Cập nhật thông tin chi tiết về Chương Viii: Phương Trình Lượng Giác Không Mẫu Mực mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.
PHƯƠNG TRÌNH LƯỢNG GIÁC KHÔNG MẪU MỰC Trường hợp 1: TỔNG HAI SỐ KHÔNG ÂM Áp dụng Nếu A 0 B 0 A B 0 ≥ ∧ ≥⎧⎨ + =⎩ thì A = B = 0 Bài 156 Giải phương trình: 2 24 cos x 3tg x 4 3 cos x 2 3tgx 4 0 (*)+ − + + = Ta có: ( ) ( )⇔ − + + ⎧ =⎪⎪⇔ ⎨⎪ = −⎪⎩ π⎧ = ± + π ∈⎪⎪⇔ ⎨⎪ = −⎪⎩ π⇔ = − + π ∈ 2 2 (*) 2 cos x 3 3tgx 1 0 3cos x 2 1tgx 3 x k2 , k 6 1tgx 3 x k2 , k 6 = Bài 157 Giải phương trình: ( )28cos4x.cos 2x 1 cos3x 1 0 *+ − + = Ta có: ( ) ( )⇔ + + + −* 4 cos 4x 1 cos 4x 1 1 cos 3x 0= ( ) ( ) ⇔ + + + − ⇔ + + − = ⎧ ⎧= − = −⎪ ⎪⇔ ⇔⎨ ⎨⎪ ⎪= = π ∈⎩ ⎩ 2 2 4 cos 4x 4 cos 4x 1 1 cos 3x 0 2 cos 4x 1 1 cos 3x 0 1 1cos 4x cos 4x 2 2 cos 3x 1 3x k2 , k = ⎧ = −⎪⎪⇔ ⎨ π⎪ = ∈⎪⎩ 1cos 4x 2 k2x , k (có 3 đầu ngọn cung) 3 ⎧ = −⎪⎪⇔ ⎨ π π⎪ = − π = π = + π ∈⎪⎩ π⇔ = ± + π ∈ 1cos 4x 2 2 2x +m2 hay x m2 hay x m2 , m 3 3 2x m2 , m 3 (ta nhận = ±k 1 và loại k = 0 ) Bài 158 Giải phương trình: ( ) ( )22 3 3sin 3xsin x cos3xsin x sin3x cos x sin xsin 3x *3sin4x+ + = 2 Ta có: 3 chúng tôi 3x sin chúng tôi x+( ) ( ) ( ) = − + − = − + = − = = 3 3 3 3 3 3 2 4 cos x 3cos x sin x 3sin x 4 sin x cos x 3cos x sin x 3sin x cos x 3sin x cos x cos x sin x 3 3sin chúng tôi 2x sin 4x 2 4 2 ( ) ( ) ⇔ + = ≠ ⎛ ⎞⇔ − − + =⎜ ⎟⎝ ⎠ ⎛ ⎞⇔ − + − =⎜ ⎟⎝ ⎠ 2 2 2 2 2 4 2 2 2 2 2 1Vậy: * sin x sin 3x sin x sin 3x và sin 4x 0 4 1 1 1sin 3x sin x sin 3x sin 3x 0 và sin 4x 0 2 4 4 1 1sin 3x sin x sin 3x 1 sin 3x 0 và sin 4x 0 2 4 ≠ ≠ ⎛ ⎞⇔ − + =⎜ ⎟⎝ ⎠ ≠⎧⎪⎪⇔ =⎨⎪ = ∨ =⎪⎩ 2 2 2 2 1 1sin 3x sin x sin 6x 0 và sin 4x 0 2 16 sin 4x 0 1 sin 3x sin x 2 sin 3x 0 cos 3x 0 ≠ ≠⎧≠⎧ ⎪⎪ ⎪⇔ = ∨ =⎨ ⎨⎪ ⎪=⎩ = ±⎪⎩ sin 4x 0sin 4x 0 1sin 3x 0 sin x 2 sin x 0 (VN) sin 3x 1 ≠⎧⎪⎪⇔ =⎨⎪⎪ − =⎩ 3 sin 4x 0 1sin x 2 3sin x 4 sin x 1± ≠⎧⎪⇔ ⎨ =⎪⎩ ≠⎧⎪⇔ π π⎨ = + π ∨ + π ∈⎪⎩ π π⇔ = + π ∨ = + π ∈ sin 4x 0 1sin x 2 sin 4x 0 5x k2 k2 , k 6 6 5x k2 x k2 , k 6 6 Trường hợp 2 Phương pháp đối lập Nếu A M B A B ≤ ≤⎧⎨ =⎩ thì A B M= = Bài 159 Giải phương trình: − = +4 4sin x cos x sin x cos x (*) Ta có: (*) ⇔ − = +2 2sin x cos x sin x cos x ⇔ − = + ≤⎧⎪⇔ ⎨ = +⎪⎩ ≤⎧ ≤⎧⎪⇔ ⇔⎨ ⎨ = = ±− =⎪ ⎩⎩ ⇔ = − π⇔ = + π ∈ 2 2 cos 2x sin x cos x cos 2x 0 cos 2x 1 2 sin x cos x cos 2x 0 cos 2x 0 sin 2x 0 (cos 2x 1)sin 2x 2 sin 2x cos 2x 1 x k , k 2 Cách khác Ta có − ≤ ≤ ≤ +4 4 4x cos x sin x sin x sin x cos xsin Do đó =⎧⎪⇔ ⇔ =⎨ =⎪⎩ 4 cos x 0 (*) cos x 0 sin x sin x π= + π ∈ x k , k 2 ⇔ Bài 160: Giải phương trình: ( ) 2cos2x cos4x 6 2sin 3x (*)− = + Ta có: (*) 2 24 sin chúng tôi x 6 2sin 3x⇔ = + • Do: và 2sin 3x 1≤ 2sin x 1≤ nên 2 24 sin 3x sin x 4≤ • Do nên 6 2≥ −sin 3x 1 sin3x 4+ ≥ Vậy 2 24 sin 3x sin x 4 6 2sin 3x≤ ≤ + Dấu = của phương trình (*) đúng khi và chỉ khi ⎧ = ⎧⎪ == ⇔⎨ ⎨ = −⎩⎪ = −⎩ 2 2 2 sin 3x 1 sin x 1sin x 1 sin 3x 1sin 3x 1 π⎧ = ± + π ∈ π⎪⇔ ⇔ = +⎨⎪ = −⎩ π ∈ x k2 , k x k2 , k2 2sin 3x 1 Bài 161 Giải phương trình: 3 3cos x sin x 2cos2x (*) sin x cos x − =+ Điều kiện: si n x 0 cosx 0≥ ∧ ≥ Ta có: (*) ( ) ( ) ( ) ( )2 2cos x sin x 1 sin x cos x 2 cos x sin x sin x cos x⇔ − + = − + ( ) ( ) − =⎡⎢⇔ + = + +⎢⎣ cos x sin x 0 (1) 1 sin x cos x 2 cos x sin x sin x cos x (2) Ta có: (1) π⇔ = ⇔ = + π ∈ tgx 1 x k , k 4 Xét (2) Ta có: khi si thì n x 0≥ ≥ ≥ 2sin x sin x sin x Tương tự ≥ ≥ 2cos x cos x cos x Vậy si và nx cosx 1+ ≥ sin x cos x 1+ ≥ Suy ra vế phải của (2) thì 2≥ Mà vế trái của (2): 1 31 sin 2x 2 2 + ≤ Do đó (2) vô nghiệm Vậy: (*) π⇔ = + π ∈ x k , k 4 Bài 162: Giải phương trình: 3 cos x cos x 1 2(*)− − + = Ta có: (*) 3 cos x 2 cos x 1⇔ − = + + ( ) 3 cos x 5 cos x 4 cos x 1 2 cos x 1 4 cos x 1 ⇔ − = + + + ⇔ − + = + Ta có: ( )2 cosx 1 0 x− + ≤ ∀ mà 4 cos x 1 0 x+ ≥ ∀ Do đó dấu = của (*) xảy ra cosx 1⇔ = − ⇔ = π + π ∈ x k2 , k Bài 163: Giải phương trình: ( )2 2cos3x 2 cos 3x 2 1 sin 2x (*)+ − = + Do bất đẳng thức Bunhiacốpski: 2 2 2 2AX BY A B . X Y+ ≤ + + nên: ( )2 2 21cos3x 1 2 cos 3x 2. cos 3x 2 cos 3x 2+ − ≤ + − = Dấu = xảy ra 2cos3x 2 cos 3x⇔ = − 2 2 cos3x 0 cos 3x 2 cos 3x cos3x 0 cos3x 1 cos3x 1 ≥⎧⇔ ⎨ = −⎩ ≥⎧⇔ ⇔⎨ = ±⎩ = Mặt khác: ( )22 1 sin 2x 2+ ≥ dấu = xảy ra sin2x 0⇔ = Vậy: ( )2 2cos3x 2 cos 3x 2 2 1 sin 2x+ − ≤ ≤ + dấu = của (*) chỉ xảy ra khi: = ∧ = =⎧⎪⇔ ⎨ π= ∈⎪⎩ ⇔ = π ∈ cos 3x 1 sin 2x 0 cos 3x 1 kx , k ( có 4 đầu ngọn cun 2 x 2m ,m g ) Bài 164: Giải phương trình: 2 2 5tg x cotg x 2sin x (*) 4 π⎛ ⎞+ = +⎜ ⎟⎝ ⎠ Điều kiện: sin2x 0≠ • Do bất đẳng thức Cauchy: 2 2tg x cotg x 2+ ≥ dấu = xảy ra khi tgx cotgx= • Mặt khác: sin x 1 4 π⎛ ⎞+ ≤⎜ ⎟⎝ ⎠ nên 52sin x 2 4 π⎛ ⎞+ ≤⎜ ⎟⎝ ⎠ dấu = xảy ra khi sin x 1 4 π⎛ ⎞+ =⎜ ⎟⎝ ⎠ Do đó: 2 2 5tg x cotg x 2 2sin x 4 π⎛ ⎞+ ≥ ≥ +⎜ ⎟⎝ ⎠ Dấu = của (*) xảy ra tgx cotgx sin x 1 4 =⎧⎪⇔ π⎨ ⎛ ⎞+ =⎜ ⎟⎪ ⎝ ⎠⎩ ⎧ =⎪⇔ ⎨ π= + π ∈⎪⎩ π⇔ = + π ∈ 2tg x 1 x k2 , k 4 x k2 , k 4 Trường hợp 3: Áp dụng: Nếu A M và B M A Mthì A B M N B N ≤ ≤⎧ ⎧⎨ ⎨+ = + =⎩ ⎩ = =⎧+ = ⇔ ⎨ =⎩ sin u 1 sin u sin v 2 sin v 1 =⎧− = ⇔ ⎨ = −⎩ sin u 1 sin u sin v 2 sin v 1 = −⎧+ = − ⇔ ⎨ = −⎩ sin u 1 sin u sin v 2 sin v 1 Tương tự cho các trường hợp sau ± = ± ± = ±sin u cos v 2 ; cos u cos v 2 Bài 165: Giải phương trình: ( )3xcos2x cos 2 0 * 4 + − = Ta có: ( ) 3x* cos2x cos 4 ⇔ + 2= 3xDo cos2x 1 và cos 1 4 ≤ ≤ nên dấu = của (*) chỉ xảy ra ( ) = π ∈= ⎧⎧⎪ ⎪⇔ ⇔ ⇔ = ππ⎨ ⎨ = ∈=⎪ ⎪⎩ ⎩ ππ = ⇔ = = ∈ Ζ = ∈ x k , kcos 2x 1 x 8m , m8h3x x , hcos 1 34 8h 8hDo : k k 3 3 để k nguyên ta chọn h 3m m ( thì k 8m ) Cách khác = = π ∈⎧ ⎧⎪ ⎪⇔ ⇔ = π ∈⎨ ⎨ π= =⎪ ⎪⎩ ⎩ cos 2x 1 x k , k x 8m ,m3x 3kcos 1 cos 1 4 4 Bài 166: Giải phương trình: ( )cos2x cos4x cos6x cos x.cos2x.cos3x 2 *+ + = + ( ) 2cos2x cos4x cos6x 2cos3x cos x 2cos 3x 1 2cos3x cos x cos3x 1 4cos3x.cos2x.cos x 1 + + = + − = + − = − Vậy: ( )1cos3x.cos2x.cos x cos2x 6cos4x cos6x 1 4 = + + + Do đó: ( ) ( ) ( ) ⇔ + + = + + ⇔ + + = 1 9* cos 2x cos 4x cos 6x cos2x cos 4x cos6x 4 4 3 9cos 2x cos 4x cos 6x 4 4 + ⇔ + + = = = π ∈⎧ ⎧⎪ ⎪⇔ = ⇔ =⎨ ⎨⎪ ⎪= =⎩ ⎩ cos 2x cos 4x cos 6x 3 cos 2x 1 2x k2 , k (1) cos 4x 1 cos 4x 1 (2) cos 6x 1 cos 6x 1 (3) ⇔ = π ∈ ⇔ = π ∈ 2x k2 , k x k , k ( Thế (1) vào (2) và (3) ta thấy hiển nhiên thỏa) Bài 167: Giải phương trình: ( )cos2x 3 sin2x 3 sin x cos x 4 0 *− − − + = Ta có: ( ) ⎛ ⎞ ⎛⇔ = − + + +⎜ ⎟ ⎜⎜ ⎟ ⎜⎝ ⎠ ⎝ 1 3 3 1* 2 cos2x sin2x sin x cos x 2 2 2 2 ⎞⎟⎟⎠ π π⎛ ⎞ ⎛⇔ = − + +⎜ ⎟ ⎜⎝ ⎠ ⎝2 sin 2x sin x6 6 ⎞⎟⎠ ⎧ π⎛ ⎞ π π⎧− = − = + π ∈⎜ ⎟⎪ ⎪⎪ ⎝ ⎠ ⎪⇔ ⇔⎨ ⎨ π ππ⎛ ⎞⎪ ⎪ + = + π ∈+ =⎜ ⎟ ⎪⎪ ⎩⎝ ⎠⎩ π⎧ = + π ∈⎪ π⎪⇔ ⇔ = + π⎨ π⎪ = + π ∈⎪⎩ ∈ sin 2x 1 2x k2 , k6 6 2 x h2 , hsin x 1 6 26 x k , k 3 x h , h 3x h2 , h 3 Cách khác ⎧ π⎛ ⎞ ⎧ π⎛ ⎞− = − =⎜ ⎟⎪ ⎜ ⎟⎪⎪ ⎝ ⎠ ⎪ ⎝ ⎠⇔ ⇔⎨ ⎨π π π⎛ ⎞⎪ ⎪+ = + = + π ∈⎜ ⎟⎪ ⎪⎩⎝ ⎠⎩ sin 2x 1 sin 2x 16 6(*) sin x 1 x h2 , h 6 6 2 ⎧ π⎛ ⎞− =⎜ ⎟⎪ π⎪ ⎝ ⎠⇔ ⇔ = +⎨ π⎪ = + π ∈⎪⎩ π ∈ sin 2x 1 6 x h , h 3 x h2 , h 3 Bài 168: Giải phương trình: ( )4cos x 2cos2x cos4x 1 *− − = Ta có: ( ) ( ) ( )⇔ − − − −2 2* 4 cos x 2 2cos x 1 1 2sin 2x 1= ⇔ − + = ⇔ = − + = 2 2 2 2 4cosx 4 cos x 8sin x cos x 0 cos x 0 hay 1 cos x 2sin x cos x 0 ( )⇔ = + − = ⇔ = − = 2cos x 0 hay 1 cos x 2sin x 1 0 cos x 0 hay 1 cos x cos 2x 0 ( * *) ( )⇔ = − + = ⇔ = ∨ + = 1cos x 0 hay 1 cos 3x cos x 0 2 cos x 0 cos 3x cos x 2 =⎧⇔ = ∨ ⎨ =⎩ cos 3x 1 cos x 0 cos x 1 =⎧⇔ = ⇔ ⎨ − =⎩ ⇔ = ∨ = π⇔ = + π ∨ = π ∈ 3 cos x 1 cos x 0 4 cos x 3cos x 1 cos x 0 cos x 1 x k x k2 , k 2 Cách khác ⇔ = =( * *) cos x 0 hay cos x cos 2x 1 − = =⎧ ⎧⇔ = ∨ ∨⎨ ⎨= = −⎩ ⎩ cos x 1 cos x 1 cos x 0 cos 2x 1 cos 2x 1 = π ∈ = π + π ∈⎧ ⎧π⇔ = + π ∈ ∨ ∨⎨ ⎨= = −⎩ ⎩ x k2 , k x k2 , k ( loạix k , k cos 2x 1 cos 2x 12 ) π⇔ = + π ∨ = π ∈ x k x k2 , k 2 Bài 169: Giải phương trình: ( )1tg2x tg3x 0 * sin x cos2x cos3x + + = Điều kiện: sin2xcos2xcos3x 0≠ Lúc đó: ( ) ⇔ + +sin 2x sin 3x 1* 0 cos2x cos3x sin x.cos2x.cos3x = + = = ( ) ⇔ + ⇔ + + sin2xsin x cos3x sin3xsin x.cos2x 1 0 sin x sin2x cos3x sin3x cos2x 1 0 ( ) ⇔ = − ⇔ − − = − ⇔ − = = =⎧ ⎧=⎧ ⎪ ⎪⇔ ⇔ − = ⇔ −⎨ ⎨ ⎨= −⎩ ⎪ ⎪ =− = −⎩ ⎩ 3 3 2 sin x.sin5x 1 1 cos6x cos4x 1 2 cos6x cos4x 2 t cos2x t cos2x cos6x 1 4t 3t 1 4t 3t 1 cos4x 1 t 02t 1 1 = Do đó: (*) vô nghiệm. Cách khác = = −⎧ ⎧⇔ = − ⇔ ⎨ ⎨= − =⎩ ⎩ sin x 1 sin x 1 sin chúng tôi 5x 1 hay sin 5x 1 sin 5x 1 π π⎧ ⎧= + π ∈ = − + π ∈⎪ ⎪⇔ ⎨ ⎨⎪ ⎪= − =⎩ ⎩ x k2 , k x k2 , k hay2 2 sin 5x 1 sin 5x 1 x⇔ ∈∅ Bài 170: Giải phương trình: ( )2 2cos 3x.cos2x cos x 0 *− = Ta có: ( ) ( ) ( )⇔ + − +1 1* 1 cos6x cos2x 1 cos2x 0 2 2 = ( ) ⇔ = ⇔ + = ⇔ + = =⎧⇔ ⎨ =⎩ ⎧ − =⇔ ⎨ =⎩ ⎧ =⇔ ⎨ =⎩ ⇔ = ⇔ = π ∈ π⇔ = ∈ 2 2 cos 6x cos 2x 1 1 cos 8x cos 4x 1 2 cos 8x cos 4x 2 cos 8x 1 cos 4x 1 2cos 4x 1 1 cos 4x 1 cos 4x 1 cos 4x 1 cos 4x 1 4x k2 , k kx , k 2 Cách khác ⇔ =cos6x cos2x 1 = = −⎧ ⎧⇔ ⎨ ⎨= = −⎩ ⎩ cos 2x 1 cos 2x 1 hay cos 6x 1 cos 6x 1 = π ∈ = π + π ∈⎧ ⎧⇔ ⎨ ⎨= = −⎩ ⎩ 2x k2 , k 2x k2 , k hay cos6x 1 cos 6x 1 π= ∈ kx , k 2 Cách khác = =⎧ ⎧⇔⎨ ⎨= = π ∈⎩ ⎩ cos 8x 1 cos 8x 1 cos 4x 1 4x k2 , k π⇔ = ∈ kx , k 2 Trường hợp 4: DÙNG KHẢO SÁT HÀM SỐ y = ax là hàm giảm khi 0< a <1. Do đó ta có sin sin , , cos s , , m n m n x x n m x k k x co x n m x k k π π π π ∀ ≠ + ∈ ∀ ≠ + 2 2 ∈ sin sin , cos s , m n m n x x n m x x co x n m x ≤ ⇔ ≥ ≤ ⇔ ≥ ∀ ∀ Bài 171: Giải phương trình: ( )2×1 cos x 2 − = * Ta có: ( ) 2x* 1 cos 2 ⇔ = + x Xét 2xy cos x trên 2 = + R Ta có: y ‘ x sin x= − và y ” 1 cos x 0 x R= − ≥ ∀ ∈ Do đó y’(x) là hàm đồng biến trên R ( ) ( ) ( )x ,0 : x 0 nên y ‘ x y ‘ 0∀ ∈ −∞ < < = 0 Do đó: Vậy : 2xy cos x 1 x 2 = + ≥ ∀ ∈ R Dấu = của (*) chỉ xảy ra tại x = 0 Do đó ( )* x 0⇔ = • Bài 172: Giải phương trình sin sin sin sinx x x+ = +4 6 8 10 x (*) Ta có sin sin sin sin 2 2 và dấu =xảy ra khi và chỉ khi sin x = 1hay sinx = 0 và dấu =xảy ra khi và chỉ khi sin x = 1 hay sinx = 0 x x x x ⎧ ≥⎪⎨ ≥⎪⎩ 4 8 6 10 ⇔ sin2x = 1 sinx = 0 ∨ ⇔ x = ± ,k x k kπ π π+ ∨ = ∈2 2 2 Cách khác (*) sin sin sin sinx hay x x x⇔ = + = +4 2 4 60 1 sin sinx hay x⇔ = 20 1= BÀI TẬP Giải các phương trình sau ( ) − + = π⎛ ⎞− = + −⎜ ⎟⎝ ⎠ + = 2 3 2 2 2 1. lg sin x 1 sin x 0 2. sin 4x cos 4x 1 4 2 sin x 4 13. sin x sin 3x sin chúng tôi 3x 4 ( ) π = + = + − = + sin x 2 4. cos x 5. 2 cos x 2 sin10x 3 2 2cos chúng tôi x 6. cos 4x cos 2x 5 sin 3x ( ) ( ) ( ( ) ( ) + = − − + + − + = − =a 2 7. sin x cos x 2 2 sin 3x 8. sin 3x cos 2x 2sin 3x cos 3x 1 sin 2x 2cos 3x 0 9. tgx tg2x sin 3x cos 2x 10. 2 log cot gx log cos x ) = ( ) π⎡ ⎤= ∈ ⎢ ⎥⎣ ⎦ + = − + + sin x 13 14 11. 2 cos x với x 0, 2 12. cos x sin x 1 13. cos 2x cos 6x 4 sin 2x 1 0= ( )+ = − + = − − − + + 3 3 4 2 2 14. sin x cos x 2 2 cos 3x 15. sin x cos x 2 sin x 16. cos x 4 cos x 2x sin x x 3 0= + = + + − − + sin x 2 2 2 17. 2 sin x sin x cos x 18. 3cot g x 4 cos x 2 3 cot gx 4 cos x 2 0= Th.S Phạm Hồng Danh (TT luyện thi Vĩnh Viễn)
Phương Trình Lượng Giác Không Mẫu Mực
Phương trình lượng giác không mẫu mực
A. Phương pháp giải
Để giải các phương trình lượng giác không mẫu mực ta cần sử dụng:
* Các công thức lượng giác: Công thức cộng; công thức nhân đôi; công thức biến đổi tổng thành tích; tích thành tổng …
* Sử dụng các hằng đẳng thức đáng nhớ..
* Đánh giá: a2 ≥ 0 ; vế trái ≤ a; vế phải ≥ a. Từ đó; suy ra: Vế trái = vế phải= a.
B. Ví dụ minh họa
Ví dụ 1. Giải phương trình:
A.
B.
C.
D. Cả A và C đúng
Lời giải
Chọn B.
Ví dụ 2. Giải phương trình:
A.
B.
C.
D. Đáp án khác
Lời giải
Chọn A.
Ví dụ 3. Giải phương trình:
A.
B.
C. x= kπ
D.
Lời giải
Ta có: sin4x- cos4x = 1+ 4√2 sin( x- π/4)
⇒ sin 4x – ( 1+ cos4x) = 4(sinx – cosx)
⇒ 2.sin2x. cos2 x- 2cos 2 2x = 4( sinx- cosx)
⇒ 2cos 2x.( sin2x – cos 2x) – 4(sinx- cosx)= 0
⇒ 2(cos 2 x- sin 2 x). ( sin2x- cos2x) – 4.(sinx- cosx) = 0
⇒ 2. ( cosx- sinx) . ( cosx+ sinx). (sin2x- cos2x) + 4( cosx + sinx) = 0
⇒ 2. ( cosx – sinx) .[ (cosx+ sinx) ( sin2x- cos2x) + 2] = 0
Chọn D.
Ví dụ 4. Giải phương trình sin3x. ( cosx- 2sin3x) + cos 3x.(1+ sinx- 2cos 3x) = 0
A. π/8+ kπ/2
B. k2π/3
C. kπ/4
D. Vô nghiệm
Lời giải
Ta có:
sin3x. ( cosx- 2sin3x) + cos 3x.(1+ sinx- 2cos 3x) = 0
⇒ sin3x. cosx – 2sin 23x + cos 3x + chúng tôi – 2cos 2 3x = 0
⇒ ( sin3x. cosx + cos3x.sinx) – 2( sin 2 3x+ cos 2 3x) + cos3x = 0
⇒ sin4x -2 + cos3x= 0
⇒ sin4x+ cos3x = 2 (*)
Với mọi x ta có: – 1 ≤ sin4x ≤ 1 và-1 ≤ cos3x ≤ 1
⇒ – 2 ≤ sin4x+cos3x ≤ 2
⇒ Không có giá trị nào của x thỏa mãn.
Vậy phương trình đã cho vô nghiệm
Chọn D
Ví dụ 5. Giải phương trình:
A.
B.
C.
D.Vô nghiệm
Lời giải
Chọn B.
Ví dụ 6. Giải phương trình sin 20x + cos 20 x= 1
A. x= kπ
B. x= kπ/2
C. x= π/2+kπ
D. x= kπ/4
Lời giaỉ
+ Với mọi x ta luôn có: – 1 ≤ sinx ≤ 1 ⇒ 0 ≤ sin 2 x ≤ 1
⇒ vế trái ≤ 0 (1)
+ Tương tự có: 1- cos 18 x ≥ 0
⇒ Vế phải ≥ 0 (2)
Từ (1) và (2) suy ra: vế trái= vế phải = 0
Vậy nghiệm phương trình đã cho là x= kπ/2
Chọn B.
Ví dụ 7. Giải phương trình
A. x= π/4+kπ
B. kπ
C. Vô nghiệm
D. Cả A và B đúng
Lời giải
Chọn C.
Ví dụ 8. Giải phương trình:
A.
B.
C.
D. Phương trình vô nghiệm
Lời giải
Chọn B .
Ví dụ 9. Giải phương trình:
A.
B.
C.
D. Đáp án khác
Lời giải
Chọn A.
Ví dụ 10. Giải phương trình
A.
B.
C.
D.
Lời giải
Chọn D.
Ví dụ 11. Cho phương trình: Nghiệm dương nhỏ nhất của phương trình có dạng πa/b với a; b là các số nguyên và nguyên tố cùng nhau. Tính S= b-a
A. 2
B. 3
C. 4
D.1
Lời giải.
Do đó phương trình đã cho trở thành:
2 2017.( sin 2018x + cos 2018 x ) .(sinx+ cosx) .cosx= cosx( sinx+ cosx)
⇒ 2 2017.( sin 2018x + cos 2018 x ) .(sinx+ cosx) .cosx- cosx( sinx+ cosx) = 0
⇒ cosx.( cosx+ sinx) .[ 2 2017.( sin 2018x + cos 2018 x )- 1] = 0
Chọn D.
Ví dụ 12. Giải phương trình :
A.
B.
C.
D.
Lời giải
+ Điều kiện: sinx ≠ 0
Chọn A.
Ví dụ 13. Giải phương trình: sin3x. ( cosx- 2sin3x) + cos3x. (1+ sinx – 2cos3x) =0
A.
B.
C.
D. Vô nghiệm
Lời giải
Ta có: sin3x. ( cosx- 2sin3x) + cos3x. (1+ sinx – 2cos3x) = 0
⇒ sin3x. cosx – 2sin 23x + cos3x + chúng tôi – 2cos 2 3x=0
⇒ ( sin3x. cosx + cos3x. sinx) – 2( sin 23x + cos 2 3x) +cos3x = 0
⇒ sin4x – 2+ cos3x= 0
⇒ sin4x + cos3x = 2 (1)
Vậy phương trình đã cho vô nghiệm.
Chọn D.
C. Bài tập vận dụng
Câu 1:Giải phương trình:
A.
B.
C.
D. Đáp án khác
Câu 2:Giải phương trình:
A.
B.
C.
D.
Câu 3:Giải phương trình
A.
B.
C.
D.
Câu 4:Giải phương trình:
A.
B.
C.
D.
Câu 5:Giải phương trình
A.
B.
C.
D.
Câu 6:Giải phương trình
A.
B.
C.
D.Vô nghiệm
Hiển thị lời giải
Chọn D.
Câu 6:Giải phương trình
A.
B.
C.
D.
Hiển thị lời giải
⇒ sin5x= – sin6x= sin( π-6x)
Chọn A.
Câu 7:Giải phương trình : 4sin3x. cos2x =1+ 6sinx – 8sin 3 x
A.
B.
C.
D.
Câu 8: Giải phương trình: cosx. cos2x. cos4x. cos 8x= 1/16 ( *)
A. x=
B. x=
C. x=
D. Đáp án khác
Hiển thị lời giải
Chọn D.
Câu 9: Nghiệm dương nhỏ nhất của phương trình cos3x. (2cos2x+ 1) = 1/2 có dạng πa/b với a ; b là các số nguyên và nguyên tố cùng nhau. Tính S= a. b
A. 6
B.7
C. 8
D. 9
Hiển thị lời giải
⇒ 2cos5x+ 2cosx+ 2cos3x=1
⇒ S= a.b= 1.7= 7
Chọn B.
Câu 10:Cho phương trình sin 2018x + cos 2018x = 2( sin 2020x+ cos 2020 x). Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là
A. 3
B. 4
C. 6
D. 8
Hiển thị lời giải
Chọn B.
A. 4
B. 3
C. 6
D. 8
Hiển thị lời giải
Chọn A.
Câu 12:Giải phương trình:
A. x= kπ/4
B. x= kπ/2
C. kπ
D. kπ/3
Hiển thị lời giải
⇒ sin 10x + cos 10 x = 1
Chọn B.
Câu 13:Cho phương trình: 4cos 2x+ tan 2 x+ 4= 2.(2cosx – tanx ) . Tìm số nghiệm của phương trình trên khoảng ( 0; 10π)?
A. 10
B.16
C. 22
D. Vô nghiệm
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.
Nhóm học tập facebook miễn phí cho teen 2k4: chúng tôi
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Giáo Án Chủ Đề Tự Chọn 11 Tiết 7: Phương Trình Lượng Giác Không Mẫu Mực
Tiết : 7 Vấn đề: PHƯƠNG TRÌNH LƯỢNG GIÁC KHÔNG MẪU MỰC. I. Mục tiêu: 1. Về kiến thức: Giúp cho học sinh một số phương pháp giải các phương trình không mẫu mực. 2.Về kỹ năng Rèn luyện kỹ năng dùng các công thức lượng giác đã học để biến đổi đưa một phương trình lượng giác chưa có dạng đã biết về phương trình lượng giác thường gặp. 3. Về tư duy và thái độ: Rèn luyện tính cẩn thận, chính xác. Học sinh và hứng thú tham gia bài học. II. Chuẩn bị của thầy và trò: 1.Chuẩn bị của thầy: Phiếu học tập, các bài tập chọn lọc. 2.Chuẩn bị của học sinh: Nắm vững cách giải phương trình lượng giác cơ bản, phương trình lượng giác thường gặp và nhớ các công thức lượng giác đã học. III. Phương pháp dạy học: Vấn đáp gợi mở, giảng giải, hoạt động nhóm. IV. Tiến trình bài học: 1. Ổn định lớp: Kiểm tra sĩ số . 2. Kiểm tra bài cũ: Giải phương trình sinx.cos2x=1 3. Bài mới: G/V nêu một số phương trình lượng giác không mẫu mực. Để giải các phương trình không mẫu mực ta dùng các công thức lượng giác đã học biến đổi đưa phương trình về dạng tích u.v = 0 hoặc tổng các bình phương bằng không cũng có thể áp dụng a. sinx+b. cosx= a+b thì sinx=1; cosx=1 hay sinu(x). cosv(x) =1 khi và chỉ khi sinu(x)=1 và cosv(x)=1 hoặc sinu(x)= -1 và cosv(x)= -1. Hoạt động 1: Rèn luyện kỹ năng biến đổi lượng giác đưa về phương trình đã biết cách giải. a) sinx + sin3x +sin5x = 0; b) sinx .sin2x. sin3x = sin4x ; c) 1+sinx – cosx –sin2x+2 cos2x= 0 + Chia lớp thành 6 nhomù, 2 nhóm 1 câu. + GV hướng dẫn Câu a/ Nhóm sinx+sin5x rồi dùng công thức biến đổi tổng thành tích, đưa về phương trình tích. Câu b/ Nhân hai vế với 4, biến đổi sin4x= 2 sin2x.cos2x, sau đó áp dụng công thức biến đổi tích thành tổng. Câu c/ Nhóm 1-sin2x = ; + Gọi đại diện các nhóm lên bảng trình bày lời giải. + Các nhóm còn lại nhận xét hoặc bổ sung(nếu cần). + Khẳng định kết quả. + Nghe, nhận nhiệm vụ. + Nghe hướng dẫn. + Các nhóm hoạt động. + Đại diện các nhóm lên bảng trình bày lời giải. + Các nhóm còn lại nhận xét. + Ghi nhận kiến thức. Giải: a) Phương trình tương đương với 2 sin3x.cos2x+sin3x = 0 sin3x(2cos2x +1) =0 sin3x = 0 hoặc cos2x = ( Đây là các phương trình lượng giác cơ bản đã biết cách giải). b)Phương trình đã cho tương đương với 4sinx.sin2x.sin3x- 2 sin2x.cos2x = 0 2.sin2x(2 sinx.sin3x-cos2x) = 0 2sin2x(-cos4x) = 0 c)Phương trình đã cho tương đương (sinx-cosx) + +2 ( đây là các phương trình đã biết cách giải. Hoạt động2: Các phương trình đưa được về tổng các bình phương bằng 0 Bài 2: Giải các phương trình: a/ . b/ + Hãy nêu cách giải bài 2 + Hướng dẫn từng câu bằng vấn đáp Câu a) Đưa vế trái về Câu b) Đưa vế trái về + Gọi hai học sinh lên bảng giải. + Khẳng định kết quả. + Nghe hướng dẫn Hai học sinh lên bảng giải. + Ghi nhận kiến thức. a)Phương trình đã cho tương đương với b)Phương trình đã cho tương đương vơiù 4/ Củng cố Cần nhớ các dạng bài tập cơ bản trong tiết này, lưu ý phải thuộc và sử dụng linh hoạt các công thức biến đổi lượng giác. 5/ Bài tập về nhà: Xem lại các bài tập đã giải. Làm thêm các bài tập: Giải các phương trình: a/ tan x +cot2x = 2 cot4x b/ (1-tanx)(1+sinx) = 1+ tan (Hướng dẫn: câu b/ viết sinx, tanx theo t = tan) c/ sinx+ 3 cos 2x= 4 (Hướng dẫn: câu c/ phương trình đã cho tương đương với sinx=1 và cos 2x =1. V/ Rút kinh nghiệm:
Tài liệu đính kèm:
tiet 7.doc
Phương Trình Lượng Giác (Đầy Đủ)
I/ PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN.1. Phương trình: . + Nếu (hay ) thì phương trình vô nghiệm + Nếu (hay ) Khi đó:
VD 01. Giải các phương trình lượng giác sau: a) ; b) ; c) ; d) ; e) ; f) ; g) ; h) ; i) ; j) ;Lưu ý: (1). Nếu a không phải là các giá trị đặc biệt thì ta sử dụng hàm ngược của hàm sin (arcsin) trình bày các họ nghiệm của phương trình như sau:
(2). Các trường hợp đặc biệt:
2. Phương trình: . + Nếu (hay ) thì phương trình vô nghiệm + Nếu (hay ) Khi đó:
VD 02. Giải các phương trình lượng giác sau: a) ; b) ; c) ; d) ; e) ; f) ; g) ; h) ; i) ; j) ;Lưu ý: (1). Nếu a không phải là các giá trị đặc biệt thì ta sử dụng hàm ngược của hàm cos (arccos) trình bày các họ nghiệm của phương trình như sau:
(2). Các trường hợp đặc biệt:
3. Phương trình: ,
VD 03. Giải các phương trình lượng giác sau: a) ; b) ; c) ; d) ; e) ; f) ;Lưu ý: Nếu a không phải là các giá trị đặc biệt thì ta sử dụng hàm ngược của hàm tan (arctan) trình bày các họ nghiệm của phương trình như sau:
4. Phương trình: ,
VD 04. Giải các phương trình lượng giác sau: a) ; b) ; c) ; d) ; e) ; f) ;Lưu ý: Nếu a không phải là các giá trị đặc biệt thì ta sử dụng hàm ngược của hàm tan (arctan) trình bày các họ nghiệm của phương trình như sau:
5. Mở rộng:Mở rộng 1. Sử dụng MTBT để giải phương trình lượng giác:VD 05. Giải các phương trình sau: a) b) c) Mở rộng 2. (Cung chứa bội):VD 06. Giải các phương trình sau: a) b) c) Mở rộng 3. (Cung chứa tổng):VD 07. Giải các phương trình sau: a) b) c) d) e) f) g) h) i) Mở rộng 4. Phương trình tích (đơn giản): A.B = 0 VD 08. Giải các phương trình sau: a) b) c) d) e) f)
Bạn đang xem bài viết Chương Viii: Phương Trình Lượng Giác Không Mẫu Mực trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!