phân phối chuẩn. Bài tập 7.4. Đối với người Việt Nam, lượng huyết sắc tố trung bình là 138.3 g/l. Khám cho 80 công nhân ở nhà máy có tiếp xúc hoá chất, thấy huyết sắc tố trung bình x = 120 g/l; s = 15 g/l. Từ kết quả trên, có thể kết luận lượng huyết sắc tố trung bình của công nhân nhà máy hoá chất này thấp hơn mức chung hay không? Kết luận với α = 0.05. Bài tập 7.5. Trong điều kiện chăn nuôi bình thường, lượng sữa trung bình của 1 con bò là 14 kg/ngày. Nghi ngờ điều kiện chăn nuôi kém đi làm cho lượng sữa giảm xuống, người ta điều tra ngẫu nhiên 25 con và tính được lượng sữa trung bình của 1 con trong 1 ngày là 12.5 và độ lệch chuẩn s = 2.5. Với mức ý nghĩa α = 0.05. hãy kết luận điều nghi ngờ nói trên. Giả thiết lượng sữa bò là 1 biến ngẫu nhiên chuẩn.
44. 7.1 So sánh kì vọng với một số cho trước 40 Bài tập 7.6. Tiền lương trung bình của công nhân trước đây là 400 ngàn đ/tháng. Để xét xem tiền lương hiện nay so với mức trước đây thế nào, người ta điều tra 100 công nhân và tính được x = 404.8 ngàn đ/tháng và s = 20 ngàn đ/tháng. Với α = 1% (a) Nếu lập giả thiết 2 phía và giả thiết 1 phía thì kết quả kiểm định như thế nào? (b) Giống câu a, với x = 406 ngàn đ/tháng và s = 20 ngàn đ/tháng. Bài tập 7.7. Một máy đóng gói các sản phẩm có khối lượng 1 kg. Nghi ngờ máy hoạt động không bình thường, người ta chọn ra một mẫu ngẫu nhiên gồm 100 sản phẩm thì thấy như sau: Khối lượng 0.95 0.97 0.99 1.01 1.03 1.05 Số gói 9 31 40 15 3 2 Với mức ý nghĩa 0.05, hãy kết luận về nghi ngờ trên. Bài tập 7.8. Trọng lượng trung bình khi xuất chuồng ở một trại chăn nuôi trước là 3.3 kg/con. Năm nay người ta sử dụng một loại thức ăn mới, cân thử 15 con khi xuất chuồng ta được các số liệu như sau: 3.25, 2.50, 4.00, 3.75, 3.80, 3.90, 4.02, 3.60, 3.80, 3.20, 3.82, 3.40, 3.75, 4.00, 3.50 Giả thiết trọng lượng gà là đại lượng ngẫu nhiên phân phối theo quy luật chuẩn. (a) Với mức ý nghĩa α = 0.05. Hãy cho kết luận về tác dụng của loại thức ăn này? (b) Nếu trại chăn nuôi báo cáo trọng lượng trung bình khi xuất chuồng là 3.5 kg/con thì có chấp nhận được không? (α = 0.05). Bài tập 7.9. Đo cholesterol (đơn vị mg%) cho một nhóm người, ta ghi nhận lại được Chol. 150 -160 160 – 170 170 – 180 180 – 190 190 – 200 200 – 210 Số người 3 9 11 3 2 1 Cho rằng độ cholesterol tuân theo phân phối chuẩn. (a) Tính trung bình mẫu x và phương sai mẫu s2 . (b) Tìm khoảng ước lượng cho trung bình cholesterol trong dân số ở độ tin cậy 0.95. (c) Có tài liệu cho biết lượng cholesterol trung bình là µ0 = 175 mg%. Giá trị này có phù hợp với mẫu quan sát không? (kết luận với α = 0.05).
45. 7.1 So sánh kì vọng với một số cho trước 41 Bài tập 7.10. Quan sát số hoa hồng bán ra trong một ngày của một cửa hàng bán hoa sau một thời gian, người ta ghi được số liệu sau: Số hoa hồng (đoá) 12 13 15 16 17 18 19 Số ngày 3 2 7 7 3 2 1 Giả thiết rằng số hoa bán ra trong ngày có phân phối chuẩn. (a) Tìm trung bình mẫu x, phương sai mẫu s2 . (b) Sau khi tính toán, ông chủ cửa hàng nói rằng nếu trung bình một ngày không bán được 15 đoá hoa thì chẳng thà đóng cửa còn hơn. Dựa vào số liệu trên, anh (chị) hãy kết luận giúp ông chủ cửa hàng xem có nên tiếp tục bán hay không ở mức ý nghĩa α = 0.05. (c) Giả sử những ngày bán được từ 13 đến 17 đoá hồng là những ngày “bình thường”. Hãy ước lượng tỉ lệ của những ngày bình thường của cửa hàng ở độ tin cậy 90%. Bài tập 7.11. Một xí nghiệp đúc một số rất lớn các sản phẩm bằng thép với số khuyết tật trung bình ở mỗi sản phẩm là 3. Người ta cải tiến cách sản xuất và kiểm tra 36 sản phẩm. Kết quả như sau: Số khuyết tật trên sản phẩm 0 1 2 3 4 5 6 Số sản phẩm tương ứng 7 4 5 7 6 6 1 Giả sử số khuyết tật của các sản phẩm có phân phối chuẩn. (a) Hãy ước lượng số khuyết tật trung bình ở mỗi sản phẩm sau khi cải tiến, với độ tin cậy 90%. (b) Hãy cho kết luận về hiệu quả của việc cải tiến sản xuất ở mức ý nghĩa 0.05. Bài tập 7.12. Đánh giá tác dụng của một chế độ ăn bồi dưỡng mà dấu hiệu quan sát là số hồng cầu. Người ta đếm số hồng cầu của 20 người trước và sau khi ăn bồi dưỡng: xi 32 40 38 42 41 35 36 47 50 30 yi 40 45 42 50 52 43 48 45 55 34 xi 38 45 43 36 50 38 42 41 45 44 yi 32 54 58 30 60 35 50 48 40 50 Với mức ý nghĩa α = 0.05, có thể kết luận gì về tác dụng của chế độ ăn bồi dưỡng này?
46. 7.2 So sánh hai kì vọng 42 Bài tập 7.13. Giả sử ta muốn xác định xem hiệu quả của chế độ ăn kiêng đối với việc giảm trọng lượng như thế nào. 20 người quá béo đã thực hiện chế độ ăn kiêng. Trọng lượng của từng người trước khi ăn kiêng (X kg) và sau khi ăn kiêng (Y kg) được cho như sau: X 80 78 85 70 90 78 92 88 75 75 Y 75 77 80 70 84 74 85 82 80 65 X 63 72 89 76 77 71 83 78 82 90 Y 62 71 83 72 82 71 79 76 83 81 Kiểm tra xem chế độ ăn kiêng có tác dụng làm thay đổi trọng lượng hay không (α = 0.05). 7.2 So sánh hai kì vọng Bài tập 7.14. Một nhà phát triển sản phẩm quan tâm đến việc giảm thời gian khô của sơn. Vì vậy hai công thức sơn được đem thử nghiệm. Công thức 1 là công thức có các thành phần chuẩn và công thức 2 có thêm một thành phần làm khô mới được cho rằng sẽ làm giảm thời gian khô của sơn. Từ các thí nghiệm người ta thấy rằng σ1 = σ2 = 8 phút. 10 đồ vật được sơn với công thức 1 và 10 đồ vật khác được sơn với công thức 2. Thời gian khô trung bình của từng mẫu là x1 = 121 phút và x2 = 112 phút. Nhà phát triển sản phẩm có thể rút ra kết luận gì về ảnh hưởng của thành phần làm khô mới? Với mức ý nghĩa 5%. Bài tập 7.15. Tốc độ cháy của hai loại chất nổ lỏng được dùng làm nhiên liệu trong tàu vũ trụ được nghiên cứu. Người ta biết rằng độ lệch chuẩn của tốc độ cháy của hai loại nhiên liệu bằng nhau và bằng 3 cm/s. Hai mẫu ngẫu nhiên kích thước n1 = 20 và n2 = 20 được thử nghiệm; trung bình mẫu tốc độ cháy là x1 = 18 cm/s và x2 = 24 cm/s. Với mức ý nghĩa α = 0.05 hãy kiểm định giả thuyết hai loại chất nổ lỏng này có cùng tốc độ đốt cháy. Bài tập 7.16. Theo dõi giá cổ phiếu của 2 công ty A và B trong vòng 31 ngày người ta tính được các giá trị sau x s Công ty A 37.58 1.50 Công ty B 38.24 2.20 Giả thiết rằng giá cổ phiếu của hai công ty A và B là hai biến ngẫu nhiên phân phối theo quy luật chuẩn. Hãy cho biết ý nghĩa kì vọng của các biến ngẫu nhiên nói trên? Hãy cho biết có sự khác biệt thực sự về giá cổ phiếu trung bình của hai công ty A và B không? Với mức ý nghĩa α = 5%
48. 7.3 So sánh tỉ lệ với một số cho trước 44 Máy 1 16.03 16.01 16.04 15.96 16.05 15.98 16.05 16.02 16.02 15.99 Máy 2 16.02 16.03 15.97 16.04 15.96 16.02 16.01 16.01 15.99 16.00 Với mức ý nghĩa α = 0.05 có thể nói rằng hai máy rót nước vào bình như nhau không? Bài tập 7.22. Để nghiên cứu ảnh hưởng của một loại thuốc, người ta cho 10 bệnh nhân uống thuốc. Lần khác họ cũng cho bệnh nhân uống thuốc nhưng là thuốc giả. Kết quả thí nghiệm thu được như sau: Bệnh nhân 1 2 3 4 5 6 7 8 9 10 Số giờ ngủ có thuốc 6.1 7.0 8.2 7.6 6.5 8.4 6.9 6.7 7.4 5.8 Số giờ ngủ với thuốc giả 5.2 7.9 3.9 4.7 5.3 5.4 4.2 6.1 3.8 6.3 Giả sử số giờ ngủ của bệnh nhân tuân theo phân phối chuẩn. Với mức ý nghĩa 5%, hãy kết luận về ảnh hưởng của loại thuốc trên. Bài tập 7.23. Quan sát sức nặng của bé trai (X) và bé gái (Y) lúc sơ sinh (đơn vị gam), ta có kết quả Trọng lượng 3000-3200 3200-3400 3400-3600 3600-3800 3800-4000 Số bé trai 1 3 8 10 3 Số bé gái 2 10 10 5 1 (a) Tính x, y, s2 x, s2 y. (b) So sánh các kì vọng µX, µY (kết luận với α = 5%). (c) Nhập hai mẫu lại. Tính trung bình và độ lệch chuẩn của mẫu nhập. Dùng mẫu nhập để ước lượng sức nặng trung bình của trẻ sơ sinh ở độ tin cậy 95%. 7.3 So sánh tỉ lệ với một số cho trước Bài tập 7.24. Trong một vùng dân cư có 18 bé trai và 28 bé gái mắc bệnh B. Hỏi rằng tỷ lệ nhiễm bệnh của bé trai và bé gái có như nhau không? (kết luận với α = 0.05 và giả sử rằng số lượng bé trai và bé gái trong vùng tương đương nhau, và rất nhiều). Bài tập 7.25. Một máy sản xuất tự động với tỷ lệ chính phẩm là 98%. Sau một thời gian hoạt động, người ta nghi ngờ tỷ lệ trên đã bị giảm. Kiểm tra ngẫu nhiên 500 sản phẩm thấy có 28 phế phẩm, với α = 0.05 hãy kiểm tra xem chất lượng làm việc của máy có còn được như trước hay không?
49. 7.4 So sánh hai tỉ lệ 45 Bài tập 7.26. Đo huyết sắc tố cho 50 công nhân nông trường thấy có 60% ở mức dưới 110 g/l. Số liệu chung của khu vực này là 30% ở mức dưới 110 g/l. Với mức ý nghĩa α = 0.05, có thể kết luận công nhân nông trường có tỷ lệ huyết sắc tố dưới 110 g/l cao hơn mức chung hay không? Bài tập 7.27. Theo một nguồn tin thì tỉ lệ hộ dân thích xem dân ca trên Tivi là 80%. Thăm dò 36 hộ dân thấy có 25 hộ thích xem dân ca. Với mức có ý nghĩa là 5%. Kiểm định xem nguồn tin này có đáng tin cậy không? Bài tập 7.28. Một máy sản suất tự động, lúc đầu tỷ lệ sản phẩm loại A là 20%. Sau khi áp dụng một phương pháp cải tiến sản xuất mới, người ta lấy 40 mẫu, mỗi mẫu gồm 10 sản phẩm đề kiểm tra. Kết quả kiểm tra cho ở bảng sau: Số sản phẩm loại A trong mẫu 1 2 3 4 5 6 7 8 9 10 Số mẫu 2 0 4 6 8 10 4 5 1 0 Với mức ý nghĩa 5%. Hãy cho kết luận về phương pháp sản suất này. Bài tập 7.29. Tỷ lệ phế phẩm của một nhà máy trước đây là 5%. Năm nay nhà máy áp dụng một biện pháp kỹ thuật mới. Để nghiên cứu tác dụng của biện pháp kỹ thuật mới, người ta lấy một mẫu gồm 800 sản phẩm để kiểm tra và thấy có 24 phế phẩm. (a) Với α = 0.01. Hãy cho kết luận về biện pháp kỹ thuật mới này? (b) Nếu nhà máy báo cáo tỷ lệ phế phẩm sau khi áp dụng biện pháp kỹ thuật mới là 2% thì có chấp nhận được không? (α = 0.01). 7.4 So sánh hai tỉ lệ Bài tập 7.30. Trong 90 người dùng DDT để ngừa bệnh ngoài da thì có 10 người nhiễm bệnh; trong 100 người không dùng DDT thì có 26 người mắc bệnh. Hỏi rằng DDT có tác dụng ngừa bệnh ngoài da không? (kết luận với α = 0.05) Bài tập 7.31. Người ta điều tra 250 người ở xã A thấy có 140 nữ và điều tra 160 người ở xã B thấy có 80 nữ. Hãy so sánh tỉ lệ nữ ở hai xã với mức ý nghĩa 5%. Bài tập 7.32. Áp dụng hai phương pháp gieo hạt. Theo phương pháp A gieo 180 hạt thì có 150 hạt nảy mầm; theo phương pháp B gieo 256 hạt thì thấy có 160 hạt nảy mầm. Hãy so sánh hiệu quả của hai phương pháp với mức ý nghĩa α = 5%. Bài tập 7.33. Theo dõi trọng lượng của một số trẻ sơ sinh tại một số nhà hộ sinh thành phố và nông thôn, người ta thấy rằng trong số 150 trẻ sơ sinh ở thành phố có 100 cháu nặng hơn 3000 gam, và trong 200 trẻ sơ sinh ở nông thôn có 98 cháu nặng hơn 3000 gam. Từ kết quả đó hãy so sánh tỉ lệ trẻ sơ sinh có trọng lượng trên 3000 gam ở thành phố và nông thôn với mức ý nghĩa 5%.
50. Phần II BÀI GIẢI
51. Tập hợp – Giải tích tổ hợp Giải bài 1.1. Ta lập dãy B1, B2, . . . , B2 như sau: B1 = A1, B2 = A2 A1, . . . , Bn = An n−1 k=1 Ak (a) Ta chứng minh Bi ∩ Bj = ∅ (i = j), giả sử i < j. Giả sử a ∈ Bi = Ai i−1 k=1 Ak, tức là a ∈ A1, a /∈ Ak(k = 1, . . . , i − 1), vì vậy a ∈ j−1 k=1 Ak. Suy ra a /∈ Bj. Vậy Bi ∩ Bj = ∅ (i = j) (b) ∞ i=1 Ai = ∞ k=1 Bk Giả sử a ∈ ∞ i=1 Ai, tức là tồn tại chỉ số j nào đó sao cho a ∈ Aj. Nếu a ∈ Bj thì a ∈ ∞ j=1 Bj. Nếu a ∈ j−1 i=1 Ai, gọi i1 là chỉ số nhỏ nhất sao cho a ∈ Ai1 . Khi đó, a ∈ Bi1 , tức là a ∈ ∞ j=1 Bj. Vậy ∞ i=1 Ai ⊂ ∞ k=1 Bk. Ngược lại, giả sử a ∈ ∞ j=1 Bj, suy ra tồn tại j sao cho a ∈ Bj, tức là a ∈ Aj, a /∈ j−1 k=1 Ak. Do đó, a ∈ ∞ i=1 Aj. Vậy ∞ k=1 Bk ⊂ ∞ i=1 Ai Giải bài 1.3. Không phải khi nào cũng đúng. Ví dụ, xét A, B, C là các tập con khác rỗng của Ω và rời nhau từng đôi một, khi đó A ⊂ B ∪ C và B ⊂ A ∪ C nhưng B = ∅ Giải bài 1.5. (a) (A ∪ B)(A ∪ C) = A ∪ BC (b) (A ∪ B)(A ∪ B) = A
52. 48 (c) (A ∪ B)(A ∪ B)(A ∪ B) = AB (d) (A ∪ B)(A ∪ B)(A ∪ B) = ∅ (e) (A ∪ B)(B ∪ C) = AB ∪ AC ∪ B ∪ BC = B ∪ AC ∪ B(A ∪ C) = B ∪ AC Giải bài 1.7. (a) A ∪ B ∪ A ∪ B = AB ∪ AB = A(B ∪ B) = A (b) (A ∪ B)AB = (A ∪ B)(A ∪ B) = AB ∪ BA Giải bài 1.9. (a) C5 50 = 2118760 (b) A5 50 = 254251200 Giải bài 1.11. Đầu tiên ta chọn 10 nam sinh trong 20 nam sinh, thì được C10 20 cách. Sau đó, chọn 10 nữ sinh trong 20 nữ sinh thì được C10 20 cách. Theo quy tắc nhân, số cách phân chia thỏa yêu cầu là C10 20 C10 20 Giải bài 1.13. (a) Cứ mỗi hoán vị 5 người này sẽ là một cách sắp xếp thứ tự phát biểu A trước B hoặc B trước A. Mà số cách xếp A trước B bằng với số cách xếp B trước A vì chỉ cần đổi chỗ A và B trong 1 hoán vị 5 người. Do đó, số cách xếp người B phát biểu sau A là 5! 2 = 60 (b) Ta xem AB là một nhóm và ta tiến hành hoán vị bốn phần tử sau: AB,C,D,E. Như vậy, số cách xếp người A phát biểu xong thì đến lượt người B là 4! = 24 Giải bài 1.15. Đầu tiên ta chọn lớp trưởng và có 40 cách chọn. Tiếp theo ta chọn lớp phó và có 39 cách chọn. Cuối cùng ta chọn thủ quỹ thì có 38 cách chọn. Do đó, số cách chọn ban cán sự lớp là 40.39.38 = 59280 cách. Giải bài 1.17. Số cách cử 3 người làm nhiệm vụ ở địa điểm A là C3 9 . Số cách cử 2 người ở địa điểm B là C2 6 Số cách cử 4 người ở lại đồn là C4 4 Theo quy tắc nhân, số cách phân công là C3 9 .C2 6 .C4 4 = 1260 Giải bài 1.19.
53. 49 (a) Đầu tiên ta xếp 3 trong 12 hành khách lên toa thứ 1, thì có C3 1 2 cách. Sau đó, ta xếp 3 trong 9 hành khách còn lại lên toa thứ 2 thì có C3 9 cách. Tiếp theo, ta xếp 3 trong 6 hành khách còn lại lên toa thứ 3 thì có C3 6 cách. Cuối cùng, ta xếp 3 trong 3 hành khách còn lại lên toa thứ 4 thì có C3 3 cách. Theo quy tắc nhân, số cách xếp sẽ là C3 12.C3 9 .C3 6 .C3 3 = 369600 cách. (b) Đầu tiên ta xếp 6 hành khách vào toa thứ 1 và có C6 12 cách. Sau đó, ta xếp 4 hành khách vào toa thứ 2 và có C4 6 cách. Tiếp theo, ta xếp 1 hành khách lên toa thứ 3 và có C1 2 cách. Cuối cùng, ta xếp 1 hành khách lên toa thứ 4 và có C1 1 cách. Tuy nhiên ta có thể xem 4 toa tàu là 4 nhóm và ta có thể hoán vị 4 nhóm này. Số cách hoán vị là 4!. Do đó, số cách xếp thỏa yêu cầu là 4!.C6 12.C4 6 .C1 2 .C1 1 = 665280 cách. Giải bài 1.21. (a) Ta có, (1 + x)n = n k=0 Ck nxk (7.1) Lấy đạo hàm cấp một của (7.1), ta được n(1 + x)n−1 = n k=0 kCk nxk−1 (7.2) Thay x = 1 vào biểu thức (7.2) ta được đpcm. (b) Lấy đạo hàm cấp 2 của (7.1), ta được n(n − 1)(1 + x)n−2 = n k=0 k(k − 1)Ck nxk−2 (7.3) Thay x = 1 vào biểu thức (7.3) ta được đpcm. Giải bài 1.23. Áp dụng bài (1.20) bằng cách thay n bằng 2n, r bằng n và m bằng n. Ta được, C0 nCn n + C1 nCn−1 n + · · · + Ci nCn−i n + · · · + Cn n C0 n = Cn 2n Do Ci n = Cn−i n ∀i = 0, . . . , n nên ta có đpcm.
54. Biến cố và xác suất Giải bài 2.1. (a) Ta có, A ⊂ A + B = A suy ra A = ∅ và B = Ω. Thử lại ta thấy đúng. Vậy A = ∅, B = Ω (b) Ta có, A ⊃ AB = A suy ra A = Ω và B = ∅. Thử lại ta thấy đúng. Vậy A = Ω, B = ∅ (c) Ta có, A ⊂ A + B = AB ⊂ B ⊂ A + B = AB ⊂ A, tức là A ⊂ B ⊂ A. Do đó, A = B. Thử lại thấy đúng. Vậy A = B Ta có, A.A + B = A(A B) = (AA)B = ∅. Vậy A, A + B xung khắc. Giải bài 2.3. (a) Gọi A : “Có đúng một sinh viên đạt yêu cầu” Ta có, A = B1B2 B3 B4 + B1B2B3 B4 + B1 B2B3B4 + B1 B2 B3 B4 (b) Gọi B : “Có đúng ba sinh viên đạt yêu cầu” Ta có, B = B1B2B3B4 + B1B2B3B4 + B1B2B3B4 + B1B2B3B4 (c) Gọi C : “Có ít nhất một sinh viên đạt yêu cầu” Ta có, C = B1 + B2 + B3 + B4 (d) Gọi D : “Không có sinh viên nào đạt yêu cầu” Ta có, D = B1 B2 B3 B4
55. 51 Giải bài 2.5. Ta có: X + A + A + A = B X.A + XA = B X(A + A) = B X = B X = B Giải bài 2.7. (a) Mô tả các biến cố A6B6, A3B5 * A6B6: “số nốt ở mặt trên cả hai con xúc xắc đều là 6” * A3B5: “số nốt ở mặt trên con xúc xắc thứ nhất là 3 và trên con xúc xắc thứ hai là 5.” (b) Viết bằng kí hiệu các biến cố A, B. A = {A1B4, A2B5, A3B6, A4B1, A5B2, A6B3} B = {A1B1, A2B2, A3B3, A4B4, A5B5, A6B6} (c) Một nhóm đầy đủ các biến cố là {A, A} Giải bài 2.9. Gọi A : “Tất cả cùng ra ở tầng bốn ” B : “Tất cả cùng ra ở một tầng ” C : “Mỗi người ra một tầng khác nhau” (a) Xác suất tất cả cùng ra ở tầng bốn, P (A) = 1 63 . (b) Xác suất tất cả cùng ra ở một tầng, P (B) = 6 63 . (c) Mỗi người ra một tầng khác nhau, P (C) = 6 · 5 · 4 63 .
60. 56 Suy ra, P(A) = P n i=1 Ak = n k=1 P(Ak) − n k<i P(AkAi) + · · · + (−1)n−1 P(A1A2 . . . An) = 1 − 1 2! + 1 3 − · · · + (−1)n−1 1 n! Khi n → ∞, P(A) ∼ 1 − 1 e Giải bài 2.29. Gọi Ai : “Xạ thủ thứ i bắn trúng” (i = 1, 2, 3) Theo giả thiết, P(A1) = 0.6; P(A2) = 0.7; P(A3) = 0.8 (a) Gọi A : “Chỉ có người thứ hai bắn trúng” Khi đó, A = A1A2A3 và P(A) = P(A1)P(A2)P(A3) = (0.4)(0.7)(0.2) = 0.056 (b) Gọi B : “Có đúng một người bắn trúng” Khi đó, B = A1A2 A3 + A + A1 A2A3 và P(B) = P(A1A2 A3) + P(A) + P(A1 A2A3) = P(A1)P(A2)P(A3) + P(A) + P(A1)P(A2)P(A3) = (0.6)(0.3)(0.2) + 0.056 + (0.4)(0.3)(0.8) = 0.188 (c) Gọi C : “Có ít nhất một người bắn trúng” Khi đó, C = A1 + A2 + A3 và P(C) = P(A1) + P(A2) + P(A3) − P(A1A2) − P(A1A3) − P(A2A3) + P(A1A2A3) = P(A1) + P(A2) + P(A3) − P(A1)P(A2) − P(A1)P(A3) − P(A2)P(A3) +P(A1)P(A2)P(A3) = 0.6 + 0.7 + 0.8 − (0.6)(0.7) − (0.6)(0.8) − (0.7)(0.8) + (0.6)(0.7)(0.8) = 0.976
61. 57 Hoặc ta có thể dùng cách tính sau: P(C) = P(A1 A2 A3) = 1 − P(A1 A2 A3) = 1 − P(A1)P(A2)P(A3) = 1 − (0.4)(0.3)(0.2) = 0.976 (d) Gọi D : “Cả ba người đều bắn trúng” Khi đó, D = A1A2A3 và P(D) = P(A1)P(A2)P(A3) = (0.6)(0.7)(0.8) = 0.336 (e) Gọi E : “Có đúng hai người bắn trúng” Khi đó, E = A1A2A3 + A1A2A3 + A1A2A3 và P(E) = P(A1A2A3) + P(A1A2A3) + P(A1A2A3) = P(A1)P(A2)P(A3) + P(A1)P(A2)P(A3) + P(A1)P(A2)P(A3) = (0.6)(0.7)(0.2) + (0.6)(0.3)(0.8) + (0.4)(0.7)(0.8) = 0.452 (f) Gọi F : “Có ít nhất hai người bắn trúng” Khi đó, F = D + E và P(F) = P(D) + P(E) = 0.336 + 0.452 = 0.788 (g) Gọi G : “Có không quá hai người bắn trúng” Khi đó, P(G) = 1 − P(D) = 1 − 0.336 = 0.664 Giải bài 2.31. Ta có A = {abc, acb, cab} và B = {abc, acb, bac} (a) Vì AB = {abc, acb} = ∅ nên A và B không tạo thành một hệ đầy đủ. (b) P(AB) = P[{abc, acb}] = 1/9 và P(A) = P(B) = 1/18 + 1/18 + 2/9 = 1/3. Do đó P(AB) = P(A)P(B) Vậy A và B là hai biến cố độc lập nhau.
Huong Dan Giai Bai Tap Kinh Te Vĩ Mô Phan 1
, Officer at Somewhere Realty
Published on
1. NGUYÊN VĂN N G Ọ C chúng tôi HOÀNG YÊN H Ư Ớ N G D Ẫ N G I Ả I B À I T Ậ P K I N H T Ế v i M Ô tị oe ịịl ị NHÀ XUẤT BẢN ĐẠI HỌC KINH TẾ QUỐC DÂN HA NỘI – 2007
5. HƯỞNG DẪN GIẢI BÀI TẬP KINH TẾvĩ MÔ cũng như tác động qua lại giữa các tác nhân kinh tế này trên từng thị trường cụ thể. Kinh tế vĩ mô nghiên cứu hoạt động của nền kinh tế vói tư cách một tổng thể và các chính sách mà chính phủ thực hiện để tác động tới các tổng lượng kinh tế. Vì biến cố kinh tế vĩ mô phát sinh từ nhiều tác động qua lại mang tính chất vi mô, nên nhà kinh tế vĩ mô sử dụng nhiều công cụ được phát triển trong môn kinh tế vi mô. li. CÂU HỎI ÔN TẬP 1. Hãy giải thích sự khác nhau giữa kinh tế vĩ mô và kinh tế vi mô. Hai bộ mô khoa học này có quan hệ với nhau như thếnào? &rú lèn Kinh tế vi mô nghiên cứu cách thức ra quyết định của các hộ gia đình và doanh nghiệp cá biệt cũng như tác động qua lại giữa họ với nhau. Mô hình kinh tế vi mô về hộ gia đình và doanh nghiệp được thiết lập dựa trên nguyên tắc tối ưu hoa. Nghĩa là, hộ gia đình và doanh nghiệp được giả định là tìm cách đạt được mối lợi tối đa từ khối lượng nguồn lực hiện có. Ví dụ, khi đưa ra quyết định mua hàng, hộ gia đình tìm cách tối đa hoa ích lợi, tức thoa mãn tối đa nhu cầu của mình, còn các doanh nghiệp đưa ra quyết định sản xuất thứ gì, mỗi thứ bao nhiêu để tối đa hoa lợi nhuận. Ngược lại, kinh tế học vĩ mô nghiên cứu nền kinh tế với tư cách một tổng thể. Nó tập trung vào những vấn dề như: các yếu tố quyết định tổng sản lượng, việc làm, mức giá chung và tỷ giá hối đoái. Vì các biến số kinh tế vĩ mô là kết quả của sự tương tác giữa hàng triệu hộ gia đình và doanh nghiệp, nên chúng ta có thể nhận định rằng kinh tế vi mô là cơ sờ cho kinh tế vĩ mô. 2. Tại sao các nhà kình tế lập ra những mô hình? <Jrú lài Các nhà kinh tế lập ra mô hình vì họ coi chúng là công cụ dể tóm lược mối quan hệ giữa các biến số kinh tế. Các mô hình hữu ích vì chúng bỏ qua (hay trừu tượng hóa) nhiều chi tiết tồn tại trong nền kinh tế và cho phép chúng ta tập trung vào việc nghiên cứu những mối liên hệ kinh tế quan trọng nhất. 3. Mô hình căn bằng thị trường là gì? (Trá tói Mô hình cân bằng thị trường là mô hình giả định giá cả điều chinh để cân bằng cung cầu. Mô hình cân bằng thị trường hữu ích trong trường hợp giá cà linh 8
7. HƯỚNG DẪN GIẢI BÀI TẬP KINH TẾvĩ MÔ 3. Hãy sử dụng mô hình cung cầu để lý giải tại sao sự giảm sút cùa giá sữa l tác động tới giá kem và lượng kem bán ra. Hãy xác định các biến ngoại sinh biến nội sinh trong phần giải thích của bạn. Mắt ạiái Khi giá sữa giảm, chi phí sản xuất kem giảm và vì vậy đường cung về kem dịch chuyển xuống phía dưới như trong hình 1.1. Sự dịch chuyển này làm cho giá kem giảm, lượng cung và lượng cầu về kem tăng lên. Lượng kem Hình 1.1. Trong phần giải thích trên, giá sữa và giá kem là biến ngoại sinh, được xác định từ ngoài mõ hình, còn lượng cung và lượng cầu về kem là biến nội sinh, được xác định từ mô hình. 4. Giá bạn trả khi cắt tóc có thay đổi thưởng xuyên không? Cáu trả lời của b có hàm ý gì đối với tác dụng cùa mô hình cân bằng thị trường trong quá trì phân tích thị trưởng cắt tóc? Giá cắt tóc ít thay dổi. Theo kết quả quan sát ngẫu nhiên, người thợ cắt tóc có xu hướng giữ nguyên giá cắt tóc trong thời gian từ Ì đến 2 năm mà không quan tâm đến cầu về cắt tóc và cung về thợ cắt tóc (trừ những ngày lễ, tết). Vì dựa trẽn giả định giá cả linh hoạt, nên mô hình cân bằng thị trường không thích hợp đối với quá trình phân tích thị trường cắt tóc trong ngắn hạn. Tuy nhiên trong dài hạn, giá cắt tóc có xu huống điều chỉnh, vì vậy mô hình cân bằng thị trường tỏ ra thích hợp đối vói mục đích này. 10
8. Bài 2. Số liệu kinh tế vĩ mo B à i 2 SỐ LIỆU KINH TẾ VĨ MÔ ị. TÓM TẮT NỘI DUNG Các nhà kinh tế tìm hiểu hiện tượng kinh tế vĩ mô bằng cách dựa vào cả lý thuyết và kết quả quan sát, bao gồm kết quả quan sát ngẫu nhiên và thống kê kinh tế. Ba chỉ tiêu thống kê kinh tế được các nhà kinh tế và hoạch định chính sách quan tâm nhiều nhất là tổng sản phẩm trong nưỏc (GDP), chỉ số giá tiêu dùng (C/7) và tỷ lệ thất nghiệp (lí). GDP phản ánh cả tổng thu nhập của mọi người trong nền kinh tế và tổng chi tiêu của họ để mua sản lượng hàng hoa và dịch vụ của nền kinh tế. GDP danh nghĩa tính toán giá trị của hàng hoa và dịch vụ theo giá hiện hành trên thị trường. GDP thực tế tính toán giá trị của hàng hoa và dịch vụ theo giá cố định. GDP thực tế chỉ thay đổi khi lượng hàng hoa và dịch vụ thay đổi, trong khi GDP danh nghĩa thay đổi khi lượng hàng, giá cả hoặc cả hai thay đổi. Chỉ số điều chỉnh GDP là tỷ lệ tính bằng phần trăm giữa GDP danh nghĩa và GDP thực tế. Nó là một chỉ số giá và cho chúng ta biết đà gia tăng của giá cả. GDP là tổng của 4 nhóm chi tiêu: tiêu dùng (C), đầu tư (/), mua hàng của chính phủ (G) và xuất khẩu ròng (NX), nghĩa là GDP = c + ì + G + NX. Mỗi nhóm chi tiêu này là một thành tố (chi tiêu) của GDP. Chỉ số giá tiêu dùng (CPỈ) phản ánh giá của giỏ hàng hoa và dịch vụ mà nguôi tiêu dùng điển hình mua. Giống như chỉ số điều chỉnh GDP, CPỈ phản ánh mức giá chung và sự thay đổi của nó. Tỷ lệ thất nghiệp là tỷ lệ phần trăm số người muốn làm việc, nhung không có việc làm. Sự gia tăng tỷ lệ thất nghiệp thuồng đi kèm với hiện tượng giảm sút GÓP thực tế. Quy luật Okun nói rằng nếu tỷ lệ thất nghiệp không thay đổi, tốc độ tăng trưởng của GDP thực tế sẽ bằng khoảng 3%/năm và mỗi khi tỷ lệ thất nghiệp tâng thêm một phần trăm, tỷ lệ này lại giảm 2 phần trăm. l i
10. Bài 2. Số liệu kinh tế vĩ mô Tỷ lệ thất nghiệp = (Số người thất nghiệplLực lượng lao động) X 100 Hãy lưu ý rằng lực lượng lao động bằng số nguôi có việc làm cộng với số người thất nghiệp. 4. Hãy giải thích Quy luật Okun £7MÍ lồi Quy luật Okun ám chỉ mối quan hệ tỷ lệ nghịch giữa thất nghiệp và GDP thự tế. Do công nhân có việc làm góp phần sản xuất ra hàng hoa và dịch vụ, trong khi công nhãn thất nghiệp thì không, nên sự gia táng tỷ lệ thất nghiệp dẫn tới sự giảm sút trong GDP thực tế. Quy luật Okun có thể tóm tắt bằng phương trình sau: % thay đổi của GDP thực tế = 3% – 2 X (% thay đổi tỷ lệ thất nghiệp) Phương trình trên nói rằng nếu tỷ lệ thất nghiệp không thay đổi, thì tỷ lệ tăng trưởng của GDP thực tế sẽ là 3%. Đối với mỗi phần trăm thay đổi tỷ lệ thất nghiệp, sản lượng sẽ thay đổi 2% theo chiều ngược lại. Ví dụ, khi tỷ lệ thất nghiệp giảm 1% (từ 6% xuống 5% = – 1%), GDP thực tế tăng 2% (từ 3% lên 5%); khi tỷ lệ thất nghiệp tăng 1% (từ 6% lên 7% = 1%), GDP thực te giảm 2% (từ 3% xuống chỉ còn 1%). MI. BÀI TẬP VẬN DỤNG /. Hãy xem lại báo chí trong những ngày qua. Chỉ tiêu thống kê kinh tế mới nào được công bố? Bạn giải thích các chỉ tiêu thống kê này như thế nào? Mỉt’i giói Nhiều chỉ tiêu thống kê kinh tế được chính phủ các nước công bố. Những chỉ tiêu được công bố rộng rãi nhất là: Tổng sản phẩm trong nước (GDPy. giá trị thị trường của tất cả các hàng hoa và dịch vụ cuối cùng được sản xuất ra trong một nước trong một thời kỳ nhất định (thường là Ì năm). Tổng sản phẩm quốc dàn (GNP): tổng thu nhập mà cư dãn trong nước kiếm được trong một thòi kỳ (thường là một năm) ở cả nền kinh tế trong nước và ở nước ngoài. Tỷ lệ thất nghiệp (lí): tỳ lệ phẩn trăm lực lượng lao động không có việc làm. Lợi nhuận công ty: thu nhập của các công ty sau khi đã thanh toán các khoản chi phí trà cho công nhân và chủ nợ. 13
13. HƯỚNG DẪN GIẢI BÀI TẬP KINH TẾvĩ MÔ 5. Hãy tìm số liệu vé GDP và các thành tố của nó trong Niên giám Thống ké năm 2004, sau đó tính tỷ lệ phần trăm của các thành tố sau đáy cho các năm 1998, 2000 và 2003: a. Chi cho tiêu dùng cá nhãn. b. Tổng đầu tư của tư nhân trong nước. c. Mua hàng của chính phủ. ả. Xuất khẩu ròng. e. Mua hàng phục vụ quốc phòng. Ị. Mua hảng của chính quyền địa phương. g. Nhập khẩu. Bạn có nhận thấy mối quan hệ ổn định nào trong các số này không? Bạn có nhận thấy xu thếnào không? JHiì t/iáỉ Giả sử bạn tìm thấy số liệu về GDP và các thành tố của nó trong Niên giám Thống kê năm 2004, sau đó tính tỷ lệ phần trăm của các thành tố chi tiêu cho các nam 1998, 2000 và 2003 và được bang sau đây: 1950 1970 1990 Chi cho tiêu dùng cá nhàn 67,1% 64,0% 67,8% Tổng đầu tư của tư nhân trong nước 18,9% 14,9% 14,6% Mua hàng của chính phủ 13,8% 21,0% 18,9% Xuất khẩu ròng 0,2% 0,1% -1,3% Mua hàng phục vụ quốc phòng 5,0% 7,6% 5,7% Mua hàng của chính quyền địa phương 6,7% 4,0% 5,5% Nhập khẩu 11,3% 11,1% 11,2% Bạn có thể quan sát bảng trên và căn cứ vào sự thay đổi trong các thành tố cùa GDP để nêu ra các nhận xét như sau: a. Chi cho tiêu dùng cá nhân duy trì ổn định ở mức khoảng 2/3 GDP. Chùn” ta có được nhận định này là vì mặc dù từ năm 1950 đến năm 1970, chi tiêu cho tiêu dùng cá nhân giảm 3,1%, nhưng đến năm 1990, nó lại tăng lên mức xấp xỉ bằng tỉ tỷ lệ % của năm 1950. b. Tổng đầu tư của tư nhân trong nước có xu hướng giảm. Nó giảm tới 49c trong thời kỳ 1950-1970, sau đó tiếp tục giảm 0,3% trong thời kỳ 1970- 1990. 16
14. Bài 2. Số liệu kinh tế vĩ mô c. Mua hàng của chính phủ có xu huống tăng. Tuy nhiên, sau khi đã tăng lên mức quá cao (21,0%) – tức tăng 7,2% từ năm 1950 đến năm 1970 – nó đã giảm đôi chút (xuống còn 18,9%) vào năm 1990. d. Trong năm 1950 và 1970, xuất khẩu ròng mang dấu dương. Điều đó nói lên rằng đất nước đã có thặng dư cán cân thương mại (xuất khẩu lớn hơn nhập khẩu) trong thời kỳ này. Tuy nhiên, tình hình bị đảo ngược vào năm 1990. Trong năm này xuất khẩu ròng mang dấu âm, đất nước rơi vào tình trạng thâm hụt cán cân thương mại (xuất khẩu nhỏ hơn nhập khẩu). e. Chi tiêu cho mua hàng của chính phủ phục vụ quốc phòng tăng 2,6% từ năm 1950 đến năm 1970. Nguyên nhân chính ở đây chắc chắn là các cuộc chiến tranh mà đất nưốc cần tiến hành hoặc tình hình an ninh trên thế giới xấu đi. Có thể do sau đó các cuộc chiến tranh đã kết thúc hoặc tình hình thế giới được cải thiện, mà khoản chi tiêu giảm tới 1,9% vào năm 1990 (so với năm 1970). ĩ. Mua hàng của chính quyền địa phương có xu hướng giảm mạnh từ năm 1950 đến năm 1970 (tới 3,7%), nhưng sau đó lại có xu hướng tăng, mặc dù chậm hơn (1,5%). g. Nhập khẩu tăng nhìn chung ổn định (bằng khoảng 11% GDP), tuy có giảm nhẹ (0,2%) vào năm 1970, nhưng sau đó lại tăng lên vào năm 1990 (0,1%). 6. Hãy xem xét một nền kinh tế sản xuất và tiêu dùng bánh mỹ và ô tô. Bảng sau đây ghi số liệu cho hai năm khác nhau: Đơn vị Năm 2000 Năm 2005 Giá ó tô Nghìn đồng 50.000 60.000 Giá bánh Nghìn đồng 10 20 Lượng ô tô sản xuất ….Chiếc, 100 120 Lượng bánh sản. 500.000 400.000 a. Hãy sử dụng năki$ộl$ịỊ^Mfày$ậ&sDP danh nghĩa, GDP thực tế, chỉ số điều chinh GBP (thỉ sergtSrtãSpeỷrếs) vò một chì số giá có quyền số cố định nhưCPI (chỉ số giá Paasche). b. Giá cả tăng bao nhiêu trong khoảng thời gian giữa năm 2000 và 2005? Hãy so sánh những câu trả lời do chỉ sô giá Laspeyres và Paasche đưa ra. Hãy giải thích sự khác nhau. c. Giả sử bạn là đại biểu Quốc hội và đang viết một bản khuyến nghị về việc đưa chỉ số trượt giá vào đế tính mức chi trả tiền hưu trí. Nghĩa là, bạn muôn 17
16. Bài 2. Số liệu kinh tế vĩ mô Cụ thể, chúng ta có thể nhận định như sau. Chỉ số điều chỉnh GDP đánh giá đúng tầm quan trọng của các loại giá cả trong chỉ số do sử quyền số thay đổi: khi lượng bánh giảm và lượng ô tô tăng, tầm quan ưọng của giá bánh là giá ô tô được thay đổi một cách tương ứng. Chỉ số giá tiêu dùng đánh giá tầm quan trọng của giá cả không chính xác do sử dụng quyền số cố định: nó đánh giá tầm quan trọng của giá bánh mỹ cao hơn so với thực tế và tầm quan trọng của giá ô tô thấp hơn so vói thực tế. Vì hai nguyên nhân này, chỉ số giá tiêu dùng cao hơn chỉ số điều chỉnh GDP khá nhiều. c. Không có câu trả lòi dứt khoát cho vấn đề này. Lý tưởng mà nói, chúng ta mong muốn có một mức giá cả chung phản ánh chính xác giá sinh hoạt. Khi một mặt hàng trở nên đắt tương đối so vói các mặt hàng khác, thì người ta sẽ giảm mức tiêu dùng mặt hàng đó và tăng mức tiêu dùng các mặt hàng khác. Trong ví dụ trên, người tiêu dùng đã mua ít bánh hơn và mua nhiều ô tô hơn. Nó cũng cho thấy chỉ số có quyền số cố định, chẳng hạn CPI định giá quá cao sự thay đổi trong chi phí sinh hoạt, bởi vì nó không tính được việc người tiêu dùng có thể thay thế mua những hàng hoa trở nên đắt hơn bằng việc mua những hàng hoa trở nên rẻ hơn. Mật khác, chỉ số có quyền số thay đổi, chẳng hạn như chỉ số điều chỉnh GÓP, đánh giá quá thấp sự thay đổi trong chi phí sinh hoạt bởi vì nó không tính thực tế là người tiêu dùng phải thay thế hàng hóa này bằng hàng hóa khác. Rõ ràng mức độ thỏa mãn nhu cầu của anh ta bị giảm khi buộc phải làm như vậy. 7. Anh Ba chỉ tiêu dùng cam. Trong nămỉ, cam chanh giá lo nghìn đồng Ì cân, cam sành giá 20 nghìn đồng một cân và anh Ba mua lo cân cam chanh. Vào năm 2, cam chanh giá 20 nghìn đồng Ì cân, cam sành giá lo nghìn đồng một cân và anh Ba mua lo cân cam sành. a. Hãy tính CPI cho mỗi năm. Giả sửnămỉ là năm cơ sở, tức năm mà giỏ hàng tiêu dùng được cốđịnh. Chỉsố của bạn thay đổi nhưthếnào từnăm Ì sang năm 2. b. Hãy tính mức chi tiêu danh nghĩa để mua cam trong mỗi năm. Nó thay đổi như thế nào từ năm Ì sang năm 2? c. Hãy sử dụng năm Ì làm năm gốc và tính toán mức chi tiêu thực tế về cam của anh Ba trong mỗi năm. Nó thay đổi như thế nào từ năm Ì sang năm 2? d. Hãy định nghĩa chi số giá bằng tỷ lệ giữa mức chi tiêu danh nghĩa và mức chi tiêu thực tế và tính chỉ số giá cho mỗi năm. Nó thay đổi như thế nào từ nămỉ sang năm 2? e. Giả sử anh Ba cảm thấy thoa mãn như nhau khi ăn cam chanh hoặc cam sành. Giá sinh hoạt thực sự đối với anh Ba tăng bao nhiêu? Hãy so sánh cáu trả lời này với câu trả lời của bạn ờ phần (a) và (á). Ví dụ này nói cho bạn biết điều gì về chỉ số giá Laspeyres và Paasche? 19
Giải Toán Có Lời Văn Giao An Giai Bai Toan Co Loi Van Doc
GIẢI BÀI TOÁN CÓ LỜI VĂN LỚP 3
– Tìm một trong các phần bằng nhau của một số.
– Gấp một số lên nhiều lần.
– Giảm đi một số lần.
– Tổng quát: Tìm của số A.
– Bài tập vận dụng:
– Bài tập áp dụng:
Bài 1. Năm nay em 6 tuổi, tuổi chị gấp 2 lần tuổi em. Hỏi năm nay chị bao nhiêu tuổi ?
Bài 2. Con hái được 7 quả cam, mẹ hái được gấp 5 lần số cam của con. Hỏi mẹ hái được bao nhiêu quả cam ?
III. Giảm đi một số lần
– Bài tập áp dụng:
Bài 1. Mẹ có 40 quả bưởi, sau khi đem bán thì số bưởi giảm đi 4 lần. Hỏi mẹ còn lại bao nhiêu quả bưởi ?
Bài 2. Một công việc làm bằng tay hết 30 giờ, nếu làm bằng máy thì thời gian giảm 5 lần. Hỏi làm công việc đó bằng máy hết bao nhiêu giờ ?
Ví dụ 2. Có 35 l mật ong chia đều vào 7 can. Hỏi 2 can có mấy lít mật ong ?
Số lít mật ong trong 2 can là:
5 2 = 10 ( l )
GIẢI BÀI TOÁN CÓ LỜI VĂN LỚP 4
– Giải các bài toán có nội dung hình học.
– Số trung bình cộng = Tổng các số : số các số
Bài 1. Tìm trung bình cộng của các số : 4 ; 6 ; 8 ; 10.
Bài 2. Trung bình cộng của ba số bằng 20. Tìm tổng của ba số đó.
Giải : Tổng của ba số đó là : 20 3 = 60.
Số thứ năm là : 480 – 320 = 160.
II. Tìm hai số biết tổng và hiệu của hai số đó
Tóm tắt:
– Cách 1. Số bé là : (Tổng – Hiệu) : 2
Số lớn là : Tổng – Số bé (hoặc: Hiệu + Số bé)
– Cách 2. Số lớn là : (Tổng + Hiệu) : 2
Số bé là: Tổng – Số lớn (hoặc: Số lớn – Hiệu).
Bài 1. Tổng hai số bằng 50, số lớn hơn số bé 10 đơn vị. Tìm hai số đó.
Số lớn là : 50 – 20 = 30.
Số lớn là : (490 + 24) : 2 = 257
Số bé là : 257 – 24 = 233.
Vẽ sơ đồ đoạn thẳng:
Tổng số phần bằng nhau là : m + n
Giá trị của một phần là : Tổng : (m + n)
Số lớn là : Tổng – Số bé.
2. Bài tập vận dụng:
Giải : Ta có sơ đồ:
Tổng số phần bằng nhau là : 2 + 3 = 5 (phần)
Số lớn là : 30 – 12 = 18.
Ta có sơ đồ:
Chiều rộng hình chữ nhật là : 80 : 8 3 = 30 (cm)
Diện tích hình chữ nhật là: 30 50 = 1500 (cm 2 ).
Giải : Số bé nhất có ba chữ số là 100 nên tổng của hai số là 100 , số lớn nhất có một chữ số là 9 nên tỉ số của hai số là 9.
Coi số bé là 1 phần thì số lớn là 9 phần như thế, tổng số phần bằng nhau là:
Vẽ sơ đồ đoạn thẳng:
Hiệu số phần bằng nhau là : n – m
2. Bài tập vận dụng:
Giải : Ta có sơ đồ:
Hiệu số phần bằng nhau là: 5 – 3 = 2 (phần)
Coi số bé là 1 phần thì số lớn là 10 phần như thế, hiệu số phần là:
Số lớn là : 111 + 999 = 1110.
Diện tích hình chữ nhật là: 72 120 = 8640 (cm 2 ).
1. Tìm phân số của một số
– Tổng quát: Cho số A. Hãy tìm của số A.
– Cách giải. Nếu chia số A thành n phần bằng nhau thì một phần có giá trị là . m phần có giá trị là: . Vậy của số A là:
– Các bài tập vận dụng:
Giải : của 50 là : 50 = 175.
Giải : Độ dài đường chéo thứ hai là: 27 = 36 (cm)
Diện tích hình thoi đó là : 27 36 : 2 = 486 (cm 2 ).
360 000 = 216 000 (đồng)
Số tiền người thứ hai nhận được là:
360 000 – 216 000 = 144 000 (đồng) .
(số tiền của hai người)
Số tiền người thứ hai nhận được là: 360 000 = 144 000 (đồng) .
2. Tìm một số biết giá trị phân số của nó
– Cách giải. Nếu chia số cần tìm thành n phần bằng nhau thì m phần có giá trị là A. Giá trị một phần là . Số đó là: .
– Bài tập vận dụng:
Giải : Số đó là: 2 0 : = 3 0.
Bài 2. Biết của một số là . Tìm số đó.
Giải : Số đó là: : = .
Phân số chỉ số tiền người thứ hai được nhận là:
(số tiền của hai người)
Số tiền hai người thợ đem chia nhau là: 144 000 : = 360 000 (đồng).
VI. Bài toán “Ứng dụng tỉ lệ bản đồ”
102 000 000 = 102 km.
Khoảng cách giữa hai điểm A và B trên bản đồ là:
2000 : 500 = 4 (cm)
Quãng đường Hà Nội – Sơn Tây trên bản đồ dài là:
41 000 000 : 1 000 000 = 41 (mm)
GIẢI BÀI TOÁN CÓ LỜI VĂN LỚP 5
Trong Toán 5, nội dung dạy học về giải bài toán có lời văn bao gồm:
– Giải các bài toán về tỉ số phần trăm.
– Giải các bài toán về chuyển động đều.
1. Bài toán tỉ lệ thuận.
Cách 1. (Rút về đơn vị).
Trong 1 giờ ô tô đi được là : 90 : 2 = 45 (km)
Cách 2. (Tìm tỉ số).
4 giờ gấp 2 giờ số lần là : 4 : 2 = 2 (lần)
2. Bài toán tỉ lệ nghịch
4 ngày : …người ?
Cách 1. (Rút về đơn vị).
Muốn đắp xong nền nhà trong 4 ngày, cần số người là : 24 : 4 = 6 (người)
Cách 2. (Tìm tỉ số).
4 ngày gấp 2 ngày số lần là : 4 : 2 = 2 (lần)
Muốn đắp xong nền nhà trong 4 ngày, cần số người là : 12 : 2 = 6 (người).
Bài tập: 1. Một bếp ăn dự trữ gạo đủ cho 120 người ăn trong 20 ngày, thực tế đã có 150 người ăn. Hỏi số gạo dự trữ đó đủ ăn trong bao nhiêu ngày ? (Mức ăn của mỗi người như nhau)
Bài toán 1. Tìm tỉ số phần trăm của hai số
+ Tìm thương của hai số đó.
+ Nhân thương đó với 100 và viết thêm kí hiệu % vào bên phải tích tìm được.
– Bài tập vận dụng:
Bài 2. Trong 80kg nước biển có 2,8kg muối. Tìm tỉ số phần trăm của lượng muối trong nước biển.
Bạn đang xem bài viết Bai Tap Kinh Te Vi Mo Co Loi Giai trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!