Xem Nhiều 2/2023 #️ Các Dạng Toán Phương Trình Bậc 2 Một Ẩn, Cách Giải Và Tính Nhẩm Nghiệm Nhanh # Top 3 Trend | Caffebenevietnam.com

Xem Nhiều 2/2023 # Các Dạng Toán Phương Trình Bậc 2 Một Ẩn, Cách Giải Và Tính Nhẩm Nghiệm Nhanh # Top 3 Trend

Cập nhật thông tin chi tiết về Các Dạng Toán Phương Trình Bậc 2 Một Ẩn, Cách Giải Và Tính Nhẩm Nghiệm Nhanh mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.

Vì vậy, trong bài viết này chúng ta cùng tìm hiểu cách giải phương trình bậc 2 một ẩn, cách tính nhẩm nghiệm nhanh bằng hệ thức Vi-et, đồng thời giải một số dạng toán về phương trình bậc 2 một ẩn để thông qua bài tập các em sẽ nắm vững nội dung lý thuyết.

– Nếu a ≠ 0, phương trình có nghiệm duy nhất x=(-b/a)

– Nếu a = 0, b ≠ 0, phương trình vô nghiệm

– Nếu a = 0, b = 0, phương trình có vô số nghiệm

+) Δ < 0: PT vô nghiệm.

+) Δ’ < 0: PT vô nghiệm.

– Gọi x 1 và x 2 là 2 nghiệm của PT bậc 2 một ẩn ax 2 + bx + c = 0 (a≠0):

– Ta có thể sử dụng định lý Vi-et để tính các biểu thức của x 1 , x 2 theo a,b,c:

– Cho 2 số x, y, biết x + y = S và x.y = P thì x, y là nghiệm của phương trình: X 2 – SX + P = 0

– Nếu P < 0 thì phương trình có 2 nghiệm trái dấu

– Chuyển hạng tử tự do sang vế phải

– Chia cả 2 vế cho hệ số bậc 2, đưa về dạng x 2 = a.

+ Nếu a = 0, phương trình có nghiệm x = 0

+ Nếu a < 0, phương trình vô nghiệm

– Phân tích vế trái thành nhân tử bằng phương pháp đặt nhân tử chung, đưa về phương trình tích rồi giải.

– Sử dụng công thức nghiệm, hoặc công thức nghiệm thu gọn để giải

– Sử dụng quy tắc tính nhẩm nghiệm để tính nghiệm đối với 1 số phương trình đặc biệt.

⇒ Kết luận: Phương trình có nghiệm x=±√2.

⇔ x = 0 hoặc x + 4 =0

⇒ Kết luận: Phương trình có nghiệm x=0 và x=-4.

⇒ Kết luận: Phương trình có nghiệm x=1 và x=4.

– PT đã cho: x 2 – 5x + 4 = 0 có các hệ số a=1; b=-5; c=4 và ta thấy: a + b + c = 1 – 5 + 4 = 0 nên theo ứng dụng của định lý Vi-ét, ta có x 1 = 1; x 2 = c/a = 4/1 = 4

⇒ Kết luận: Phương trình có nghiệm x=1 và x=4.

♦ Nếu gặp hằng đẳng thức 1 và 2 thì đưa về dạng tổng quát giải bình thường, không cần giải theo công thức, ví dụ: x 2 – 2x + 1 = 0 ⇔ (x-1) 2 = 0 ⇔ x = 1.

♦ Phải sắp xếp lại đúng thứ tự các hạng tử để lập thành phương trình ax 2 + bx + c = 0 rồi mới áp dụng công thức, ví dụ: x(x – 5) = 6 ⇔ x 2 – 5x = 6 ⇔ x 2 – 5x – 6 = 0 ⇔ áp dụng công thức giải tiếp,…

♦ Không phải lúc nào x cũng là ẩn số mà có thể là ẩn y, ẩn z ẩn t hay ẩn a, ẩn b,… tùy vào cách ta chọnbiến, ví dụ: a 2 – 3a + 2 = 0; t 2 – 6t + 5 = 0.

Dạng 2: Phương trình đưa về phương trình bậc 2 bằng phương pháp đặt ẩn phụ

– Tìm điều kiện xác định của phương trình

– Quy đồng mẫu thức 2 vế rồi khử mẫu

– Giải phương trình vừa nhận được

– Kiểm tra điều kiện các giá trị tìm được, loại các giá trị không thoả mãn điều kiện, các giá trị thoả điều kiện xác định là nghiệm của phương trình đã cho.

– Ta thấy a + b + c = 0 ⇒ t = 1 hoặc t = 2 (đều thoả ĐK t ≥ 0)

⇒ Kết luận: Phương tình có nghiệm (-√2; -1; 1; √2)

– Quy đồng khử mẫu, PT (*) ta được:

– Cả 2 nghiệm trên đều thoả ĐK x ≠ 3; x ≠ 2;

– Sử dụng công thức nghiệm, hoặc công thức nghiệm thu gọn để giải,

+ Nếu Δ = 0: phương trình có nghiệm kép

+ Nếu Δ < 0: phương trình vô nghiệm

Ví dụ: Giải biện luận theo m, phương trình: mx 2 – 5x – m – 5 = 0 (*)

– Trường hợp m = 0 thì (*) trở thành: -5x – 5 = 0 ⇒ x = -1

– Trường hợp m ≠ 0, ta có:

– Ta thấy: Δ = (2m+5) 2 ≥ 0, ∀ m nên PT(*) sẽ luôn có nghiệm

– Với điều kiện về nghiệm số của đề bài giải tìm m

– Bảng xét dấu nghiệm của phương trình bậc 2 một ẩn:

1. Có nghiệm (có hai nghiệm) ⇔ Δ ≥ 0

3. Nghiệm duy nhất (nghiệm kép, hai nghiệm bằng nhau) ⇔ Δ = 0

9. Hai nghiệm đối nhau ⇔ Δ ≥ 0 và S = 0

chúng tôi nghiệm nghịch đảo nhau ⇔ Δ ≥ 0 và P = 1

11. Hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn ⇔ a.c < 0 và S < 0

a) Giải phương trình với m = -2.

* Phương pháp: Vận dụng linh hoạt theo yêu cầu bài toán để lập phương trình và giải

Ví dụ: Trong lúc học nhóm Hùng yêu cầu bạn Minh và bạn Lan mỗi người chọn một số, sao cho 2 số này hơn kém nhau là 5 và tích của chúng phải bằng 150, vậy 2 bạn Minh và Lan phải chọn nhưng số nào?

– Gọi số bạn Minh chọn là x, thì số bạn Lan chọn sẽ là x + 5

– Theo bài ra, tích của 2 số này là 150 nên ta có: x(x+5) = 150

– Vậy có 2 cặp số thỏa là: (10; 15) và (-15; -10)

Bài 16 trang 45 sgk toán 9 tập 2: Dùng công thức nghiệm giải các phương trình sau

– Phương trình có 2 nghiệm phân biệt:

Bài 2: Giải các phương trình sau bằng phương pháp tính nhẩm nghiệm

Bài 3: Gọi x 1 và x 2 là nghiệm của phương trình x 2 – 3x – 7 = 0. Không giải phương trình tính giá trị của các biểu thức sau:

Bài 4: Gọi x 1 và x 2 là nghiệm của phương trình 3x 2 + 5x – 6 = 0. Không giải phương trình tính giá trị của các biểu thức sau:

Bài 5: Cho phương trình (2m-1)x 2 – 2mx + 1 = 0. Xác định m để phương trình trên có nghiệm thuộc khoảng (-1;0)

Bài 6: Cho phương trình có ẩn x: x 2 – mx + m – 1 = 0 (m là tham số).

c) Tính giá trị nhỏ nhất của A và của m tương ứng

Cách Giải Phương Trình Bậc 2 Và Tính Nhẩm Nghiệm Pt Bậc 2

Bài viết này Trung tâm Gia sư Hà Nội chia sẻ với các em cách giải phương trình bậc 2 và tính nhẩm nghiệm của PT bậc 2 trong trường hợp đặc biệt.

Có nhiều dạng toán trong chương trình Toán 9 và ôn thi vào lớp 10 môn Toán cần phải biết phương pháp giải phương trình bậc 2 thì mới làm được.

Định nghĩa phương trình bậc 2

Phương trình bậc hai là phương trình có dạng: ax 2 + bx + c = 0. Với

x là ẩn số

a, b, c là các số đã biết sao cho: a ≠ 0

a, b, c là những hệ số của phương trình và có thể phân biệt bằng cách gọi tương ứng với hệ số của x (theo phương trình trên thì a là hệ số bậc hai, b là hệ số bậc một, c là hằng số hay số hạng tự do).

Phương pháp giải phương trình bậc 2

Giải phương trình bậc 2: ax 2 + bx + c = 0 theo biệt thức delta (Δ)

Công thức Vi-ét về quan hệ giữa các nghiệm của đa thức với các hệ số của nó. Trong trường hợp phương trình bậc hai một ẩn, được phát biểu như sau:

Nếu phương trình bậc 2 có:

Xuất phát từ định lý Vi-ét, chúng ta có các dạng toán tính nhẩm như sau:

Nếu phương trình có dạng x 2 – (u+v)x + uv = 0 thì phương trình đó có hai nhiệm u và v.

Nếu phương trình có dạng x 2 + (u+v)x + uv = 0 thì phương trình có hai nghiệm -u và -v.

Như vậy, với dạng này chúng ta cần thực hiện 2 phép nhẩm: “Phân tích hệ số c thành tích và b thành tổng”. Trong hai phép nhẩm đó, chúng ta nên nhẩm hệ số c trước rồi kết hợp với b để tìm ra hai số thỏa mãn tích bằng c và tổng bằng b.

Khi tiến hành, bạn nhẩm trong đầu như sau: Tích của hai nghiệm bằng c, mà tổng lại bằng b.

Tóm lại:

x 2 – 5x + 6 = 0 Nhẩm: “Tích của hai nghiệm bằng 6, mà tổng lại bằng 5”. Hai số đó là: 2 và 3 vì 6 = 2×3 và 5 = 2 + 3. Vậy phương trình có hai nghiệm x = 2, x = 3.

x 2 – 7x + 10 = 0 Nhẩm: “Tích của hai nghiệm bằng 10, mà tổng lại bằng 7”. Hai số đó là: 2 và 5 vì 10 = 2×5 và 7 = 2 + 5. Vậy phương trình có hai nghiệm x = 2, x = 5.

Ví dụ phương trình:

Do loại này đã quá quen thuộc và thường gặp, nên bài viết không xét các ví dụ cho trường hợp này mà tập trung vào Dạng 1 và Dạng 3.

Dạng 3: Hai nghiệm là nghịch đảo của nhau

Nếu thay v = 1 vào (1) thì chúng ta sẽ có trường hợp nhẩm nghiệm quen thuộc a + b + c = 0, với a = 1, b = -(u+1), c = u.

Nếu thay v = -1 vào (1) thì bạn sẽ có trường hợp nhẩm nghiệm a – b + c = 0, với a = 1, b = -(u-1), c = -u.

Nếu u ≠ 0 và v = 1/ u thì phương trình (1) có dạng:

Toán 8 Bài 2: Phương Trình Bậc Nhất Một Ẩn Và Cách Giải

Tóm tắt lý thuyết

Với các đẳng thức, ta có thể biến đổi:

(a + b = c Leftrightarrow a + b – c = 0 to ) Chuyển vế và đổi dấu

(2a + 4b = – 2 Leftrightarrow 1 + 2b = – 1 to ) Chia cả hai vế cho 2

Và với các phương trình chúng ta cũng có được những quy tắc như vậy, cụ thể:

1. Quy tắc chuyển vế: Trong một phương trình, ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạn tử đó.

2. Quy tắc nhân với một số: Trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế với cùng một số khác 0.

Ví dụ 1: Sử dụng hai quy tắc biến đổi phương trình để giải các phương trình sau:

a. ({x^2} + x = {x^2}) b. (2x = 1) c. (3x = x + 8)

Giải

a. Sử dụng quy tắc chuyển vế, biến đổi phương trình về dạng:

({x^2} + x – {x^2} = 0 Leftrightarrow x = 0)

Vậy phương trình có nghiệm x = 0

b. Sử dụng quy tắc chia với một số, biến đổi phương trình về dạng: (x = frac{1}{2})

Vậy phương trình có nghiệm (x = frac{1}{2})

c. Sử dụng lần lượt các quy tắc, biến đổi phương trình về dạng:

(3x – x = 8 Leftrightarrow 2x = 8 Leftrightarrow x = 4)

Vậy phương trình có nghiệm x = 4

Trong lời giải các phương trình trên, chúng ta đã thừa nhận rằng kết quả ” Từ một phương trình, dùng quy tắc chuyển vế hay quy tắc nhân, ta luôn nhận được một phương trình mới tương đương với phương trình đã cho “.

Định nghĩa: Phương trình

ax + b = 0, với a và b là hai số đã cho và (a ne 0).

Được gọi là phương trình bậc nhất một ẩn.

Ví dụ 2: Tìm điều kiện tham số m để phương trình là phương trình bậc nhất một ẩn:

a. (({m^2} – 1){x^2} + mx + 1 = 0)

b. (mx + (m – 1)y + 2 = 0)

Giải

a. Để phương trình: (({m^2} – 1){x^2} + mx + 1 = 0) là phương trình bậc nhất một ẩn khi và chỉ khi:

(left{ begin{array}{l}{m^2} – 1 = 0\m ne 0end{array} right. Leftrightarrow left{ begin{array}{l}m = pm 1\m ne 0end{array} right. Leftrightarrow m = pm 1.)

Vậy với m = 1 hoặc m = -1 phương trình đã cho là phương trình bậc nhất một ẩn x.

b. Để phương trình: (mx + (m – 1)y + 2 = 0) là phương trình bậc nhất một ẩn có hai trường hợp:

Trường hợp 1: Nó là phương trình bậc nhất một ẩn x khi và chỉ khi:

(left{ begin{array}{l}m ne 0\m – 1 = 0end{array} right. Leftrightarrow left{ begin{array}{l}m ne 0\m = 1end{array} right. Leftrightarrow m = 1)

Trường hợp 2: Nó là phương trình bậc nhất một ẩn y khi và chỉ khi:

(left{ begin{array}{l}m = 0\m – 1 ne 0end{array} right. Leftrightarrow left{ begin{array}{l}m = 0\m ne 1end{array} right. Leftrightarrow m = 0)

Kết luận:

* Với m = 1 phương trình đã cho là phương trình bậc nhất một ẩn x.

* Với m = 0 phương trình đã cho là phương trình bậc nhất một ẩn y.

Phương trình bậc nhất một ẩn được giải như sau: ({rm{ax}} + b = 0 Leftrightarrow {rm{ax = – b}} Leftrightarrow {rm{x = – }}frac{b}{a}) Vậy phương trình bậc nhất ax + b = 0 luôn có nghiệm duy nhất (x = – frac{b}{a}).

Ví dụ 3: Giải các phương trình sau:

a. 5x – 3 = 0

b. 6 – 2x = 0

Giải

a.

Biến đổi tương đương phương trình về dạng: (5x = 3 Leftrightarrow x = frac{3}{5})

Vậy phương trình có nghiệm duy nhất (x = frac{3}{5})

b.

Biến đổi tương đương phương trình về dạng: ( – 2x = – 6 Leftrightarrow x = 3)

Vậy phương trình có nghiệm duy nhất x = 3.

Tổng Hợp Dạng Toán Về Phương Trình Bậc 2 Một Ẩn Thông Dụng Nhất.

Phương trình bậc 2 một ẩn – Lý thuyết.

Phương trình bậc 2 một ẩn là gì?

Cho phương trình sau: ax2+bx+c=0 (a≠0), được gọi là phương trình bậc 2 với ẩn là x.

Công thức nghiệm: Ta gọi Δ=b2-4ac.Khi đó:

Δ=0, phương trình có nghiệm kép x=-b/2a

Δ<0, phương trình đã cho vô nghiệm.

Trong trường hợp b=2b’, để đơn giản ta có thể tính Δ’=b’2-ac, tương tự như trên:

Δ’=0: phương trình có nghiệm kép x=-b’/a

Δ’<0: phương trình vô nghiệm.

Định lý Viet và ứng dụng trong phương trình bậc 2 một ẩn.

Cho phương trình bậc 2 một ẩn: ax2+bx+c=0 (a≠0). Giả sử phương trình có 2 nghiệm x1 và x2, lúc này hệ thức sau được thỏa mãn:

Dựa vào hệ thức vừa nêu, ta có thể sử dụng định lý Viet để tính các biểu thức đối xứng chứa x1 và x2

x1+x2=-b/a

x12+x22=(x1+x2)2-2x1x2=(b2-2ac)/a2

Nhận xét: Đối với dạng này, ta cần biến đổi biểu thức làm sao cho xuất hiện (x1+x2) và x1x2 để áp dụng hệ thức Viet.

Định lý Viet đảo: Giả sử tồn tại hai số thực x1 và x2 thỏa mãn: x1+x2=S, x1x2=P thì x1 và x2 là 2 nghiệm của phương trình x2-Sx+P=0

Một số ứng dụng thường gặp của định lý Viet trong giải bài tập toán:

Nhẩm nghiệm phương trình bậc 2: cho phương trình ax2+bx+c=0 (a≠0), 

Nếu a+b+c=0 thì phương trình có nghiệm x1=1 và x2=c/a

Nếu a-b+c=0 thì phương trình có nghiệm x1=-1 và x2=-c/a

Phân tích đa thức thành nhân tử: cho đa thức P(x)=ax2+bx+c nếu x1 và x2 là nghiệm của phương trình P(x)=0 thì đa thức P(x)=a(x-x1)(x-x2)

Xác định dấu của các nghiệm: cho phương trình ax2+bx+c=0 (a≠0), giả sử x1 và x2 là 2 nghiệm của phương trình. Theo định lý Viet, ta có:

Nếu S<0, x1 và x2 trái dấu.

P<0, hai nghiệm cùng âm.

II. Dạng bài tập về phương trình bậc 2 một ẩn:

Dạng 1: Bài tập phương trình bậc 2 một ẩn không xuất hiện tham số.

Để giải các phương trình bậc 2, cách phổ biến nhất là sử dụng công thức tính Δ hoặc Δ’, rồi áp dụng các điều kiện và công thức của nghiệm đã được nêu ở mục I.

Ví dụ 1: Giải các phương trình sau:

x2-3x+2=0

x2+x-6=0

Hướng dẫn:

Δ=(-3)2-4.2=1. Vậy

Ngoài ra, ta có thể áp dụng cách tính nhanh: để ý

suy ra phương trình có nghiệm là x1=1 và x2=2/1=2

Δ=12-4.(-6)=25. Vậy

Tuy nhiên, ngoài các phương trình bậc 2 đầy đủ, ta cũng xét những trường hợp đặc biệt sau:

Phương trình khuyết hạng tử.

Khuyết hạng tử bậc nhất: ax2+c=0 (1).

Phương pháp:

Nếu -c/a=0, nghiệm x=0

Nếu -c/a<0, phương trình vô nghiệm.

Khuyết hạng tử tự do: ax2+bx=0 (2). Phương pháp:

Ví dụ 2:  Giải phương trình:

x2-4=0

x2-3x=0

Hướng dẫn:

x2-4=0 ⇔ x2=4 ⇔ x=2 hoặc x=-2

x2-3x=0 ⇔ x(x-3)=0 ⇔ x=0 hoặc x=3

Phương trình đưa về dạng bậc 2.

Phương trình trùng phương: ax4+bx2+c=0 (a≠0):

Đặt t=x2 (t≥0).

Phương trình đã cho về dạng: at2+bt+c=0

Giải như phương trình bậc 2 bình thường, chú ý điều kiện t≥0

Phương trình chứa ẩn ở mẫu:

Tìm điều kiện xác định của phương trình (điều kiện để mẫu số khác 0).

Quy đồng khử mẫu.

Giải phương trình vừa nhận được, chú ý so sánh với điều kiện ban đầu.

Chú ý: phương pháp đặt  t=x2 (t≥0) được gọi là phương pháp đặt ẩn phụ. Ngoài đặt ẩn phụ như trên, đối với một số bài toán, cần khéo léo lựa chọn sao cho ẩn phụ là tốt nhất nhằm đưa bài toán từ bậc cao về dạng bậc 2 quen thuộc. Ví dụ, có thể đặt t=x+1, t=x2+x, t=x2-1…

Ví dụ 3: Giải các phương trình sau:

4×4-3×2-1=0

Hướng dẫn:

Đặt t=x2 (t≥0), lúc này phương trình trở thành:

4t2-3t-1=0, suy ra t=1 hoặc t=-¼

t=1 ⇔ x2=1  ⇔ x=1 hoặc x=-1.

t=-¼ , loại do điều kiện t≥0

Vậy phương trình có nghiệm x=1 hoặc x=-1.

Ta có:

Dạng 2: Phương trình bậc 2 một ẩn có tham số.

Biện luận số nghiệm của phương trình bậc 2.

Phương pháp: Sử dụng công thức tính Δ, dựa vào dấu của Δ để biện luận phương trình có 2 nghiệm phân biệt, có nghiệm kép hay là vô nghiệm.

Ví dụ 4: Giải và biện luận theo tham số m: mx2-5x-m-5=0 (*)

Hướng dẫn:

Xét m=0, khi đó (*) ⇔ -5x-5=0 ⇔ x=-1

Xét m≠0, khi đó (*) là phương trình bậc 2 theo ẩn x.

Vì Δ≥0 nên phương trình luôn có nghiệm:

Δ=0  ⇔ m=-5/2, phương trình có nghiệm duy nhất.

Xác định điều kiện tham số để nghiệm thỏa yêu cầu đề bài.

Phương pháp: để nghiệm thỏa yêu cầu đề bài, trước tiên phương trình bậc 2 phải có nghiệm. Vì vậy, ta thực hiện theo các bước sau:

Tính Δ, tìm điều kiện để Δ không âm.

Dựa vào định lý Viet, ta có được các hệ thức giữa tích và tổng, từ đó biện luận theo yêu cầu đề.

Ví dụ 5: Cho phương trình x2+mx+m+3=0 (*). Tìm m để phương trình (*) có 2 nghiệm thỏa mãn:

Hướng dẫn:

Để phương trình (*) có nghiệm thì:

Khi đó, gọi x1 và x2 là 2 nghiệm, theo định lý Viet:

Mặt khác:

Theo đề:

Thử lại:

Khi m=5, Δ=-7 <0 (loại)

vậy m = -3 thỏa yêu cầu đề bài.

Bạn đang xem bài viết Các Dạng Toán Phương Trình Bậc 2 Một Ẩn, Cách Giải Và Tính Nhẩm Nghiệm Nhanh trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!