Xem Nhiều 3/2023 #️ Chuyên Đề 8: Hình Học Giải Tích Trong Không Gian Oxyz # Top 12 Trend | Caffebenevietnam.com

Xem Nhiều 3/2023 # Chuyên Đề 8: Hình Học Giải Tích Trong Không Gian Oxyz # Top 12 Trend

Cập nhật thông tin chi tiết về Chuyên Đề 8: Hình Học Giải Tích Trong Không Gian Oxyz mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.

Hướng dẫn giải CDBT từ các ĐTQG Toán học – 231  Chuyên đề 8: HÌNH HỌC GIẢI TÍCH TRONG KHÔNG GIAN OXYZ  Vấn đề 1: MẶT PHẲNG VÀ ĐƯỜNG THẲNG A. PHƯƠNG PHÁP GIẢI TỌA ĐỘ 1. 1 2 3 1 2 3 u (u ; u ; u ) u u i u j u k     2. 1 1 2 2 3 3 a b (a b ; a b ; a b )     3.    1 1 2 2 3 3 a.b a b a b a b 4. 3 1 1 22 3 2 3 3 1 1 2 a a a aa a a,b ; ; b b b b b b             5.   2 2 2 1 2 3 a a a a 6. 1 1 2 2 3 3 a b a b a b a b        7.  a.b Cos(a,b) a . b 8. 1 2 3 1 2 3 a cùng phương b a,b 0 a : a : a b : b : b      9.    a,b,c đồng phẳng a,b .c 0 10. Diện tích tam giác:     ABC 1 S AB,AC 2 11. Thể tích tứ diện ABCD:    ABCD 1 V AB,AC AD 6 12. Thể tích hình hộp ABCD.A'B'C'D':         ABCD.A B C DV AB,AD AA MẶT PHẲNG  Vectơ pháp tuyến của mặt phẳng là vectơ khác vectơ 0 và có giá vuông góc mặt phẳng.  Phương trình tổng quát: (): Ax + By + Cz + D = 0 (   2 2 2A B C 0 )  0 0 0 đi qua M(x ; y ; z ) ( ) : co ù vectơ pháp tuyến : n (A;B;C)            0 0 0 ( ) : A(x x ) B(y y ) C(z z ) = 0 Hướng dẫn giải CDBT từ các ĐTQG Toán học – 232  Mặt phẳng chắn: () cắt Ox, Oy, Oz lần lượt A(a; 0; 0), B(0; b; 0), C(0; 0; c), (a, b, c khác 0)     x y z ( ) : 1 a b c  Mặt phẳng đặc biệt: (Oxy): z = 0, (Oxz): y = 0, (Oyz): x = 0 ĐƯỜNG THẲNG  Véctơ chỉ phương của đường thẳng là vectơ khác vectơ 0 và có giá cùng phương với đường thẳng.  0 0 0 1 2 3 đi qua M (x ; y ; z ) d : có vectơ chỉ phương a (a ; a ; a )    0 0 0 1 2 3 1 2 3 x x y y z z Phương trình tham số : với (a ; a ; a 0) a a a        Đường thẳng đặc biệt: y 0 x 0 x 0 Ox : ; Oy : ; Oz z 0 z 0 y 0              B. ĐỀ THI Bài 1: ĐẠI HỌC KHỐI D NĂM 2011 Trong không gian với hệ tọa độ Oxyz , cho điểm A(1; 2; 3) và đường thẳng d: x 1 y z 3 2 1 2      . Viết phương trình đường thẳng  đi qua điểm A, vuông góc với đường thẳng d và cắt trục Ox. Giải  Gọi M là giao điểm của  với trục Ox  M(m; 0; 0)  AM = (m –1; –2; –3)  Véctơ chỉ phương của d là a = (2; 1; –2).    d  AM  d  AM.a 0  2(m – 1) + 1(–2) –2(–3) = 0  m = –1.  Đường thẳng  đi qua M và nhận AM = (–2; –2; –3) làm vectơ chỉ phương nên có phương trình: x 1 y 2 z 3 2 2 3      . Cách 2.   đi qua A và cắt trục Ox nên  nằm trên mặt phẳng (P) đi qua A và chứa trục Ox.   đi qua A và vuông góc với d nên  nằm trên mặt phẳng (Q) đi qua A và vuông góc với d.  Ta có: +) Vectơ pháp tuyến của (P) là (P) n OA,i    .  d A   O x P Q M Hướng dẫn giải CDBT từ các ĐTQG Toán học – 233 +) Vectơ pháp tuyến của (Q) là (Q) d n a .   = (P)(Q)  véctơ chỉ phương của  là: (P) (Q) a n ,n     . Cách 3.  Mặt phẳng (Q) đi qua A và vuông góc với d  (Q): 2x + y – 2z + 2 = 0.  Gọi M là giao điểm của Ox và (Q)  M(–1; 0; 0).  Véctơ chỉ phương của  là: AM . Bài 2: ĐẠI HỌC KHỐI B NĂM 2011 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : x 2 y 1 z 5 1 3 2       và hai điểm A(–2; 1; 1), B(–3; –1; 2). Tìm tọa độ điểm M thuộc đường thẳng  sao cho tam giác MAB có diện tích bằng 3 5 . Giải  Đường thẳng  đi qua E(–2; 1; –5) và có vectơ chỉ phương  a 1; 3; 2  nên có phương trình tham số là: x 2 t y 1 3t z 5 2t           (t  R).  M     M 2 t; 1 3t; 5 2t       AB 1; 2 ; 1   ,  AM t; 3t; 6 2t   ,  AB,AM t 12; t 6; t        .  SMAB = 3 5  1 AB,AM 3 5 2          2 2 2 t 12 t 6 t 6 5      3t 2 + 36t = 0  t = 0 hoặc t = –12. Vậy M(–2; 1; –5) hoặc M(–14; –35; 19). Bài 3: ĐẠI HỌC KHỐI D NĂM 2009 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng :      x 2 y 2 z 1 1 1 và mặt phẳng (P): x + 2y – 3z + 4 = 0. Viết phương trình đường thẳng d nằm trong (P) sao cho d cắt và vuông góc với đường thẳng . Giải Tọa độ giao điểm I của  với (P) thỏa mãn hệ:   x 2 y 2 z I 3; 1; l1 1 1 x 2y 3z 4 0            Vectơ pháp tuyến của (P):  n 1; 2; 3  ; vectơ chỉ phương của :  u 1; 1; 1  Hướng dẫn giải CDBT từ các ĐTQG Toán học – 234 Đường thẳng d cần tìm qua I và có một vectơ chỉ phương:        P P1 2n 1; 2; 3 , n 3; 2; 1   Phương trình d:          x 3 t y 1 2t z 1 t (t  ) Bài 4 :CAO ĐẲNG KHỐI A, B, D NĂM 2009 Trong không gian với hệ tọa độ Oxyz, cho các mặt phẳng (P1): x + 2y + 3z + 4 = 0 và (P2): 3x + 2y – z + 1 = 0. Viết phương trình mặt phẳng (P) đi qua điểm A(1; 1; 1), vuông góc với hai mặt phẳng (P1) và (P2) Giải Vectơ pháp tuyến của hai mặt phẳng (P1) và (P2):        P P1 2n 1; 2; 3 , n 3; 2; 1   (P) vuông góc với hai mặt phẳng (P1) và (P2)  (P) có một vectơ pháp tuyến:          P P P1 2n n ,n 8; 10; 4 2 4; 5; 2           Mặt khác (P) qua A(1; 1; 1) nên phương trình mặt phẳng (P): 4(x – 1) – 5(y – 1) + 2(z – 1) = 0 Hay (P): 4x – 5y + 2z – 1 = 0 Bài 5: CAO ĐẲNG KHỐI A, B, D NĂM 2009 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(1; 1; 0), B (0; 2; 1) và trọng tâm G(0; 2; 1). Viết phương trình đường thẳng  đi qua điểm C và vuông góc với mặt phẳng (ABC). Giải Ta có:  G là trọng tâm tam giác ABC  C(1; 3; 4)     AB 1; 1; 1 ; AC 2; 2; 4     Đường thẳng  vuông góc với mặt phẳng (ABC) nên có một vectơ chỉ phương     a AB,AC = 6(1; 1; 0) Mặt khác đường thẳng  đi qua điểm C nên Phương trình :             x 1 t y 3 t t z 4 Hướng dẫn giải CDBT từ các ĐTQG Toán học – 235 Bài 6: ĐẠI HỌC KHỐI B NĂM 2008 Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A(0; 1; 2), B(2; –2; 1), C(–2; 0; 1) 1. Viết phương trình mặt phẳng đi qua ba điểm A, B, C. 2. Tìm tọa độ của điểm M thuộc mặt phẳng 2x + 2y + z – 3 = 0 sao cho: MA = MB = MC. Giải 1. đi qua A(0; 1; 2) (ABC) : có vectơ pháp tuyến là AB,AC 2(1; 2; 4)         Phương trình mp(ABC): 1(x – 0) + 2(y – 1) – 4(z – 2) = 0  x + 2y – 4z + 6 = 0 2. Cách 1: Ta có: AB.AC 0 nên điểm M nằm trên đường thẳng d vuông góc với mp(ABC) tại trung điểm I(0; 1; 1) của BC.         qua I(0; 1; 1) x y 1 z 1 d : d : 1 2 4có vectơ chỉ phương :a (1;2; 4) Tọa độ M là nghiệm của hệ                  x 22x 2y z 3 0 y 3x y 1 z 1 z 71 1 4 Vậy M(2; 3; 7). Cách 2: Gọi M(x; y; z) Ta có       MA MB MA MC M ( )                                2 2 2 2 2 2 2 2 2 2 2 2 (x 0) (y 1) (z 2) (x 2) (y 2) (z 1) (x 0) (y 1) (z 2) (x 2) (y 0) (z 1) 2x 2y z 3 0  x 2 y 3 M(2; 3; 7) z 7         . Hướng dẫn giải CDBT từ các ĐTQG Toán học – 236 Bài 7:CAO ĐẲNG KHỐI A, B, D NĂM 2008 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 1; 3) và đường thẳng d có phương trình:     x y z 1 1 1 2 1. Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng d. 2. Tìm tọa độ điểm M thuộc đường thẳng d sao cho tam giác MOA cân tại đỉnh O Giải 1.      (P) d qua A(1; 1; 3) (P) : co ù vectơ pháp tuyến n a (1; 1;2) Phương trình mặt phẳng (P): 1(x – 1) – (y – 1) + 2(z – 3) = 0  x – y + 2z – 6 = 0 2. Gọi M(t; t; 2t + 1)  d  Tam giác OMA cân tại O  MO 2 = OA 2  t 2 + t 2 + (2t + 1) 2 = 1 + 1 + 9  6t 2 + 4t – 10 = 0      5 t 1 t 3  Với t = 1 tọa độ điểm M(1; 1; 3).  Với   5 t 3 tọa độ điểm 5 5 7 M ; ; 3 3 3        . Bài 8 :ĐẠI HỌC KHỐI D NĂM 2007 Trong không gian với hệ trục toạ độ Oxyz, cho hai điểm A(1; 4; 2), B(–1; 2; 4) và đường thẳng       x 1 y 2 z : 1 1 2 1. Viết phương trình đường thẳng d đi qua trọng tâm G của tam giác OAB và vuông góc với mặt phẳng (OAB). 2. Tìm tọa độ điểm M thuộc đường thẳng  sao cho MA 2 + MB 2 nhỏ nhất. Giải 1. Tọa độ trọng tâm: G(0; 2; 4). Ta có:   OA (1; 4; 2),OB ( 1; 2; 2) Vectơ chỉ phương của d là:     u (12; 6; 6) 6 2; 1; 1 Phương trình đường thẳng d:      x y 2 z 2 2 1 1 2/ Vì M    M(1 t; 2 + t; 2t)  MA 2 + MB 2 = (t 2 + (6  t) 2 + (2  2t) 2 ) + ((2 + t) 2 + (4  t) 2 + (4  2t) 2 ) = 12t 2  48t + 76 = 12(t 2) 2 + 28 MA 2 + MB 2 nhỏ nhất  t = 2. Khi đó M(1; 0; 4) Hướng dẫn giải CDBT từ các ĐTQG Toán học – 237 Bài 9: ĐẠI HỌC KHỐI B NĂM 2006 Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(0; 1; 2) và hai đường thẳng:      1 x y 1 z 1 d : 2 1 1 ;             2 x 1 t d : y 1 2t t z 2 t 1. Viết phương trình mặt phẳng (P) qua A, đồng thời song song d1 và d2. 2. Tìm tọa độ các điểm M thuộc d1, N thuộc d2 sao cho A, M, N thẳng hàng Giải 1. Vectơ chỉ phương của d1 và d2 lần lượt là: 1u (2; 1; 1)  và 2u (1; 2; 1)   vectơ pháp tuyến của (P) là 1 2 n u ,u ( 1; 3; 5)       Vì (P) qua A(0; 1; 2)  (P) : x + 3y + 5z  13 = 0. Do B(0; 1; 1)  d1, C(1; 1; 2)  d2 nhưng B, C  (P), nên d1, d2 Vậy phương trình mặt phẳng cần tìm là (P): x + 3y + 5z  13 = 0 2. Vì M  d1, N  d2 nên M(2m; 1+ m; 1 m), N(1 + n; 12n; 2 + n)  AM (2m; m; 3 m); AN (1 n; 2 2n; n)       .  AM,AN ( mn 2m 6n 6; 3mn m 3n 3; 5mn 5m).              A,M,N thẳng hàng     AM,AN 0  m = 0, n = 1  M(0; 1; 1), N(0; 1; 1). Bài 10: ĐỀ DỰ BỊ 1 - ĐẠI HỌC KHỐI B NĂM 2006 Trong không gian với hệ tọa độ Oxyz hai đường thẳng 1:            x 1 t y 1 t t z 2 2:      x 3 y 1 z 1 2 1 1. Viết phương trình mặt phẳng chứa đường thẳng 1 và song song với đường thẳng 2. 2. Xác định điểm A  1, B  2 sao cho đoạn AB có độ dài nhỏ nhất. Giải 1. 1 qua M1(1; 1; 2) có vectơ chỉ phương  1a 1; 1; 0  2 qua M2 (3; 1; 0) có vectơ chỉ phương  2a 1; 2; 1   mp (P) chứa 1 và song song với 2 nên (p) có vectơ pháp tuyến:  1 2n a ,a 1; 1; 1      Hướng dẫn giải CDBT từ các ĐTQG Toán học – 238 Phương trình: (P): (x – 1) – (y + 1) + (z – 2 ) = 0 (vì M1(1; 1; 2)  (P))  x + y – z + 2 = 0 2/ AB ngắn nhất  AB là đoạn vuông góc chung  Phương trình tham số 1 :  1 x 1 t A A 1 t; 1 t; 2y 1 t z 2              Phương trình tham số 2:  2 x 3 t B B 3 t ; 1 2t ; ty 1 2t z t                       AB 2 t t;2 2t t;t 2 Do      1 2 AB AB nên             1 2 AB.a 0 2t 3t 0 t t 0 3t 6t 0AB.a 0  A(1; 1; 2); B(3; 1; 0) . Bài 11: Trong không gian với hệ tọa độ Oxyz cho điểm A(4; 2; 4) và đường thẳng d           x 3 2t y 1 t z 1 4t . Viết phương trình đường thẳng  đi qua điểm A, cắt và vuông góc với d. Giải Lấy M(3 + 2t; 1  t; 1+ 4t)  (d)  AM = (1 + 2t; 3  t; 5 + 4t) Ta có AM  (d)  AM . d a = 0 với d a = (2; 1; 4)  2 + 4t  3 + t  20 + 16t = 0  21t = 21  t = 1 Vậy đường thẳng cần tìm là đường thẳng AM qua A có vevtơ chỉ phương là: AM = (3; 2; 1) nên phương trình ():       x 4 y 2 z 4 3 2 1 .  Vấn đề 2: HÌNH CHIẾU VÀ ĐỐI XỨNG A. PHƯƠNG PHÁP GIẢI HÌNH CHIẾU Phương pháp  Cách 1: (d) cho bởi phương trình tham số: Bài toán 1: Tìm hình chiếu H của điểm A trên đường thẳng (d). Hướng dẫn giải CDBT từ các ĐTQG Toán học – 239  H  (d) suy ra dạng tọa độ của điểm H phụ thuộc vào tham số t.  Tìm tham số t nhờ điều kiện  d AH a  Cách 2: (d) cho bởi phương trình chính tắc. Gọi H(x, y, z)   d AH a (*)  H  (d): Biến đổi tỉ lệ thức này để dùng điều kiện (*), từ đó tìm được x, y, z  Cách 3: (d) cho bởi phương trình tổng quát:  Tìm phương trình mặt phẳng () đi qua A và vuông góc với đường thẳng (d)  Giao điểm của (d) và () chính là hình chiếu H của A trên (d). Bài toán 2: Tìm hình chiếu H của điểm A trên mặt phẳng (). Phương pháp  Cách 1: Gọi H(x; y; z)  H  () (*)  AH cùng phương n : Biến đổi tỉ lệ thức này để dùng điều kiện (*), từ đó tìm được x, y, z.  Cách 2:  Tìm phương trình đường thẳng (d) đi qua A và vuông góc với mặt phẳng ().  Giao điểm của (d) và () chính là hình chiếu H của A trên mặt phẳng (). Bài toán 3: Tìm hình chiếu () của đường thẳng d xuống mặt phẳng (). Phương pháp  Tìm phương trình mặt phẳng () chứa đường thẳng d và vuông góc với mặt phẳng ().  Hình chiếu () của d xuống mặt phẳng  chính là giao tuyến của () và (). ĐỐI XỨNG Bài toán 1: Tìm điểm A' đối xứng với điểm A qua đường thẳng d. Phương pháp  Tìm hình chiếu H của A trên d.  H là trung điểm AA'. H   A (d) (d) A H    d () Hướng dẫn giải CDBT từ các ĐTQG Toán học – 240 Bài toán 2: Tìm điểm A' đối xứng với điểm A qua mặt phẳng (). Phương pháp  Tìm hình chiếu H của A trên ().  H là trung điểm AA'. Bài toán 3: Tìm phương trình đường thẳng d đối xứng với đường thẳng (D) qua đường thẳng (). Phương pháp  Trường hợp 1: () và (D) cắt nhau.  Tìm giao điểm M của (D) và ().  Tìm một điểm A trên (D) khác với điểm M.  Tìm điểm A' đối xứng với A qua ().  d chính là đường thẳng đi qua 2 điểm A' và M.  Trường hợp 2: () và (D) song song:  Tìm một điểm A trên (D)  Tìm điểm A' đối xứng với A qua ()  d chính là đường thẳng qua A' và song song với (). Bài toán 4: Tìm phương trình đường thẳng d đối xứng với đường thẳng (D) qua mặt phẳng (). Phương pháp  Trường hợp 1: (D) cắt ()  Tìm giao điểm M của (D) và ().  Tìm một điểm A trên (D) khác với điểm M.  Tìm điểm A' đối xứng với A qua mặt phẳng ().  d chính là đường thẳng đi qua hai điểm A' và M.  Trường hợp 2: (D) song song với ().  Tìm một điểm A trên (D)  Tìm điểm A' đối xứng với A qua mặt phẳng ().  d chính là đường thẳng qua A' và song song với (D). (D) () A A’ d M (D) A A’ () d (D) A  M A’ d (D) A d A’ Hướng dẫn giải CDBT từ các ĐTQG Toán học – 241 B. ĐỀ THI Bài 1: ĐẠI HỌC KHỐI B NĂM 2009 Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): x – 2y + 2z – 5 = 0 và hai điểm A(3; 0;1), B(1; 1; 3). Trong các đường thẳng đi qua A và song song với (P), hãy viết phương trình đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất. Giải Gọi  là đường thẳng cần tìm;  nằm trong mặt phẳng (Q) qua A và song song với (P) Phương trình (Q): x – 2y + 2z + 1 = 0 K, H là hình chiếu của B trên , (Q). Ta có BK  BH nên AH là đường thẳng cần tìm Tọa độ H = (x; y; z) thỏa mãn: x 1 y 1 z 3 1 2 2 x 2y 2z 1 0             1 11 7 H ; ; 9 9 9       26 11 2 AH ; ; 9 9 9        . Vậy, phương trình :      x 3 y z 1 26 11 2 Bài 2: ĐẠI HỌC KHỐI D NĂM 2006 Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3) và hai đường thẳng:             1 2 x 2 y 2 z 3 x 1 y 1 z 1 d : ; d : 2 1 1 1 2 1 . 1/ Tìm tọa độ điểm A' đối xứng với điểm A qua đường thẳng d1. 2/ Viết phương trình đường thẳng đi qua A, vuông góc với d1 và cắt d2. Giải 1/ Mặt phẳng () đi qua A(1; 2; 3) và vuông góc với d1 có phương trình là: 2(x  1)  (y  2) + (z  3) = 0  2x  y + z  3 = 0. Tọa độ giao điểm H của d1 và () là nghiệm của hệ: x 0x 2 y 2 z 3 y 1 H(0; 1; 2)2 1 1 2x y z 3 0 z 2                    Vì A' đối xứng với A qua d1 nên H là trung điểm của AA' A'(1; 4; 1) 2/ Viết phương trình đường thẳng : Vì A' đối xứng với A qua d1 và cắt d2, nên  đi qua giao điểm B của d2 và (). Tọa độ giao điểm B của d2 và () là nghiệm của hệ B H K A Q Hướng dẫn giải CDBT từ các ĐTQG Toán học – 242 x 2x 1 y 1 z 1 y 1 B(2; 1; 2)1 2 1 2x y z 3 0 z 2                      Vectơ chỉ phương của  là: u AB (1; 3; 5)    Phương trình của  là:        x 1 y 2 z 3 1 3 5 Bài 3: ĐỀ DỰ BỊ 1 - ĐẠI HỌC KHỐI A NĂM 2006 Trong không gian với hệ trục tọa độ Oxyz cho hình lăng trụ đứng ABC.A'B'C' có A(0; 0; 0), B(2; 0; 0), C(0; 2; 0), A'(0; 0; 2) 1/ Chứng minh A'C vuông góc với BC'. Viết phương trình mặt phẳng (ABC') 2/ Viết phương trình hình chiếu vuông góc của đường thẳng B'C' trên mặt phẳng (ABC') Giải 1/ A(0; 0; 0), B(2; 0; 0), C(0; 2; 0), A'(0; 0; 2)  C'(0; 2; 2) Ta có:     A C (0;2; 2), BC ( 2;2;2) Suy ra         A chúng tôi 0 4 4 0 A C BC Ta có:        A C BC A C (ABC ) A C AB Suy ra (ABC') qua A(0; 0; 0) và có vectơ pháp tuyến là A C (0; 2; 2)   nên có phương trình là: (ABC') 0(x – 0) + 2(y – 0) – 2(z – 0) = 0  y – z = 0 2/ Ta có: B C BC ( 2; 2; 0)     Gọi () là mặt phẳng chứa B'C' và vuông góc với (ABC')  vectơ pháp tuyến của () là: n B C ,A C 4(1; 1; 1)        Phương trình (): 1(x – 0) + 1(y – 2) + 1(z – 2) = 0  x + y + z – 4 = 0 Hình chiếu d của B'C' lên (ABC') là giao tuyến của () với (ABC')  Phương trình d:        x y z 4 0 y z 0 Bài 4: ĐỀ DỰ BỊ 1 Trong không gian với hệ tọa độ Oxyz cho hình hộp chữ nhật ABCD A1B1C1D1 có A trùng với gốc tọa độ O, B(1; 0; 0), D(0; 1; 0), A1(0; 0; 2 ). a/ Viết phương trình mp(P) đi qua 3 điểm A1, B, C và viết phương trình hình chiếu vuông góc của đường thẳng B1D1 lên mặt phẳng (P). b/ Gọi (Q) là mặt phẳng qua A và vuông góc với A1C. Tính diện tích thiết diện của hình chóp A1ABCD với mặt phẳng (Q). Hướng dẫn giải CDBT từ các ĐTQG Toán học – 243 Giải Ta có: A(0; 0; 0); B1 (1; 0; 2 ); C1 (1; 1; 2 ); D1 (0; 1; 2 ) a/    1 1A B 1; 0; 2 , A C 1; 1; 2         P 1 1n A B; A C 2; 0; 1  (P) qua A1 và nhận Pn làm vectơ pháp tuyến (P):           2 x 0 0 y 0 1 z 2 0    2.x z 2 0 Ta có  1 1B D 1; 1; 0   Mặt phẳng () qua B1 (1; 0; 2 ) nhận  P 1 1n n , B D 1; 1; 2       làm vectơ pháp tuyến. Nên () có phương trình: (): 1(x – 1) – 1(y – 0) + 2 (z  2 ) = 0  x + y   2z 1 0 D1B1 có hình chiếu lên (P) chính là giao tuyến của (P) và () Phương trình hình chiếu là:          x y 2z 1 0 2x z 2 0 b/ Phương trình mặt phẳng (Q) qua A và vuông góc với A1C: (Q): x + y  2 z = 0 (1)  Phương trình A1C :          

Chuyên Đề Vecto Trong Không Gian Quan Hệ Vuông Góc

Nhóm thuvientoan.net xin gửi đến các bạn đọc tài liệu Chuyên đề vecto trong không gian quan hệ vuông góc.

Tài liệu gồm có 99 trang, tóm tắt các kiến thức SGK cần nắm và hướng dẫn giải các dạng toán chuyên đề vectơ trong không gian, quan hệ vuông góc thuộc chương trình Hình học 11 chương 3.

Khái quát nội dung tài liệu chuyên đề vectơ trong không gian, quan hệ vuông góc: §1. VECTƠ TRONG KHÔNG GIAN VÀ SỰ ĐỒNG PHẲNG CỦA CÁC VECTƠ. A. KIẾN THỨC CẦN NẮM I. Các định nghĩa. 1. Vectơ, giá và độ dài của vectơ. 2. Hai vectơ bằng nhau, vectơ_không. II. Phép cộng và phép trừ vectơ. 1. Định nghĩa. 2. Tính chất. 3. Các quy tắc cần nhớ khi tính toán. a. Quy tắc ba điểm. b. Quy tắc hình bình hành. c. Tính chất trung điểm, trọng tâm của tam giác. d. Quy tắc hình hộp. III. Phép nhân vectơ với một số. IV. Điều kiện đồng phẳng của ba vectơ. 1. Khái niệm về sự đồng phẳng của ba vectơ trong không gian. 2. Định nghĩa. 3. Điều kiện để ba vectơ đồng phẳng. 4. Phân tích(biểu thị) một vectơ theo ba vectơ không đồng phẳng. B. CÁC DẠNG BÀI TẬP Dạng 1. Xác định các yếu tố của vectơ. Dạng 2. Chứng minh các đẳng thức vectơ. Dạng 3. Chứng minh ba vectơ a, b, c đồng phẳng. C. BÀI TẬP TRẮC NGHIỆM

§2. HAI ĐƯỜNG THẲNG VUÔNG GÓC. A. KIẾN THỨC CẦN NẮM I. Tích vô hướng của hai vectơ trong không gian. 1. Góc giữa hai vectơ trong không gian. 2. Tích vô hướng của hai vectơ trong không gian. II. Vectơ chỉ phương của đường thẳng. III. Góc giữa hai đường thẳng. IV. Hai đường thẳng vuông góc. B. CÁC DẠNG BÀI TẬP Dạng 1: Tính góc giữa hai đường thẳng. Dạng 2. Chứng minh hai đường thẳng vuông góc. C. BÀI TẬP TRẮC NGHIỆM §3. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. A. KIẾN THỨC CẦN NẮM I. Định nghĩa. II. Điều kiện để đường thẳng vuônmg góc với mặt phẳng. III. Tính chất. IV. Liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng. V. Phép chiếu vuông góc và định lí ba đường vuông góc. 1. Phép chiếu vuông góc. 2. Định lí ba đường vuông góc. 3. Góc giữa đường thẳng và mặt phẳng. B. CÁC DẠNG BÀI TẬP Dạng 1. Chứng minh đường thẳng vuông góc với mặt phẳng. Dạng 2. Chứng minh hai đường thẳng vuông góc. Dạng 3. Tìm thiết diện tạo bởi mặt phẳng qua một điểm và vuông góc với một đường thẳng cho trước. Dạng 4. Xác định góc giữa đường thẳng d và mặt phẳng α. C. BÀI TẬP TRẮC NGHIỆM

§4. HAI MẶT PHẲNG VUÔNG GÓC. A. KIẾN THỨC CẤN NẮM I. Góc giữa hai mặt phẳng. 1. Định nghĩa. 2. Cách xác định góc giữa hai mặt phẳng cắt nhau. 3. Diện tích hình chiếu của một đa giác. II. Hai mặt phẳng vuông góc. III. Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương. IV. Hình chóp đều và hình chóp cụt đều. B. CÁC DẠNG BÀI TẬP Dạng 1. Xác định góc giữa hai mặt phẳng. Dạng 2. Chứng minh hai mặt phẳng vuông góc. Dạng 3. Chứng minh đường thẳng vuông góc với mặt phẳng. Dạng 4. Thiết diện tạo bởi mặt phẳng vuông góc với mặt phẳng cho trước. C. BÀI TẬP TRẮC NGHIỆM

§5. KHOẢNG CÁCH. A. KIẾN THỨC CẦN NẮM I. Khoảng cách từ một điểm đền một đường thẳng, đến một mặt phẳng. 1. Khoảng cách từ một điểm M đến một đường thẳng ∆. 2. Khoảng cách từ một điểm M đến một mặt phẳng (P). II. Khoảng cách giữa hai đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song. 1. Khoảng cách giữa đường thẳng và mặt phẳng song song. 2. Khoảng cách giữa hai mặt phẳng song song. III. Đường vuông góc chung và khoảng cách giữa hai đường thẳng chéo nhau. B. CÁC DẠNG BÀI TẬP Dạng 1. Khoảng cách từ một điểm đến một mặt phẳng. Dạng 2: Xác định khoảng cách giữa hai đường thẳng chéo nhau. C. BÀI TẬP TRẮC NGHIỆM

….

Like fanpage của chúng tôi để cập nhật những tài liệu mới nhất: https://bit.ly/3g8i4Dt.

THEO THUVIENTOAN.NET

Các Dạng Toán Về Phương Trình Đường Thẳng Trong Không Gian Oxyz Và Bài Tập

Để các bạn học sinh lớp 12 nắm rõ phần nội dung kiến thức này, trong bài viết này chúng ta sẽ cùng tổng hợp lại các dạng toán về phương trình đường thẳng trong không gian, giải một số ví dụ và bài tập một cách chi tiết và dễ hiểu để các em tự tin khi gặp các dạng toán này.

I. Lý thuyết về đường thẳng trong không gian

1. Phương trình tham số và phương trình chính tắc của đường thẳng

2. Vị trí tương đối của 2 đường thẳng trong không gian

3. Vị trí tương đối của đường thẳng với mặt phẳng

– d cắt (P) ⇔ Aa + Bb + Cc ≠ 0

4. Góc giữa 2 đường thẳng

5. Góc giữa đường thẳng và mặt phẳng

6. Khoảng cách từ 1 điểm tới 1 đường thẳng

* Cách tính 1:

– Viết phương trình mặt phẳng (Q) qua M1 và vuông góc với Δ.

– Tìm tọa độ giao điểm H của Δ và mặt phẳng (Q).

– d(M1,Δ) = M1H

* Cách tính 2:

7. Khoảng cách giữa 2 đường thẳng chéo nhau

* Cách tính 1:

– Viết phương trình mặt phẳng chứa (Δ) và song song với (Δ1).

– Tính khoảng cách từ M0M1 tới mặt phẳng (Q).

– d(Δ,Δ1) = d(M1,Q)

* Cách tính 2:

II. Các dạng bài tập về đường thẳng trong không gian

Dạng 1: Viết PT đường thẳng (d) qua 1 điểm và có VTCP

* Phương pháp:

* Lời giải:

Dạng 2: Viết PT đường thẳng đi qua 2 điểm A, B

* Phương pháp

Ví dụ: Viết PTĐT (d) đi qua các điểm A(1; 2; 0), B(-1; 1; 3);

* Lời giải:

Dạng 3: Viết PT đường thẳng đi qua A và song song với đường thẳng Δ

* Phương pháp

* Lời giải:

Dạng 4: Viết PT đường thẳng (d) đi qua A và vuông góc với mp (∝).

* Phương pháp

Ví dụ: Viết PT đường thẳng (d) đi qua A(1;1;-2) và vuông góc với mp (P): x-y-z-1=0

* Lời giải:

Dạng 5: Viết PT đường thẳng (d) đi qua A và vuông góc với 2 đường thẳng (d1), (d2).

* Phương pháp:

* Lời giải:

Dạng 6: Viết PT đường thẳng (d) là giao tuyến của 2 mp

– mp (P): Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0;

* Phương pháp:

+ Cách giải 1:

+ Cách giải 2:

– Bước 1: Tìm toạ độ 2 điểm A, B ∈ d. (Tìm 2 nghiệm của hệ 2 PT trên)

– Bước 2: Viết PT đường thẳng đi qua 2 điểm AB.

+ Cách giải 3:

– Đặt 1 trong 3 ẩn bằng t (chẳng hạn x = t), giải hệ 2 PT với 2 ẩn còn lại theo t rồi suy ra PT tham số của d.

Ví dụ: Viết phương trình đường thẳng (d) là giao tuyến của 2 mặt phằng (P): 2x+y-z-3=0 và (Q): x+y+z-1=0.

* Lời giải:

– Cho z = 0 ⇒ x = 2 và y = – 1 ⇒ A(2;-1;0)

– Cho z = 1 ⇒ x = 4 và y = – 4 ⇒ B(4;-4;1)

Dạng 7: Viết PT hình chiếu của đường thẳng (d) lên mp (P).

* Phương pháp

– Bước 1: Viết PT mp(Q) chứa d và vuông góc với mp (P).

– Bước 2: Hình chiếu cần tìm d’= (P)∩(Q)

* Lời giải:

– Mặt phẳng Q đi qua d có phương trình dạng: m(x-2z) + n(3x-2y+z-3)=0

⇔ (m+3n)x – 2ny + (-2m+n)z – 3n = 0

Q ⊥ P ⇔ 1.(m+3n) – 2(-2n) + 1.(-2m+n) = 0

⇔ m + 3n + 4n – 2m + n = 0 ⇔ -m + 8n = 0

Chọn m = 8 thì n = 1 ta được phương trình mp (Q): 11x – 2y – 15z – 3 = 0

– Vì hình chiếu d’ của d trên P nên d’ là giao tuyến của P và Q, phương trình của d’ sẽ là:

+ Cách giải 1:

– Bước 3: Đường thẳng cần tìm là đt đi qua 2 điểm A, B.

+ Cách giải 2:

– Bước 3: Đường thẳng cần tìm d’= (α) ∩ (β)

+ Cách giải 3:

– Bước 1: Tìm toạ độ giao điểm B của d với d1 và C của d với d2

– Bước 2: Từ điều kiện 3 điểm thẳng hàng tính được toạ độ B, C

– Bước 3: Viết PT (d) đi qua 2 điểm

* Lời giải:

– Gọi B, C lần lượt là các điểm và d cắt d1 và d2, ta có toạ độ B(1+t;-t;0) và C(0;0;2+s)

* Phương pháp

– Bước 1: Viết PT mp(P) song song với d và chứa d.

– Bước 3: Đường thẳng cần tìm d = (P) ∩ (Q)

Ví dụ: Viết phương trình đường thẳng (d) song song với trục Ox và cắt (d1), (d2) có PT:

* Lời giải:

(y-6) + (z-10) = 0 ⇔ y + z – 16 = 0

-2(y-2) – (z+4) = 0 ⇔ 2y + z = 0

* Phương pháp

+ Cách giải 1:

– Bước 3: Đường thẳng cần tìm là đường thẳng đi qua 2 điểm A, B.

+ Cách giải 2:

– Bước 3: Đường thẳng cần tìm d = (α) ∩ (β)

* Lời giải:

– PT mp (P) ⊥ d2 nên nhận VTCP d2 làm VTPT nên có PT: 2x – 5y + z + D = 0

– PT mp (P) đi qua M(1;1;1) nên có: 2.1 – 5.1 + 1 + D = 0 ⇒ D = 2

⇒ PT mp (P): 2x – 5y + z + 2 = 0

– Toạ độ giao điểm A của d1 và mp(P) là: (-5;-1;3)

Dạng 11 : Lập đường thẳng d đi qua điểm A , song song mp (α) và cắt đường thẳng d’

* Phương pháp:

+ Cách giải 1:

– Bước 1: Viết PT mp (P) đi qua điểm A và song song với mp (α).

– Bước 2: Viết PT mp (Q) đi qua điểm A và chứa đường thẳng d’.

– Bước 3: Đường thẳng cần tìm d = (P) ∩ (Q)

+ Cách giải 2:

– Bước 1: Viết PT mặt phẳng (P) qua điểm A và song song mặt phẳng (α)

– Bước 2: Tìm giao điểm B = (P) ∩ d’

– Bước 3: Đường thẳng cần tìm d đi qua hai điểm A và B.

* Lời giải:

* Phương pháp:

– Bước 1: Tìm giao điểm A = d∩(P); B = d∩(P)

– Bước 2: d là đường thẳng qua hai điểm A và B .

* Lời giải:

– Gọi A = d∩(P); B = d∩(P) thì tọa độ của A và B là: A(-1+2t;1-t;1+t) và B(1+s;2+s;-1+2s)

– Ta lại có: A∈(P) nên: (-1+2t)-(1-t)-2(1+t)+3=0 ⇔ t = 1 ⇒ A(1;0;2)

– Tương tự: B∈(P) nên: (1+s)-(2+s)-2(-1+2s)+3=0 ⇔ s = 1 ⇒ B(2;3;1)

Dạng 13: Viết PT đường thẳng d nằm trong mp (P) và vuông góc đường thẳng d’ cho trước tại giao điểm I của d’ và mp (P).

* Phương pháp

– Bước 1: Tìm giao điểm I = d’∩(P).

* Phương pháp

+ Cách giải 1:

– Bước 4: Đường thẳng cần tìm d = (P) ∩ (Q). (Lúc này ta chỉ cần tìm thêm 1 điểm M thuộc d).

* Cách giải 2:

– Bước 1: Gọi M(x+at; y+bt; z+ct) ∈ d; N(x+a’t’; y’+b’t’; z’+c’t’) ∈ d là chân các đường vuông góc chung của d và d.

– Bước 3: Thay t và t’ tìm được vào toạ độ M, N tìm được M, N. Đường thẳng cần tìm d là đường thẳng đi qua 2 điểm M, N.

– Chú ý : Cách 2 cho ta tìm được ngay độ dài đoạn vuông góc chung của hai đường thẳng chéo nhau.

* Lời giải:

– Gọi AB là đoạn vuông góc chung của d1 và d2 với A ∈ d1; B ∈ d2

⇒ A(1+2t;2+t;-3-3t) và B(2+t’;-3+2t’;1+3t’)

* Phương pháp:

– Bước 3: Đường thẳng cần tìm d = (P) ∩ (Q).

* Lời giải:

– Giả sử A,B lần lượt là giao điểm của Δ với d1 và d2 ta có: A(2s;1-s;-2+s), B(-1+2t;1+t;3)

Dạng 16: Lập PT đường thẳng d đi qua điểm A , cắt và vuông góc với đường thẳng d.

* Phương pháp:

– Đây là trường hợp đặc biệt của dạng 10, phương pháp tương tự dạng 10.

Xem Video bài học trên YouTube

Giáo viên dạy thêm cấp 2 và 3, với kinh nghiệm dạy trực tuyến trên 5 năm ôn thi cho các bạn học sinh mất gốc, sở thích viết lách, dạy học

Tích Có Hướng Của Hai Véc Tơ Trong Không Gian

I. TÍCH VÔ HƯỚNG CỦA 2 VECTO TRONG KHÔNG GIAN

Tích vô hướng của hai vecto trong không gian hoàn toàn tương tự như trong mặt phẳng. Ở đây chúng ta chỉ đề cập đến công thức tính tích vô hướng 2 véc tơ bằng tọa độ. Công thức tích vô hướng:

Nếu ít nhất một trong hai véc tơ bằng véc tơ – không thì tích có hướng hai vectơ đó bằng véc tơ – không.

Tích có hướng của 2 vecto khác véc tơ – không là một véc tơ có đồng thời vuông góc với hai véc tơ đó. Có xác định theo quy tắc cái đinh ốc (quy tắc vặn nút chai-hình). Và có (mô đun) xác định theo công thức:

Công thức tính tích có hướng trong hình học giải tích

Phần định nghĩa bên trên giúp chúng ta hiểu ý nghĩa tíςh có hướng. Ở hình học giải tích lớp 12 ta thường dùng công thức tích có hướng thông qua qua độ của hai véc tơ. Cụ thể, tích có hướng của 2 vectơ trong không gian Oxyz được tính như sau:

III. CÁCH BẤM MÁY TÍNH TÍCH CÓ HƯỚNG

* Define Vector: Nhập dữ liệu cho các véc tơ. Chúng ta có thể nhập đông thời tối đa 4 véc tơ.

* Edit Vector: Nếu véc tơ nhập nhầm dữ liệu hoặc muốn thay đổi dữ liệu ta chọn chức năng này.

* Dimension: Số chiều của véc tơ. Chúng ta luôn chọn 3 cho nội dung hình học Oxyz.

* OPTN: Option. Máy 580 VNX khác các thế hệ máy tính bỏ túi trước là các chức năng con của 1 chương trình đều được gọi ra từ phím này.

Cách tính tích vô hướng bằng máy tính chỉ khác một chút là ở vị trí giữa 2 véc tơ ta chèn Option Dot Product. (Dấu * giữa VctA và VctB).

* TÍNH DIỆN TÍCH TAM GIÁC

Cho tam giác ABC. Khi đó diện tích tam giác ABC có thể tính theo công thức sau:

* TÍNH DIỆN TÍCH HÌNH BÌNH HÀNH

Cho hình bình hành ABCD. Khi đó diện tích hình hành ABCD có thể tính theo công thức sau:

Phương pháp tọa độ trong không gian Tính diện tích tam giác trong hệ tọa độ oxyz

Bạn đang xem bài viết Chuyên Đề 8: Hình Học Giải Tích Trong Không Gian Oxyz trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!