Xem Nhiều 3/2023 #️ Chuyên Đề Phương Trình Vô Tỉ Toán 9 # Top 11 Trend | Caffebenevietnam.com

Xem Nhiều 3/2023 # Chuyên Đề Phương Trình Vô Tỉ Toán 9 # Top 11 Trend

Cập nhật thông tin chi tiết về Chuyên Đề Phương Trình Vô Tỉ Toán 9 mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.

II.MÔ TẢ GIẢI PHÁP CỦA ĐỀ TÀI: 1/ Thuyết minh : Thực hiện đề tài này, tôi sử dụng các phương pháp sau đây: – Phương pháp nghiên cứu lý luận – Phương pháp khảo sát thực tiễn – Phương pháp phân tích – Phương pháp tổng hợp – Phương pháp khái quát hóa – Phương pháp quan sát – Phương pháp kiểm tra – Phương pháp tổng kết kinh nghiệm 2/Các phương pháp giải phương trình vô tỉ 1. Phương pháp nâng lên lũy thừa a) Dạng 1: Û Ví dụ. Giải phương trình: (1) Giải: (1) Û Vậy: phương trình đã cho có một nghiệm x = 3 b) Dạng 2: Ví dụ. Giải phương trình: (2) Giải: Với điều kiện x ≥ 2. Ta có: (2) Û Û Û Û Vậy: phương trình đã cho có một nghiệm x = 6 c) Dạng 3: Ví dụ. Giải phương trình: (3) Giải: Với điều kiện 7 ≤ x ≤ 12. Ta có: (3) Û Û Û Û 4(19x – x2 – 84) = x2 – 8x + 16 Û 76x – 4x2 – 336 – x2 + 8x – 16 = 0 Û 5x2 – 84x + 352 = 0 Û x1 = ; x2 = 8 Vậy: phương trình đã cho có hai nghiệm x1 = ; x2 = 8 d) Dạng 4: Ví dụ. Giải phương trình: (4) Giải: Với điều kiện x ≥ 4. Ta có: (4) Û Û Û Û Û 45 + 14x + 14 = 0 Với x ≥ 4 Þ vế trái của phương trình luôn là một số dương Þ phương trình vô nghiệm 2. Phương pháp trị tuyệt đối hóa Ví dụ 1. Giải phương trình: (1) Giải: (1) Û Với điều kiện x ≤ 8. Ta có: – Nếu x < 2: (1) Þ 2 – x = 8 – x (vô nghiệm) – Nếu 2 ≤ x ≤ 8: (1) Þ x – 2 = 8 – x Û x = 5 HD: Đáp số: x = 5. Ví dụ 2. Giải phương trình (2) Giải: (2) Û Û Đặt y = (y ≥ 0) Þ phương trình đã cho trở thành: – Nếu 0 ≤ y < 1: y + 1 + 3 – y = 2 – 2y Û y = –1 (loại) – Nếu 1 ≤ y ≤ 3: y + 1 + 3 – y = 2y – 2 Û y = 3 Với y = 3 Û x + 1 = 9 Û x = 8 Vậy: phương trình đã cho có một nghiệm là x = 8 3. Phương pháp sử dụng bất đẳng thức a) Chứng tỏ tập giá trị của hai vế là rời nhau, khi đó phương trình vô nghiệm Ví dụ 1. Giải phương trình Cách 1. điều kiện x ≥ 1 Với x ≥ 1 thì: Vế trái: Þ vế trái luôn âm Vế phải: ≥ 1 Þ vế phải luôn dương Vậy: phương trình đã cho vô nghiệm Cách 2. Với x ≥ 1, ta có: Û Û Vế trái luôn là một số âm với x ≥ 1, vế phải dương với x ≥ 1 Þ phương trình vô nghiệm b) Sử dụng tính đối nghịch ở hai vế Ví dụ 2. Giải phương trình: (1) Giải: Ta có (1) Û Û Ta có: Vế trái ≥ . Dấu “=” xảy ra Û x = –1 Vế phải ≤ 5. Dấu “=” xảy ra Û x = –1 Vậy: phương trình đã cho có một nghiệm x = –1 c) Sử dụng tính đơn điệu của hàm số (tìm một nghiệm, chứng minh nghiệm đó là duy nhất) Ví dụ 1. Giải phương trình: Giải: điều kiện x ≥ Dễ thấy x = 2 là một nghiệm của phương trình Vậy: phương trình đã cho có một nghiệm duy nhất là x = 2 Ví dụ 2. Giải phương trình: Giải: Thử với x = 2. Ta có: (1) Û Nếu x VP Vậy: x = 2 là nghiệm duy nhất của phương trình Ví dụ 3. Giải phương trình: Giải: ĐK: x < 2. Bằng cách thử, ta thấy x = là nghiệm của phương trình. Ta cần chứng minh đó là nghiệm duy nhất. Thật vậy: Với x < : và Þ . Tương tự với < x < 2: Ví dụ 4. Giải phương trình: (1) Giải: (1) Nếu 3x = –(2x + 1) Û x = thì các biểu thức trong căn ở hai vế bằng nhau. Vậy x = là một nghiệm của phương trình. Hơn nữa nghiệm của (1) nằm trong khoảng . Ta chứng minh đó là nghiệm duy nhất. Với : 3x < –2x – 1 < 0 Suy ra: Þ (1) không có nghiệm trong khoảng này. Chứng minh tương tự, ta cũng đi đến kết luận (1) không có nghiệm khi d) Sử dụng điều kiện xảy ra dấu “=” ở bất đẳng thức không chặt Ví dụ. Giải phương trình Giải: điều kiện Với điều kiện . Nên: . Dấu “=” xảy ra Û Û 4. Phương pháp đưa về phương trình tích Ví dụ 1. Giải phương trình: Giải. ĐK: x ≥ 2. Để ý thấy: (2x + 1) – (x – 2) = x + 3. Do đó, nhân lượng liên hợp vào hai vế của phương trình: Û Þ PT vô nghiệm Ví dụ 2. Giải phương trình: (1) Û x1 = 0; x2 = Ví dụ 3. Giải phương trình: (1) Giải. Chú ý: x4 – 1 = (x – 1)(x3 + x2 + x + 1). (1) Û Û x = 2 5. Phương pháp đặt ẩn phụ a) Sử dụng một ẩn phụ Ví dụ 1. Giải phương trình: (1) Giải. Đặt = y (y ≥ 0) Þy2 = x + 1 Û x = y2 – 1 Û x2 = (y2 – 1)2 Þ (2) Û (y2 – 1)2 + y – 1 = 0 Û y(y - 1)(y2 + y - 1) = 0. Từ đó suy ra tập nghiệm của phương trình là: Ví dụ 2. Giải phương trình: (1) HD: ĐK: x ≥ 1. Đặt = y (1) Û Û y3 + y2 – 2 = 0 Û (y – 1)(y2 + 2y + 2) = 0 Û y = 1 Û x = 1 b) Sử dụng hai ẩn phụ Ví dụ 1. Giải phương trình: 2(x2 + 2) = 5 (3) Giải. Đặt u = , v = (ĐK: x ≥ -1, u ≥ 0, v ≥ 0). Khi đó: u2 = x + 1, v2 = x2 – x + 1, u2v2 = x3 + 1. Þ (3) Û 2(u2 + v2) = 5uv Û (2u - v)(u - 2v) = 0 Giải ra, xác định x. Kết quả là: x Î Ví dụ 2. Giải phương trình: (1) Giải. ĐK: x ≥ –2. (1) Û Đặt: = u, = v (u, v ≥ 0)Þ u2 – v2 = 3. (1) Û (a – b)(1 + ab) = a2 – b2 Û (a – b)(1 – a + ab – b) = 0 Û (a – b)(1 – a)(1 – b) = 0 Giải ra: x = –1 là nghiệm duy nhất Ví dụ 3. Giải phương trình: (1) Giải. ĐK: x ≥ 0. Đặt = u, = v (u, v ≥ 0): (1) Û b – a = a2 – b2 Û (a – b)(a + b + 1) = 0 Ví dụ 4. Giải phương trình: (1) Giải. Đặt = u, = v (u, v ≥ 0) (1) Û Û u – (v2 – u2) – v = 0 c) Sử dụng ba ẩn phụ Ví dụ 1. Giải phương trình: (1) Giải. ĐK: x ≥ 2. (1) Û Đặt: = a, = b, = c (a, b, c ≥ 0): (1) Û ab + c = b + ac Û (a – 1)(b – c) = 0 Û a = 1 hoặc b = c. Thay ngược trở lại ta được x = 2 là nghiệm duy nhất của phương trình Ví dụ 2. Giải phương trình : Giải. Đặt : ; ; (u ; v ; t ≥ 0) Þ x = 2 − u2 = 3 − v2 = 5 − t2 = uv + vt + tu Từ đó ta có hệ: Nhân từng vế của (1), (2), (3) ta có : [ (u + v)(v + t)(t + u) ]2 = 30 Vì u ; v ; t ≥ 0 nên: (4) Kết hợp (4) với lần lượt (1) ; (2) ; (3) dẫn đến: Cộng từng vế của (5) ; (6) ; (7) ta có: (8) Kết hợp (8) với lần lượt (5) ; (6) ; (7) ta có: d) Sử dụng ẩn phụ đưa về hệ phương trình Ví dụ 1. Giải phương trình Cách 1: Giải tương tự bài 1. Ta được x = 5 Cách 2: Đặt và . Ta có hệ: Û Û x = 5. Ví dụ 2. Giải phương trình: Giải. ĐK: 0 ≤ x ≤ 25. Đặt = u , (u, v ≥ 0): ÞGiải ra ta có x = 1 là nghiệm duy nhất. Ví dụ 3. Giải phương trình: Giải. ĐK: –3 ≤ x ≤ 3: Đặt = u, = v (u, v ≥ 0) Þ Û . Thế ngược trở lại: x = 0 là nghiệm duy nhất. Ví dụ 4. Giải phương trình: Giải. ĐK: – 4 ≤ x ≤ 1. Đặt (u, v ≥ 0) Þ Þ Ví dụ 5. Giải phương trình: Giải. ĐK: –2 ≤ x ≤ 2: Đặt (u, v ≥ 0) Þ Giải ra ta được: (a, b) = {(0 ; 2), (2 ; 0)}. Từ đó thế ngược trở lại: x = ±2 Ví dụ 6. Giải phương trình: (1) Giải. Đặt = u, = v (u, v ≥ 0) Þ (1) Û Ví dụ 7. Giải phương trình: Giải. Đặt (1) Û Þ kết quả 6. Giải và biện luận phương trình vô tỉ Ví dụ 1. Giải và biện luận phương trình: Giải. Ta có: Û – Nếu m = 0: phương trình vô nghiệm – Nếu m ≠ 0: . Điều kiện để có nghiệm: x ≥ m Û ≥ m + Nếu m < 0: m2 + 4 ≤ 2m2 Û m2 ≥ 4 Û m ≤ –2 Tóm lại: – Nếu m ≤ –2 hoặc 0 < m ≤ 2: phương trình có một nghiệm – Nếu –2 2: phương trình vô nghiệm Ví dụ 2. Giải và biện luận phương trình với m là tham số: Giải. Ta có: – Nếu m = 0: phương trình vô nghiệm – Nếu m ≠ 0:. Điều kiện để có nghiệm: x ≥ m Û + Nếu m < 0: m2 + 3 ≤ 2m2 Û m2 ≥ 3 Û m ≤ Tóm lại: – Nếu hoặc . Phương trình có một nghiệm: – Nếu hoặc : phương trình vô nghiệm Ví dụ 3. Giải và biện luận theo tham số m phương trình: Giải. Điều kiện: x ≥ 0 – Nếu m < 0: phương trình vô nghiệm – Nếu m = 0: phương trình trở thành Þ có hai nghiệm: x1 = 0, x2 = 1 + Nếu 0 < m ≤ 1: phương trình có hai nghiệm: x1 = m; x2 = C.Một số sai lầm thường mắc phải Khi giảng dạy cho học sinh tôi nhận thấy: 1. Khi gặp bài toán: Giải phương trình = x - 2 (1) Sách giáo khoa đại số 10 đã giải như sau điều kiện pt(1) là x (*) (1) 2x - 3 = x2 - 4x + 4 x2 - 6x + 7 = 0 Phương trình cuối có nghiệm là x = 3 + và x = 3 - . Cả hai nghiệm đều thoả mãn điều kiện (*) của phương trình (1) nhưng khi thay các giá trị của các nghiệm tìm được vào phương trình (1) thì giá trị x = 3 - bị loại . Vậy nghiệm phương trình (1) là x = 3 + . Mặt khác, một số học sinh còn có ý kiến sau khi giải được nghiệm ở phương trình cuối chỉ cần so sánh với điều kiện x (*) để lấy nghiệm và nghiệm phương trình là x = 3 + và x = 3 - . Theo tôi cách giải vừa nêu trên rất phức tạp ở việc thay giá trị của nghiệm vào phương trình ban đầu để thử sau đó loại bỏ nghiệm ngoại lai và dễ dẫn đến sai lầm của một số học sinh khi lấy nghiệm cuối cùng vì nhầm tưởng điều kiện x là điều kiện cần và đủ. 2. Khi gặp bài toán: Giải phương trình = Học sinh thường đặt điều kiện sau đó bình phương hai vế để giải phương trình Điều chú ý ở đây là học sinh cứ tìm cách để biểu thị hệ điều kiện của phương trình mà không biết rằng chỉ cần điều kiện x + 1 0 là điều kiện cần và đủ mà không cần đặt đồng thời cả hai điều kiện . 3. Khi gặp bài toán: Giải phương trình (x + 1) = 0 Một số HS đã có lời giải sai như sau: Ta có: (x + 1) = 0 ó ó Nhận xét: Đây là một bài toán hết sức đơn giản nhưng nếu giải như vậy thì đã mắc một sai lầm mà không đáng có. Rõ ràng x = - 1 không phải là nghiệm của phương trình trên. Chú ý rằng: ở đây đã bị bỏ qua mất điều kiện là: B ≥ 0 (x ≥ 2). 4. Khi gặp bài toán: Giải phương trình = x2 -2x+3 Một số học sinh thường đặt điều kiện rồi bình phương hai vế đi đến một phương trình bậc bốn và rất khó để giải được kết quả cuối cùng vì phương trình bậc bốn chưa có cách giải cụ thể đối với học sinh bậc phổ thông . 5. Khi gặp bài toán: Giải phương trình (x+2) = x+1 Một số HS đã có lời giải sai như sau: Ta có: (x+2) = x+1 =x+1 (vô nghiệm) Vậy phương trình đã cho vô nghiệm. Nhận xét: Rỏ ràng x = -3 là nghiệm của phương trình. Lời giải trên đã làm cho bài toán có nghiệm trở thành vô nghiệm. Cần chú ý rằng: Lời giải trên đã xét thiếu trường hợp A < 0; B < 0 Lúc này vai trò của người giáo viên là rất quan trọng, phải hướng dẫn chỉ rõ cho học sinh phương pháp giải từng dạng toán, nên giải như thế nào cho hợp lý đối với từng loại toán để được một bài toán đúng biến đổi đúng và suy luận có logic tránh được các tình huống rườm rà phức tạp dễ mắc sai lầm. Trên cơ sở đó hình thành cho học sinh kỹ năng tốt khi giải quyết các bài toán về phương trình vô tỉ 1/ Giải pháp 1: * Hướng dẫn học sinh giải phương trình dạng 1 : = g(x) (1) a, Phương pháp: Giáo viên: chỉ cho học sinh thấy được rằng nếu khi bình phương hai vế để đi đến phương trình tương đương thì hai vế đó phải không âm pt = g(x) Điều kiện gx) 0 là điều kiện cần và đủ vì f(x) = g2(x) 0 . Không cần đặt thêm điều kiện fx) 0 b, Các ví dụ: + Ví dụ 1: Giải phương trình = x -2 . (1) Điều kiện x 2 (*) (Chú ý: không cần đặt thêm điều kiện 2x - 1 0) Khi đó pt(1) 2x - 1 = (x - 2)2 x2 - 4x + 4= 2x - 1 x2 - 6x + 5 = 0 đối chiếu với điều kiện (*) ta thu được nghiệm của phương trình (1) là x = 5 ! Lưu ý: không cần phải thay giá trị của các nghiệm vào phương trình ban đầu để thử mà chỉ cần so sánh với điều kiện x 2 (*) để lấy nghiệm. + Ví dụ 2: Giải phương trình = x-1 . (2) .Nhận xét : Biểu thức dưới dấu căn là biểu thức bậc hai, nên nếu sử dụng phương pháp biến đổi hệ quả sẽ gặp khó khăn khi biểu thị điều kiện để 2x2- x -1 0 và thay giá trị của các nghiệm vào phương trình ban đầu để lấy nghiệm. Ta có thể giải như sau: . Điều kiện: x 1 (**) Khi đó pt(2) 2x2 - x - 1 = (x -1)2 2x2 - x - 1 = x2 - 2x + 1 x2 + x -2 = 0 x+2)(x-1)=0 đối chiếu với điều kiện (**) ta thu được nghiệm pt(2) là x = 1 *Như vậy khi gặp các bài toán thuộc các dạng nêu trên học sinh chủ động hơn trong cách đặt vấn đề bài giải : điều kiện phương trình là gì? đặt cái gì ? biến đổi như thế nào là biến đổi tương đương ? biến đổi như thế nào là biến đổi hệ quả? kết luận nghiệm cuối cùng dựa vào điều kiện nào? 2/ Giải pháp 2 * Hướng dẫn học sinh giải phương trình dạng 2: . (2) a. Phương pháp: Giáo viên hướng dẫn học sinh đặt điều kiện và biến đổi pt(2) Chú ý: Không cần đặt đồng thời cả g(x) và f(x) vì f(x) = g(x) . b. Các ví dụ: + Ví dụ 1: Giải phương trình = , (1) .Điều kiện x -1, (*) pt (1) x + 1 = 2x -7 x = 8 (thoả mãn với điều kiện (*) ) Vậy nghiệm của phương trình là x = 8 . ! Lưu ý: Điều kiện x -1 , (*) là điều kiện cần và đủ của phương trình (1) nên ta chỉ cần đối chiếu với điều kiện (*) để lấy nghiệm cuối cùng của phương trình. + Ví dụ 2: Giải phương trình = , (2) . Nhận xét: Biểu thức dưới dấu căn ở vế trái là biểu thức bậc hai nên ta đặt điều kiện cho vế phải không âm. . ĐK: x , (*). pt(2) x2 - x +1 = 2x -1 x2 - 3x -+2 = 0 Đối chiếu với điều kiện (*), nghiệm của phương trình là x = 1 và x=2 . + Ví dụ 3: Giải phương trình = (*) Tóm tắt bài giải (*) (vô nghiệm) Vậy phương trình đã cho vô nghiệm 3/ Giải pháp 3 : Hướng dẫn học sinh giải một số phương trình không mẫu mực (Phương trình không tường minh). + Ví dụ1: Giải phương trình - = 1 (2) Điều kiện x (**) Chuyển vế và bình phương hai vế ta được pt(2) = 1+ với điều kiện (**) nên hai vế luôn không âm , bình phương hai vế ta được. 2x + 1 = x + 1 + 2 x= 2 tiếp tục bình phương hai vế x2 = 4x (thoả mãn điều kiện (**)) Vậy nghiệm của phương trình là x = 0 V x = 4. + Ví dụ2 : Giải phương trình : 2 + = + Lời giải : Ta có Pt 2 + = 2 + Vậy phương trình đã cho vô nghiệm. Lưu ý: Học sinh có thể đưa ra lời giải sai như sau Ta có : 2 + = + 2 + = 2 + = x=2 Vậy phương trình đã cho có nghiệm x = 2. Nhận xét: Ta nhận ra ngay x = 2 không phải là nghiệm đúng của phương trình đã cho nhưng. Chú ý rằng: + Ví dụ 3: Giải phương trình = (3) Hướng dẫn : Đk (***) ! Lưu ý: Hệ điều kiện (***) rất phức tạp nên ta không cần giải ra cụ thể. Từ ĐK (***) nên hai vế không âm ,bình phương hai vế ta được pt(3) 7 - x2 + x = 3 - 2x - x2 x = - 2x - 4 x = -1 Thay giá trị của x = -1 vào hệ ĐK (***) , thoả mãn Vậy nghiệm của phương trình là x = -1 + Ví dụ4 : Giải phương trình + = 3x + 2 - 16 , (4) HD: Điều kiện x -1 (****) NX: Đây là phương trình khá phức tạp nếu bình phương hai vế của phương trình ta cũng không thu được kết quả thuận lợi khi giải nên ta có thể giải như sau. Đặt + = t , (ĐK: t 0) 3x + 2 = t2 - 4 pt(4) t2 - t - 20 = 0 t = 5 (nhận) V t = - 4 (loại) . Với t = 5 2 =21 - 3x ( là phương trình thuộc dạng 1) x = 118 - (thoả mãn ĐK) Vậy nghiệm phương trình là x = 118 - + Ví dụ 5: Giải phương trình x2 – 7x + 12 = Lời giải sai: Ta có x2 – 7x + 12 = (x-3)(x-4) = (x-3)(x-4) = Giải (1) = (x-3)(x-4) Giải (2) = (x-3)(x-4) Vậy phương trình đã cho có nghiệm là : x = 2 v x = 3 v x = 7. Nhân xét: Bài toán này HS có thể giải mắc sai lầm như sau: Lời giải sai: Ta có: x2 – 7x + 12 = (x-3)(x-4) = (x-3)(x-4) = = (x-3)(x-4) Giải ta có Vậy phương trình đã cho có nghiệm x = 3 và x = 7. HS có thể kết luận với x =3 và x = 7 là hai nghiệm thoả mãn của phương trình. Mà không ngờ rằng phương trình đã cho còn có một nghiệm nữa là x = 2 cũng thoả mãn. Chú ý rằng: Lời giải trên đã bỏ sót mất trường hợp A ≤ 0 Bài tập Giải phương trình a. = 2x-5 b. = c. +x-4 = 0 HD: Biến đổi theo dạng 1 và dạng 2 2. Giải phương trình: x2 - x + = 1 HD: Đặt t = (t) ĐS: x = 0 v x = 1 3. Giải phương trình: + = HD: Đặt đk sau đó bình phương hai vế ĐS: x = 2 4. Giải phương trình: HD : ĐS : Nghiệm phương trình là : x = -3. 5. Giải phương trình: HD: ĐS: Nghiệm của phương trình là: x = 14 6. Giải phương trình: + = + 7. Giải phương trình: + = 4 8. Giải phương trình: x + = 2 9. Giải phương trình: x2 + 3x + 1 = (x + 3) 10. Giải phương trình: (4x - 1) = 2x3 + 2x +1 11. Giải phương trình: x2 - 1 = 2x 12. Giải phương trình: x2 + 4x = (x + 2)

Chuyên Đề Phương Trình Vô Tỉ

1/ Hai phương trình được gọi là tương đương nếu chúng có cùng tập nghiệm. Khi giải các phương trình ta thường phải dùng các phép biến đổi tương đương. 2/ Một phương trình được gọi là phương trình hệ quả của phương trình cho trước nếu tập nghiệm của nó chứa tập nghiệm của phương trình đã cho. Khi giải phương trình, nếu ta dùng phép biến đổi đưa phương trình đã cho về một phương trình hệ quả thì ta phải thử lại. Cho tam thức bậc hai: f(x) = ax2+bx+c (a khác 0), f(x) có hai nghiệm x1;x2 thoả mãn: x1<<x2 khi và chỉ khi af()<0. f(x) có hai nghiệm trong khoảng khi và chỉ khi : f(x) có một nghiệm nằm trong , nghiệm còn lại nằm ngoài khi và chỉ khi . 4/ Một số kiến thức trong lý thuyết hàm số : Hàm số y=f(x) xác định trên D. Khi đó phương trình f(x)=g(m) có nghiệm trên D khi và chỉ khi g(m) thuộc vào tập giá trị của f(x) trên D. Nếu hàm số y=f(x) đơn điệu trên D, x0 thuộc D sao cho f(x0)=m ( trong đó m là hằng số ) thì phương trình f(x) =m có nghiệm duy nhất trên D. Nếu f(x) đồng biến trên D, g(x) nghịch biến trên D , x0 thuộc D sao cho f(x0)= g(x0) thì phương trình f(x) =g(x) có nghiệm duy nhất trên D. 5/ Nội dung phương pháp cần và đủ : Bài toán đặt ra là : tìm điều kiện của tham số m để phương trình f(x,m)=0 thoả mãn tính chất (P) nào đó.Khi giải bài toán này bằng phương pháp điều kiện cần và đủ ta tiến hành theo các bước sau : Bước 1 : (tìm điều kiện cần) Giả sử phương trình đã cho đã thoả mãn tính chất (P).Ta đi tìm điều kiện ràng buộc của m. Giả sử điều kiên ràng buộc của m là m. Bước2  : (tìm điều kiện đủ) : Với m ta kiểm tra lại xem khi đó phương trình f(x,m)=0 đã thoả mãn tính chất (P) chưa.ở bước này nói chung ta thường thay các giá trị cụ thể của m vào để xét, những giá trị của m mà làm cho phương trình f(x,m)=0 thoả mãn tính chất (P) là đáp số bài toán. Phần II Một số dạng phương trình vô tỉ thường gặp. Dạng 1 : dùng phép biến đổi tương đương . Thực tế ta hay gặp trường hợp n=1.ở dạng (**) học sinh yếu thường hay mắc sai lầm như sau: đặt điều kiện f(x) sau đó luỹ thừa 2n hai vế của phương trình để khử căn rồi giải phương trình này , sau đó kiểm tra điều kiện f(x) thấy thoả mãn, kết luận đó là nghiệm phương trinh. ở (*) cũng vậy , mặc dù đơn giản nhưng học sinh cũng hay quên điều kiện f(x) hoặc g(x) không âm. Bài tập áp dụng: giải phương trình: . . . . Dạng 2 : Phương pháp giải dạng này là : tìm tập xác định của phương trình đã cho rồi bình phương hai vế ,thu gọn để quy về dạng I. Khi gặp phương trình dang: học sinh thường mắc sai lầm là: sau khi tìm tập xác định của phương trình đã cho đem bình phương hai vế , thu gọn để quy về dạng I. Trường hợp này rất nhiều khi ta thu được phương trình hệ quả( Do chưa chắc đã có: với mọi x thuộc tập xác định của phương trình). Giáo viên cần lưu ý học sinh điều này. Ta nên hướng dẫn học sinh chuyển sang vế phải để quy về dạng 2. Ví dụ: giải phương trình: HD: Pt có tập xác định là: D= Ta có: Vậy nghiệm phương trình là x=0. Bài tập áp dụng: giải phương trình: III/ Dạng 3: Dùng tính chất của hàm số: Cơ sở lý thuyết: Cho f xác định trên D = (a ;b) f tăng (đồng biến) khi f giảm (nghịch biến) khi Định lý: Nếu f có đạo hàm trên D = (a , b) và f không phải là hằng số thì: f tăng trên D. f giảm trên D. Tính chất: Nếu f đơn điệu thì phương trình f(x0 = 0 có tối đa một nghiệm và nếu chỉ ra được nghiệm thì đó chính là nghiệm duy nhất. Từ đó ta có ứng dụng để giải phương trình hoặc chứng minh sự tồn tại nghiệm. Cách giải: Các vế của phương trình thường chứa các hàm số một biến. Tính chất của hàm số không thể không ảnh hưởng tới cách giải các bài toán đặt ra. Trong nhiều trường hợp, việc sử dụng các tính chất của hàm số giúp ta tìm được cách giải hợp lý và hiệu quả. *Chú ý: -Trong nhiều trường hợp HS sau khi nhẩm được nghiệm thì vội vàng kết luận tính duy nhất của nghiệm, mà quên đi cơ sở kết luận nghiệm phải dựa vào tính chất của hàm số có mặt trong bài toán đó. -Ta có thể lập bảng biến thiên để giải quyết bài toán dễ dàng hơn. Một số ví dụ: Ví dụ 1: Giải phương trình: Giải: Ta viết lại phương trình: Và nên Phương trình: (*) Xét nên f nghịch biến. Hơn nữa f(1) = 0 Do đó (*) Vậy PT có nghiệm duy nhất x = 1 Ví dụ 2: Tìm a để phương trình có nghiệm: Giải: Xét y = f(x) =, D = R thì f là hàm lẻ. Ta có : Đặt nên g đồng biến. Mà Bảng biến thiên: x 0 + y 1 -1 Vậy điều kiện để PT có nghiệm là Ví dụ 3: Giải phương trình: HD: Với phương trình vô tỷ này ta có thể chuyển vế, bình phương rồi khử dấu căn như cách thông thường. Tuy nhiên, nếu ta chú ý đến miền xác định của các hàm số và ta thấy ngay phương trình đã cho chỉ xác định với x = 2. Hơn nữa, x = 2 thoả mãn PT. Vậy nghiệm của PT là x = 2. Ví dụ 4: Giải phương trình: HD: Đây là một ví dụ về phương trình vô tỉ mà có thể dùng cách giải thông thường là bình phương 2 vế để khử căn. Tuy nhiên ta không vội làm điều đó mà để ý rằng: để PT có nghĩa thì Vậy PT vô nghiệm. Ví dụ 5: giải phương trình Giải. Nếu ta bình phương để khử căn thức thì sẽ được một phương trình bậc 4 đầy đủ, việc giải nó rất phức tạp, nên ta tìm cách giải khác. Trước hết ta để ý rằng x = 3 nghiệm đúng phương trình. Nhưng khác với các ví dụ trước, hàm số ở vế trái không phải là hàm đơn điệu trong miền xác định của nó: . Tuy nhiên nếu ta xét khoảng Thì vế trái là hàm số đơn điệu tăng do đó x= 3 là nghiệm duy nhất của phương trình đã cho trong khoảng . Bây giờ ta xét đoạn . Ta có với thì , vế trái nên phương trình không có nghiệm trong đoạn . Đáp số: x=3. Ví dụ 6: giải phương trình: HD: Pt đã cho có tập xác định là: D=. Ta dễ kiểm tra hàm đồng biến trên D. Mà f(2)=3. Do vậy pt đã cho có nghiệm duy nhất x=2. Pt đã cho có tập xác định là: D=. Ta dễ kiểm tra hàm đồng biến trên D, hàm g(x)= nghịch biến trên D . Mà f(0)=g(0). Do vậy pt đã cho có nghiệm duy nhất x=0. Bài tập áp dụng: giải phương trình: . . IV.Dạng 4: đặt ẩn phụ quy về phương trình bậc hai Ví dụ: giải phương trình: . . . HD: a. Đặt y=.Ta được pt: y2-y-20 = 0 Nghiệm y = -4 bị loại.Với y = 5 ta tìm được các nghiệm x = 6 ; x = -3. Ta được phương trình : y2-y-6=0 Nghiệm y=-2 bị loại. Với y=3 ta được .Trong phần dùng tính đơn điệu của hàm số ta đã tìm được nghiệm duy nhất của pt này là x = 2. Vậy pt ban đầu có nghiệm duy nhất x = 2. c. Phần này phép đặt ẩn phụ ở phần này được gọi là không hoàn toàn.Cụ thể như sau : Đặt y=. Ta được phương trình : y2-(x+3)y+3x=0 Với y=3 ta được : Với y=x ta được : . PT vô nghiệm. Vậy nghiệm của pt đã cho là : Bài tập áp dụng: giải phương trình: (x+5)(2-x)=3. . . . . . . x+. (4x-1). 2(1-x). V. Dạng 5: các pt vô tỉ quy về pt chứa dấu giá trị tuyệt đối. Ví dụ: giải phương trình: . HD: Nhân cả hai vế của phương trình với ta được: Bài tập áp dụng: giải phương trình: . . . . VI. Dạng 6: giải pt vô tỉ bằng phương pháp nhân liên hợp. Ví dụ: giải phương trình: . Nếu ta dùng phép bình phương để khử căn thì ta thu được pt vẫn còn rất phức tạp, không quy được về các dạng quen thuộc. Khi đó giáo viên cần hướng dẫn học sinh tìm tòi xem các số liệu trong bài toán có gì đặc biệt. Trong bài tập này ta thấy (4x+1)-(3x-2)=x+3. Do đó ta nghĩ đến việc nhân cả hai vế của pt với liên hợp của vế trái. Lưu ý khi nhân cả hai vế của pt với u(x) ta cần quan tâm xem liệu u(x) có luôn khác 0 trên tập xác định của pt hay không. Nếu có ta phải xét riêng trường hợp này. HD: Pt có tập xác định D = .Ta thấy . Do vậy pt đã cho tương đương với: 5(x+3)=(x+3) (Vì x+3 . Bằng phương pháp dùng tính đơn điệu của hàm số ta tìm được nghiệm duy nhất của pt là x=2. Bài tập áp dụng: giải phương trình: . . . 4(x+1)2=(2x+10)(1-2. VII. Dạng 7: phương pháp lượng giác hoá. Ví dụ: giải phương trình: HD: Pt đã cho có tập xác định là: D=[-1;1]. Đặt x=cost , () Ta được pt: 4cos3t-3cost=.Pt này có 3 nghiệm thuộc là: . Do vậy pt đã cho có 3 nghiệm là : Bài tập áp dụng: giải phương trình: . . . . VIII. Dạng 8: . Trong đó A = A(x) ; B = B(x) ; C = C(x). Phương pháp giải của dạng này là : lập phương hai vế của pt ta được: A+B+3. Sau đó thế vào pt mới ta thu được: . Ta thu gọn hai vế rồi lập phương một lần nữa quy về pt bậc cao. Ta cần lưu ý cho học sinh các phép biến đổi trên chỉ là phép biến đổi hệ quả. Vì khi thế ta thu được (*). Mà (*) Như vậy khi được nghiệm của phương trình cuối cùng ta phải thay vào pt ban đầu để thử lại. Ví dụ: giải phương trình: HD: Lập phương hai vế của pt đã cho ta được: Thế vào pt trên ta được: Thay các giá trị x = 0 ; x =-1 vào pt ban đầu ta thấy chỉ có x =-1 là thoả mãn .Vậy nghiệm pt ban đầu là  x =-1. Bài tập áp dụng: giải phương trình: . . IX. Dạng 9: đặt ẩn phụ đưa về hệ Ví dụ: giải phương trình: ( Dạng tổng quát là: ) ( Dạng tổng quát là: ) . . HD: a. Đặt . Ta được hệ: . Lấy (1) trừ (2) theo các vế tương ứng ta được: Với y=-x ta được : Với y=x+1 ta được: . Vậy pt dã cho có hai nghiệm: . b. Đặt . Ta được hệ đối xứng loại 2 : . Sau khi giải hệ này ta thu được các nghiệm của hệ :(1 ; 1) ; (-2 ;-2) Vậy pt đã cho có hai nghiệm : x1=1 ; x2=-2. c. Đặt .Ta được hệ : . Thế u=1-v vào pt u3+v2=1 ta được: (1-v)3+v2=1 .Giải pt này ta thu được 3 nghiệm : v1=0 ; v2=1; v3=3.Từ đó suy ra pt đã cho có 3 nghiệm: x1=1 ; x2=2 ; x3=10. d. Đặt . Ta được hệ đối xứng loại I: . Giải hệ này ta thu được hai nghiệm: (1;3) ; (3;1). Từ đó tìm được các nghiệm của pt dã cho là: x1=-17 ; x2=23. Bài tập áp dụng: giải phương trình: . . . . . . . X. Dạng 10: một số phương trình vô tỉ không mẫu mực Dạng này đòi hỏi học sinh phải có sự sáng tao trong làm toán. Trong các bài toán ở dạng này ta thường dùng các phương pháp : nhận xét, đánh giá, dùng các bất đẳng thức cổ điển… Ví dụ: giải phương trình: . HD: Pt có tập xác định D = [1;+). Với mọi x thuộc D ta thấy: . Dấu bằng xảy ra . . Dấu bằng xảy ra . Từ đó dễ suy ra pt có nghiệm duy nhất x=1. Ta cũng có thể giải bài toán này bằng phương pháp dùng tính đơn điệu của hàm số. b. . HD: Pt có tập xác định D=[2 ;4] . Với mọi x thuộc D, áp dụng bất đẳng thức Côsi ta có : . Dấu bằng xảy ra . . Dấu bằng xảy ra . Vậy pt đã cho có nghiệm duy nhất x=3. Ta cũng có thể dùng bất đẳng thức Bunhiacopxki để đánh giá vế trái. c. HD : Dễ thấy pt có tập xác định là R. áp dụng bđt Bunhiacopxki ta có : Dấu bằng xảy ra Vậy pt có nghiệm duy nhất x = 0. d. . HD : Pt có tập xác định D=, áp dụng bđt Côsi ta có: . Dấu bằng xảy ra . Vậy pt có nghiệm duy nhất x=1/16. đ. . HD : Ta thấy : .Dấu bằng xảy ra khi và chỉ khi y = 1. . Dấu bằng xảy ra Vậy nghiệm pt là . e. HD: +) Thay x = n; x= n+1 vào pt thấy thoả mãn. +) Nếu x < n thì . Do vậy mọi x < n không là nghiệm của pt. +) Nếu n < x < n+1thì : . Suy ra mọi x thoả n < x < n+1 cũng không là nghiệm pt. Vậy pt đã cho có hai nghiệm: x1=n ; x2=n+1. g. . (*) Trong bài này học sinh rất dễ mắc sai lầm là đem chia cả hai vế của phương trình cho được pt: . Giáo viên nên tạo ra lời giải theo hướng này và yêu cầu học sinh tìm chỗ sai trong lời giải. HD: Pt có tập xác định +) Nếu thì (*) . Ta thấy . Do vậy mọi không là nghiệm pt. +)Thay x=0 vào pt thấy thoả mãn. +) Nếu thì (*) . Ta thấy . Do vậy mọi cũng không là nghiệm pt. Vậy pt có nghiệm duy nhất x=0. h. . HD +) Trước tiên ta đi chứng minh bđt : Dấu bằng ở bđt này xảy ra +) áp dụng bđt trên ta có : Dấu bằng xảy ra Bài tập áp dụng: giải phương trình: . . . . . XI. Dạng 11: các pt vô tỉ có chứa tham số. Đối với các pt vô tỉ có chứa tham số ta thường gặp các loại câu hỏi sau: +) Tìm m để pt có nghiệm trên D. +)Tìm m để pt có nghiệm duy nhất. +) Biện luận theo m số nghiệm của pt. Ví dụ1: tìm m để phương trình: a. có nghiệm. HD: Cách 1: pt trên có tập xác định là R. Xét hàm : f(x)= . Ta có f’(x)=. . Dễ tính được : Ta có bảng: x f’(x) – 0 + f(x) Nhìn vào bbt ta thấy pt có nghiệm khi và chỉ khi . Cách 2 : pt đã cho Pt ban đầu có nghiệm khi và chỉ khi pt (*) có nghiệm thuộc .Ta dùng định lý đảo về dấu tam thức bậc hai được đáp số như trên. b. có nghiệm trên (0 ;1). HD : Đặt y = . Bằng cách lập bbt của hàm u(x)= 2x-x2 trên khoảng (0 ;1) ta được tập giá trị của y trên (0 ;1) cũng là (0 ;1). Ta được pt : y2+y = 1-m (*) . Pt ban đầu có nghiệm khi và chỉ khi (*) có nghiệm trên (0 ;1) Xét hàm f(y) = y2+y trên (0 ; 1). Ta thấy f(y) đồng biến trên (0 ;1) , do vậy hay tập giá trị của f(y) trên (0 ;1) là (0 ;2). Vậy pt ban đầu có nghiệm khi và chỉ khi : 0< 1-m <2 hay -1 < m < 1. Bài này học sinh thường mắc sai lầm là khi đặt ẩn phụ : y = v(x) học sinh thường không tìm hoặc tìm không chính xác tập giá trị của y trên D. Sau đó lập luận pt ban đầu có nghiệm khi và chỉ khi pt ẩn y có nghiêm. GV chú ý phân tích kỹ giúp học sinh tránh sai lầm này. c. có 4 nghiệm phân biệt. HD : Pt có tập xác định là [-3 ;1]. Đặt y = . Ta có bảng : x -3 -1 1 y 2 0 0 Ta được pt ẩn y : 3-y2 + my = m2 y2- my + m2 -3 = 0. Đặt f(y)= y2- my + m2 – 3 .Từ bbt ta thấy pt ban đầu có 4 nghiệm khi và chỉ khi f(y) có hai nghiệm phân biệt thuộc [0 ;2). Điều kiện cần và đủ là : Giải hệ này ta được : . d.. HD : +) Điều kiên cần : giả sử x0 là nghiệm của phương trình đã cho thì ta thấy 1-x0 cũng là nghiệm của pt đã cho. Do vậy điều kiện cần để pt có nghiệm duy nhất là x0=1-x0 hay x0=1/2. Thay x0=1/2 vào pt ta được : . +) Điều kiện đủ : Với m =0 khá dễ dàng thấy pt có nghiệm duy nhất x=1/2. Với m=-1 pt trở thành : . . Vơi m=1 pt trở thành: . Ta thấy x=0; x=1 khi thay vào pt đều thoả mãn. Vậy đáp số bài toán là: m = 0; m =-1. Ví dụ2: biện luận theo m số nghiệm pt: . HD: Ta thấy pt luôn nhận x=0 là nghiệm với mọi m.Trên tập , pt đã cho tương đương với : (*) Số nghiệm của pt ban đầu bằng số nghiệm của pt (*) cộng với 1. Xét hàm trên . Ta có : . Ta tính được : Ta có BBT : x 0 f’(x) – - f(x) 1 Nhìn vào bảng BT ta thấy: +) Nếu thì PT f(x) =m vô nghiệm, suy ra PT ban đầu có một nghiệm. Bài tập áp dụng: Bài 1 : Tìm m để pt sau có nghiệm . . . . m. mx= . . Bài 2 : Tìm m để pt : có hai nghiệm phân biệt. có 4 nghiệm phân biệt. có hai nghiệm. Bài 3 : Tìm m để pt : có nghiệm duy nhất. có nghiệm duy nhất. có nghiệm duy nhất trên [3 ;5] Bài 4 : Biện luận theo m số nghiệm pt: . . . Phần III : Một số khó khăn, thuận lơị và những quan điểm khi dạy học phần này. *) Khó khăn : Khi giải phương trình nhiều khi học sinh không nắm vững phép biến đổi đó tương đương hay hệ quả. Kĩ năng tính toán của học sinh còn kém, một số học sinh khi biến đổi căn thức còn mắc nhiều sai lầm chẳng hạn như : Đối với học sinh lớp 10,việc vận dụng các định lý đảo về dấu tam thức bậc hai còn hạn chế. Khi vận dụng vào các dạng toán chứa tham số các em hay bỏ xót trường hợp hoặc đủ trường hợp nhưng tính toán không chính xác. Đối với học sinh lớp 12 khi lập bảng biến thiên ở các chứa tham sô các em tính các nhánh vô cực nhiều khi còn khó khăn. *) Thuận lợi : chuyên đề này kiến thức không trìu tượng, có thể nói là khá dễ dạy, học sinh dễ thu lượm được các dạng cơ bản. 2. Một số quan điểm khi dạy học phần này : Dạy cho đối tượng đại chà những dạng cơ bản, cho học sinh khá giỏi cả chuyên đề. Chú ý rèn kĩ năng tính toán cho học sinh. Đối với học sinh lớp 10 , dạng có chứa tham số chỉ dừng ở mức độ nhất định, không nên quá sa đà vào dạng này.Những bài nào có thể dùng bbt của hàm bậc hai thì ta nên hướng dẫn học sinh theo hướng đó, không nên dùng định lý đảo về dấu tam thức bậc hai làm phức tạp bài toán. Khi học sinh học đến các dạng pt lượng giác , mũ , logarit, ta nên lồng ghép những loại này với phương trình vô tỉ.

Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ

I, Tư tưởng đặt ẩn phụ

– Xác định phương trình cơ bản:

Ví dụ: phương trình t2 – 3t + 2

Họ và tên : Đặng Việt Anh Lớp : 10A3 Trường : THPT Ân Thi Nhóm :. . . . . . Gồm hs:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GIẢI PHƯƠNG TRÌNH VÔ TỈ BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ I, Tư tưởng đặt ẩn phụ Xác định phương trình cơ bản: Ví dụ: phương trình t2 - 3t + 2 + chọn t = à phương trình có dạng + chọn t = à phương trình có dạng II, Các phương pháp đặt ẩn phụ 1, Đặt 1 ẩn phụ Một số kiểu đặt thường gặp + à Ta nên đặt t = ( + à Ta nên đặt + à Ta nên đặt 2, Chia làm xuất hiện ẩn phụ Chia 2 vế phương trình cho hoặc x, x2 đại lượng thích hợp. Trước khi chia cho 1 lượng nào đó ta phải kiểm tra lượng đó bằng 0 có là nghiệm phương trình không III, Bài tập hướng dẫn Bài tập 1: Giải phương trình Bài giải: B1: Đặt () B2: Biến đổi căn thức bằng cách bình phương (1) Ta nhận thấy B3: Thay vào phương trình Giải pt ta được nghiệm không thỏa mãn điều kiện ) B4: Thay t =1 vào (1) ta sẽ được nghiệm x. t=1 à à phương trình có 2 nghiệm x=0 (TM) và x=-2 (TM). KL: x=0 và x=-2 là nghiệm của pt Bài tập 2: Giải phương trình . Bài giải: Tương tự như các bước trên: Đk: Đặt (2) Thay vào pt: Giải pt có 2 nghiệm ( loại không thỏa mãn điều kiện) Thay t=5 vào (2) Giải pt suy ra x=143 (KTM) x=3(TM) KL: x=3 là nghiệm của pt Bài tập 3: Giải phương trình . Bài giải: ĐK: Rút gọn pt: Đặt +1 (3) Thay vào phương trình: (loại ktm đk) Thay t=2 vào (3) Giải pt suy ra cả 2 đều TM KL: Ví dụ 4: giải pt Bài giải: Bình phương khử căn: Chia cả 2 vế cho ta đc: Đặt loại t=0 vì k tm đk Thay t=5 vào pt Thay x=1 và x=4 vào pt ta thấy x=4 là nghiệm thỏa mãn còn x=1 không thỏa mãn

Tài liệu đính kèm:

giai_pt_vo_ti_bang_phuong_phap_dat_an_phu.doc

Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đánh Giá Cực Hay

Cách giải phương trình vô tỉ bằng phương pháp đánh giá cực hay

Phương pháp giải

Bước 1: Tìm đkxđ

Bước 2: Đánh giá một vế lớn hơn hoặc bằng vế còn lại hoặc đánh giá cả hai vế.

Phương trình có nghiệm ⇔ A = B = C = … = 0.

+ Cách 2 : Sử dụng các BĐT để đánh giá.

BĐT Cô-si áp dụng cho hai số dương : a 2 + b 2 ≥ 2ab

BĐT Cô-si áp dụng cho ba số dương : a 3 + b 3 + c 3 ≥ 3abc

Bước 3 : Xét dấu = xảy ra và đối chiếu tìm nghiệm của phương trình.

Ví dụ minh họa

Ví dụ 1: Giải phương trình:

Hướng dẫn giải:

Dấu “=” khi (x – 2) 2 = 0 ⇔ x = 2.

Vậy phương trình có nghiệm x = 2.

Ví dụ 2: Giải các phương trình sau:

Hướng dẫn giải:

Ta có:

Suy ra

Suy ra pt (1) ⇔

Vậy phương trình có nghiệm x = 1; y = 2; z = 3.

Ví dụ 3: Giải phương trình

Hướng dẫn giải:

Đkxđ : x ≠ 0.

Nhân cả hai vế với 3x ta được : (1) .

Ta có :

Áp dụng BĐT Cô si cho ba số ta có :

⇒ VT (1) ≤ VP (1).

Vậy phương trình có 2 nghiệm x = ±√3 .

Bài tập trắc nghiệm tự luyện

Bài 2: Phương trình có tổng các nghiệm bằng :

A. 0 B. 1

C. 2 D. 3

A. Phương trình có một nghiệm âm

B. Phương trình có một nghiệm dương

C. Phương trình có hai nghiệm trái dấu

D. Phương trình vô nghiệm.

Bài 5: Phương trình có số nghiệm là :

A. 0 B. 1

C. 2 D. 3

Bài 6: Giải phương trình

Hướng dẫn giải:

Đkxđ : x ≥ -1.

Nhận thấy : VT = với mọi x.

PT có nghiệm ⇔ ⇔ x = 3 (t.m)

Vậy phương trình có nghiệm x = 3.

Bài 7: Giải phương trình:

Hướng dẫn giải:

Ta có :

VT

Phương trình có nghiệm ⇔

Vậy phương trình vô nghiệm

Bài 8: Giải phương trình :

Hướng dẫn giải:

Đkxđ : 5 ≤ x ≤ 7 .

⇒ VT ≤ VP với mọi x.

Phương trình có nghiệm ⇔ ⇔ x = 6.

Vậy phương trình có nghiệm x = 6.

Bài 9: Giải phương trình :

Hướng dẫn giải:

Đkxđ : 0 ≤ x ≤ 1 .

+ Nếu x = 1, VT (*) = 3 ; VP (*) = 3.

⇒ x = 1 là nghiệm của phương trình.

+ Với 0 ≤ x ≤ 1 thì

⇒ Phương trình vô nghiệm.

Vậy phương trình có nghiệm duy nhất x = 1.

Bài 10: Giải phương trình :

Hướng dẫn giải:

Gợi ý: PT có nghiệm x = 1/2 . Do đó ta thêm bớt các số để đánh giá BĐT sao cho dấu = đều xảy ra tại x = 1/2 .

Giải :

Khi đó áp dụng BĐT Cô-si cho VT ta có :

Áp dụng BĐT Cô-si cho vế trái ta được :

⇒ VT ≥ VP

Phương trình có nghiệm ⇔ x = 2.

Vậy phương trình có nghiệm duy nhất x = 2.

Nhóm học tập facebook miễn phí cho teen 2k6: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Bạn đang xem bài viết Chuyên Đề Phương Trình Vô Tỉ Toán 9 trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!