Xem Nhiều 3/2023 #️ Dãy Số – Tập Hợp # Top 10 Trend | Caffebenevietnam.com

Xem Nhiều 3/2023 # Dãy Số – Tập Hợp # Top 10 Trend

Cập nhật thông tin chi tiết về Dãy Số – Tập Hợp mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.

Dãy số và tập hợp nếu chỉ nhìn về ký hiệu đôi lúc khá giống nhau, còn nếu nhìn vào định nghĩa thì khác hẳn nhau:

+) Dãy số thực là một ánh xạ ký hiệu

Từ định nghĩa là thấy dãy số có thể coi như là một tập hợp có định hướng còn bản thân tập hợp đơn thuần thì không có định hướng.

Tuy nhiên sự khá giống nhau ở cách ký hiệu cho ta nghĩ đến việc phải chăng chúng có những điểm tương đồng. Dĩ nhiên chỉ là tương đồng chứ không hoàn toàn giống nhau.

Tập con của tập số thực là tập được sắp thứ tự toàn phần nên sẽ có các khái niệm bị chặn (trên, dưới). Để nói đến tính bị chặn (trên, dưới) của dãy số ta xem ảnh của nó (ảnh của ánh xạ ) có là tập con bị chặn (trên, dưới) hay không. Đây là điểm tương đồng đầu tiên.

Tập con trong tập số thực có khái niệm cận trên đúng (cận dưới đúng) là số thực, có thể là số thực mở rộng (), không bé hơn (lớn hơn) bất kỳ phần tử nào của tập con. Khái niệm tương đồng trong dãy số là giới hạn trên (dưới) là số thực, có thể là số thực mở rộng (), chỉ bé hơn (lớn hơn) cùng lắm một số hữu hạn phần tử nào của dãy số. Từ đây, ta có:

+) tập con của tập số thực bị chặn trên (dưới) khi và chỉ khi cận trên đúng (cận dưới đúng) của tập con đó là số hữu hạn;

+) dãy số bị chặn trên (dưới) khi và chỉ khi giới hạn trên (giới hạn dưới) của dãy đó nhỏ hơn (lớn hơn ).

Tiếp đến là điểm tụ và giới hạn riêng. Điểm tụ của một tập con trong tập số thực là số thực, không nhất thiết phải thuộc tập con đó, sao cho bất kỳ lân cận nào của nó cũng chứa vô số phần tử của tập con. Giới hạn riêng của một dãy số cũng vậy, chỉ thay từ “tập con” của câu trên bằng từ ”dãy số”. Ta cũng có một số thực là điểm tụ của một tập con khi và chỉ khi từ tập con đó có thể lấy ra một dãy số gồm các số đôi một khác nhau mà giới hạn của dãy vừa lấy chính là số thực đó. Tập các điểm tụ của một tập, được gọi là tập dẫn xuất, là tập đóng. Tập các giới hạn riêng của dãy số cũng là tập đóng. Có một điểm khác cận trên đúng và cận dưới đúng của một tập hợp chưa hẳn là điểm tụ của tập hợp, trong khi đó giới hạn trên và giới hạn dưới lần lượt là giới hạn riêng lớn nhất và giới hạn riêng bé nhất của dãy số. Một tập hợp có thể không có một điểm tụ nào, nhưng một dãy số thì chắc chắn có giới hạn riêng. Ví dụ tập có phần tử lớn nhất là phần tử bé nhất và tập này không có điểm tụ nào; còn dãy số có giới hạn trên giới hạn dưới

Share this:

Twitter

Facebook

Like this:

Số lượt thích

Đang tải…

Bài Tập Giới Hạn Dãy Số

Bài tập giới hạn dãy số – có lời giải chi tiết. Tài liệu Chuyên đề giới hạn của dãy số – Nguyễn Quốc Tuấn gồm 31 trang, trình bày lý thuyết, phương pháp giải và bài tập trắc nghiệm với 2 dạng toán thường gặp: + Dạng 1: Tìm giới hạn của dãy số + Dạng 2: Tìm giới hạn bằng chứng minh hoặc theo định nghĩa

Tài liệu Chuyên đề giới hạn của dãy số – Nguyễn Quốc Tuấn gồm 31 trang, trình bày lý thuyết, phương pháp giải và bài tập trắc nghiệm với 2 dạng toán thường gặp:

+ Dạng 1: Tìm giới hạn của dãy số

+ Dạng 2: Tìm giới hạn bằng chứng minh hoặc theo định nghĩa

Loại 1: Giới hạn của dãy số hữu tỉ

Phương pháp: Xem xét bậc cao nhất của tư và mẫu. Sau đó, chia tử và mẫu cho bậc cao nhất của tử và mẫu. Hoặc cũng cóthể đặt nhân tử cao nhất của từ và mẫu để được những giới hạn cơ bản. Tính giới hạn này.

Trích dẫn: Qua 3 bài toán ở trên dạng dãy số dạng hữu tỉta rút ra nhận xét như sau.

+ Nếu bậc của tử lớn hơn bậc của mẫu thì giới hạn đó bằng + – vô cùng

+ Nếu bậc của tử bằng bậc của mẫu thì giới hạn đó bằng hệ số bậc cao nhất của tử trên hệ số bậc cao nhất của mẫu

Bài tập mẫu 3: Tính các giới hạn sau:

+ Nếu bậc của tử béhơn bậc của mẫu thì giới hạn đó bằng 0.

Điều này rất cần thiết cho tất cả chúng ta giải bài toán giới hạn dạng hữu tỉ khi giải trắc nghiệm. Bởi vì một giới hạn hữu tỉ khi nhìn vào ta hoàn toàn cóthể biết được kết quả ngay lập tức. Thật vậy những bài toán sau các em hoàn toàn biết được kết quả một cách nhanh chóng và chính xác.

Thật vậy, sử dụng nhận xét đóta thực hiện nhanh các bài tập trắc nghiệm sau:

Chuyên Đề Giới Hạn Của Dãy Số Và Hàm Số

§1. Dãy số có giới hạn 0:Định nghĩa: thì (un (< (Một số dãy có giới hạn 0:

* Định lý 1: Hai dãy số (un) và (vn) Nếu (un( ( vn (n và limvn = 0 thì limun = 0. * Định lý 2: Nếu (q( < 1 thì limqn = 0. §2. Dãy số có giới hạn hữu hạn:Định nghĩa: limun = L ( lim(un – L) = 0.Định lý 1: Giả sử limun = L. Khi đó:lim(un( = (L( và Nếu un ( 0 (n thì L ( 0 và Định lý 2: Nếu limun = L, limvn = M và c là một hằng số. Khi đó:lim(un + vn) = L + M; lim(un – vn) = L – M; lim(un.vn) = L.M; lim(cun) = cL; (nếu M ≠ 0).Tổng của cấp số nhân lùi vô hạn: Bài tập áp dụng:1. Dùng định nghĩa, chứng minh các dãy sau có giới hạn 0: với a là số thực hữu hạn, k là số tự nhiên hữu hạn

7. Tìm các giới hạn limun với:

8. Chứng minh rằng 9. Cho dãy xác định bởi: a) CMR: với mọi n thì

b) Từ đó suy ra limun = 0.10. Cho dãy xác định bởi: a) CMR: với mọi n thì

b) Từ đó suy ra limun = 0.11. Tìm giới hạn của các dãy sau:

12. Cho dãy xác định bởi: a) CMR: với mọi n thì

Bài tập áp dụng:

3. Cho một hình vuông cạnh a. Nối trung điểm của bốn cạnh ta được một hình vuông mới nhỏ hơn. Lại làm như vậy đối với hình vuông mới. Cứ tiếp tục như thế mãi. Tìm giới hạn của tổng các diện tích của tất cả các hình vuông tạo thành.4. Tìm giới hạn sau: với (a( < 1 và (b( < 1.5. Tìm các giới hạn:

6. Tìm các giới hạn sau:

7. CMR: mỗi dãy số sau đây đều có giới hạn và tìm giới hạn đó:

§4. Giới hạn của hàm số:Định nghĩa 1: ( ( dãy (xn), limxn = x0 ta đều có limf(xn) = L. Trong đó x0 (

Chuyên Đề Giới Hạn Của Dãy Số

Published on

1. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 1 CHƯƠNG IV: GIỚI HẠN CHỦ ĐỀ 1 : GIỚI HẠN CỦA DÃY SỐ Dạng 1: Tìm giới hạn của dãy số I. Dãy số có giới hạn hữu hạn 1. Định nghĩa: Ta nói dãy số (un) có giới hạn là L hay (un) dần tới L khi n dần tới vô cực (n   ), nếu  lim 0.n n u L    Kí hiệu:   nlim hay u khi n + .n n u L L       Chú ý:    lim limn n n u u   . 2. Một số định lý:  Định lí 1: Giả sử lim nu L , khi đó:  33lim ,limn nu L u L   Nếu 0, 0nu n L    và lim nu L  Định lí 2: Giả sử lim ,lim ,n nu L v M c const    lim( )n nu v L M    lim( )n nu v L M    lim( . ) .n nu v L M , lim . .ncu c L  lim ( 0)n n u L M v M    Định lí 3: Cho 3 dãy số ( ),( ),( )n n nu v w . Nếu ,n n nu v w n   và lim lim limn n nu w L v L     Định lí 4: Dãy số tăng và bị chặn trên thì có giới hạn. Dãy số giảm và bị chặn dưới thì có giới hạn. 3. Tổng của cấp số nhân lùi vô hạn: S = u1 + u1q + u1q2 + … = 1 1 u q  1q  II. DÃY SỐ CÓ GIỚI HẠN VÔ CỰC 1. Dãy số có giới hạn  : lim nu    mọi số hạng của dãy số đều lớn hơn một số dương tùy ý cho trước kể từ số hạng nào đó trở đi. 2. Dãy số có giới hạn  : lim nu    mọi số hạng của dãy số đều nhỏ hơn một số âm tùy ý cho trước kể từ số hạng nào đó trở đi.

2. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 2 Chú ý: lim lim( )    n nu u 3. Một vài qui tắc tìm giới hạn vô cực: o Qui tắc 1: lim nu lim nv lim .n nu v       o Qui tắc 2: lim nu Dấu của lim nv L lim .n nu v       o Qui tắc 3: lim 0nu L  Dấu của L lim 0, 0n nv v  Dấu của lim nv lim n n u v +   –  

3. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 3 Loại 1: Giới hạn của dãy số hữu tỉ Phương pháp: Xem xét bậc cao nhất của tư và mẫu. Sau đó, chia tử và mẫu cho bậc cao nhất của tử và mẫu. Hoặc cũng có thể đặt nhân tử cao nhất của từ và mẫu để được những giới hạn cơ bản. Tính giới hạn này. Hướng dẫn giải a. Ta có biến đổi: 3 3 2 3 2 3 3 2 3 6 5 5 3 6 lim lim 4 74 3 7 3 n n n n n n n n n n n                  3 2 3 6 5 5 lim 4 7 33 n n n n        Vì khi n   thì 3 2 3 lim 0 6 lim 0 4 lim 0 7 lim 0 n n n n               b. Ta có biến đổi: 4 2 2 4 6 2 1 lim 1 5 3 n n n n     = 4 4 2 2 4 2 4 4 4 2 2 1 6 6 2 1 lim lim 1 51 5 3 3 n n n n n n n n n n                  2 4 4 2 2 1 6 lim 1 5 3 n n n n      =-2 Bài tập mẫu 1: Tính các giới hạn sau: a. 3 2 2 3 5 3 6 lim 4 3 7 n n n n n     c. 2 2 2 3 lim 3 2 1 n n n n     b. 4 2 2 4 6 2 1 lim 1 5 3 n n n n     d. 2 2 2 3 1 lim 1 n n n     e. 2 4 2017 lim 4 1 n n n    f.    n n n 2 1 4 lim 3 2

4. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 4 Vì khi n   thì 2 4 2 2 lim 0 1 lim 0 5 lim 0 n n n          c. Ta có biến đổi: 2 2 2 3 lim 3 2 1 n n n n                      2 2 2 2 2 2 1 3 2 2 3 lim lim 2 13 2 1 3 n nn n n n n n n n                2 2 1 3 2 2 lim 32 1 3 n n n n Vì khi n   thì 2 2 1 lim 0 3 lim 0 2 lim 0 1 lim 0 n n n n               d. Ta có biến đổi: 2 2 2 3 1 lim 1 n n n     2 2 2 2 3 1 2 lim 1 1 n n n n n               2 2 3 1 2 lim 1 1 n n n      2  Vì khi n   thì 2 3 lim 0 1 lim 0 n n       e. Ta có biến đổi: 2 2 2 22 2017 4 4 2017 4 2017 4 2017 4 lim lim lim lim 31 114 1 4 4 14 n n n n n n n nn n n nn                    

5. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 5 Vì khi n   thì 2 2017 lim 0 1 lim 0 n n       f. Ta có biến đổi: 2 2 2 11 4 1 4 1 4 1 4 5 lim lim lim 3 2 23 2 3 33 n n n n nn nn n n              Vì khi n   thì 2 1 lim 0 2 lim 0 n n       Hướng dẫn giải a. Ta có biến đổi: 4 2 3 3 2 lim 2 n n n    4 2 4 3 2 3 2 1 lim 2 1 n n n n n              = 2 4 2 3 2 1 lim 2 1 n n n n           Vì lim .n   và 2 4 2 3 2 1 lim 1 2 1 n n n          b) Ta có biến đổi: Bài tập mẫu 2: Tính các giới hạn sau: a. 4 2 3 3 2 lim 2 n n n    c.     4 2 3 2 2 3 lim 3 2 1 n n n n b) 4 2 2 8 3 2 1 lim 3 4 2 n n n n n      d. 4 3 3n 2n 5 lim 2n 4    

6. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 6 4 2 2 8 3 2 1 lim 3 4 2 n n n n n      4 2 4 4 4 4 4 2 2 2 2 2 8 3 2 1 lim 3 4 2 n n n n n n n n n n n n n n                2 3 4 2 2 3 2 1 8 lim 3 4 2 n n nn n n                 Do 2 lim n   và 2 3 4 2 3 2 1 8 8 0 0 0n n nlim 4 0 3 4 0 0 22 n n                     c. Ta có biến đổi:     4 2 3 2 2 3 lim 3 2 1 n n n n                  4 4 2 2 4 3 2 3 3 1 3 2 2 3 lim lim 2 13 2 1 3 n n n n n n n n n n               2 4 3 1 3 2 lim 2 1 3 n n n n n Vì 2 4 3 lim 1 3 2 2 lim 0 2 1 3 3 n n n n n                      . Nên                 2 4 3 1 3 2 lim 2 1 3 n n n n n d. Ta có biến đổi: 4 3 3n 2n 5 lim 2n 4     4 3 4 3 4 3 33 2 5 2 5n 3 3 n n n nlim lim n. 44 2n 2 nn                          Do lim n   và 3 4 3 2 5 3 3 0 0 3n nlim 0 4 2 0 22 n                  

7. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 7 Hướng dẫn giải a. Ta có biến đổi: 2 2 2 22 22 2 2 2 1 2 1 2 1 0 lim lim lim 0 2 42 42 4 11 n n n n n n n nn n n nn n n             Vì khi n   thì 2 2 2 lim 0 1 lim 0 4 lim 0 n n n          b. Ta có biến đổi: 3 3 2 3 33 33 3 5 1 5 5 0 lim lim lim 0 13 13 1 33 n n n n n n nn nn n          Do : Vì khi n   thì 2 3 3 1 lim 0 5 lim 0 1 lim 0 n n n          Trích dẫn: Qua 3 bài toán ở trên dạng dãy số dạng hữu tỉ ta rút ra nhận xét như sau. + Nếu bậc của tử lớn hơn bậc của mẫu thì giới hạn đó bằng  + Nếu bậc của tử bằng bậc của mẫu thì giới hạn đó bằng hệ số bậc cao nhất của tử trên hệ số bậc cao nhất của mẫu Bài tập mẫu 3: Tính các giới hạn sau: a. 2 2 1 lim 2 4 n n n    b. 3 5 lim 3 1 n n  

8. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 8 + Nếu bậc của tử bé hơn bậc của mẫu thì giới hạn đó bằng 0. Điều này rất cần thiết cho tất cả chúng ta giải bài toán giới hạn dạng hữu tỉ khi giải trắc nghiệm. Bởi vì một giới hạn hữu tỉ khi nhìn vào ta hoàn toàn có thể biết được kết quả ngay lập tức. Thật vậy những bài toán sau các em hoàn toàn biết được kết quả một cách nhanh chóng và chính xác. Thật vậy, sử dụng nhận xét đó ta thực hiện nhanh các bài tập trắc nghiệm sau: Bài tập trắc nghiệm tự luyện Bài tập 1: Giới hạn 3 2 2 3 1 lim 3 2 n n n n     bằng: a. 2 3 b. 0 c.  d. 3 Đáp án: C Vì bậc cao nhất của tử là bậc 3 có hệ số dương và bậc cao nhất của mẫu là bậc 1 nên giới hạn này bằng  Bài tập 2: Giới hạn 3 2 3 1 lim 4 2 n n n n      bằng: a.  b. 1 4  c.  d. 0 Đáp án: A Vì bậc cao nhất của tử là bậc 3 có hệ số âm và bậc cao nhất của mẫu là bậc 1 nên giới hạn này bằng  Bài tập 3: Giới hạn 2 3 3 1 lim 2 1 n n n    bằng: a. 3 2 b. 1 4  c.  d. 0 Đáp án: D

9. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 9 Vì bậc cao nhất của tử là bậc hai và bậc cao nhất của mẫu là bậc ba. Nên giới hạn này có giới hạn bằng 0. Bài tập 4: Giới hạn 2 2 3 5 1 lim 2 3 n n n n      bằng: a. 3 2 b. 3 2  c. 0 d.  Đáp án: B Bậc cao nhất của tử là bậc hai có hệ số bằng -3 và bậc cao nhất của mẫu cũng là bậc hai có hệ số bằng 2 . Nên giới hạn này bằng 3 2  Bài tập 5: Giới hạn 4 2 3 5 lim 2 7 n n n n    bằng: a. 4 b. 1 2 c.  d.  Đáp án: C Ta có: 4 2 3 5 lim 2 7 n n n n    4 2 4 3 1 5 1 lim 7 2 n n n n n              = 2 4 1 5 1 lim 7 2 n n n n           Vì lim .n   và 2 4 1 5 1 1 lim 7 22 n n n          Bài tập 6: Giới hạn 2 2 2 3 lim 3 2 1 n n n n     bằng: a. 2 3 b. 3 c. 1 2  d. 0 Đáp án: A

10. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 10 Bậc cao nhất của tử là bậc hai có hệ số bằng 2 và bậc cao nhất của mẫu cũng là bậc hai có hệ số bằng 3 . Nên giới hạn này bằng 2 3 Bài tập 7: Giới hạn 3 2 2 1 lim 4 3 n n n    bằng: a.  b. 0 c. 2 d. 1 3 Đáp án: B Bậc cao nhất của tử là bậc 1 và bậc cao nhất của mẫu là bậc ba có hệ số bằng 3 . Nên giới hạn này bằng 0. Bài tập 8: Giới hạn 3 2 3 3 2 lim 4 n n n n    bằng: a. 3 4 b. 1 3 c.  d. 3 Đáp án: D Bậc cao nhất của tử là bậc ba có hệ số bằng 3 và bậc cao nhất của mẫu cũng là bậc ba có hệ số bằng 3 . Nên giới hạn này bằng 3. Bài tập 9: Giới hạn 4 2 lim ( 1)(2 )( 1) n n n n   bằng: a. 4 b. 1 2 c. 1 d.  Đáp án: C Bậc cao nhất của tử là bậc bốn có hệ số bằng 1 và bậc cao nhất của mẫu cũng là bậc bốn có hệ số bằng 1 . Nên giới hạn này bằng 1. Bài tập 10: Giới hạn 2 4 1 lim 2 1 n n n    bằng:

11. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 11 a. 1 2 b. 0 c.  d. 1 Đáp án: B Bậc cao nhất của tử là bậc hai và bậc cao nhất của mẫu là bậc 4 nên giới hạn này bằng 0 Bài tập 11: Giới hạn 4 2 3 2 2 3 lim 3 2 1 n n n n     bằng: a.-3 b. 4 3 c. 1 2  d.  Vì bậc cao nhất của tử là bậc 4 và bậc cao nhất của mẫu là bậc 3 nên giới hạn này bằng  Bài tập 12: Giới hạn 2 2 4 1 2 1 lim 4 1 n n n n n       bằng: a. 2 b. 4 c.  d. 0 Đáp án: A Sau khi biến đổi ta có bậc cao nhất của tử là bậc nhất có tổng các hệ số bằng 4 và bậc cao nhất của mẫu là bậc nhất có tổng các hệ số bằng 2. Nên giới hạn này bằng 2. Thật vậy ta cần chứng minh :                      2 2 2 2 2 2 2 22 2 2 4 1 2 1 1 1 4 2 4 1 2 1 4 lim lim lim 2 24 14 1 4 1 1 1 n n n n n n nn n n n n n n n n n nnn n n Bài tập 13: Giới hạn      2 2 3 4 lim 2 n n n n bằng: a. 0 b. 1 c. 2 d. 4 Đáp án: B Thực hiện tương tự câu trên Bài tập 14: Giới hạn     32 6 4 2 1 lim 1 n n n n bằng:

12. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 12 a. 0 b. 1 c. 2 d. 4 Đáp án: B Thực hiện tương tự câu trên Bài tập 15: Giới hạn (2 1)( 3) lim ( 1)( 2) n n n n n     bằng: a.  b. 3 2 c. 2 3 d. 2 Đáp án: D Ta có biến đổi:          2 2 (2 1)( 3) 2 7 3 lim lim ( 1)( 2) 3 2 n n n n n n n n n n Do đó: Bậc cao nhất của tử là bậc hai hệ số bằng 2. Bậc cao nhất của mẫu là bậc hai hệ số bằng 1. Nên giới hạn này bằng 2. Bài tập 16: Giới hạn      2 2 2 4 4 1 lim 3 1 n n n n n bằng: a. 3 3 1 b. 1 3 1 c. 1 3 d. 4 3 Đáp án: A Thực hiện tương tự như những bài trên. Bài tập 17: Giới hạn 2 2 2 lim 4 2 n n   bằng: a. 1 b. 1 4 c. 1 2 d. -1 Đáp án: C Thực hiện tương tự như những bài trên. Bài tập 18: Giới hạn 33 8 1 lim 2 5 n n   bằng:

13. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 13 a. 4 b.  c. 1 5  d. 1 Đáp án: D Thật vậy, bậc cao nhất của tử là bậc nhất hệ số bằng 3 8 2 và bậc cao nhất của mẫu là bậc nhất hệ số bằng 2. Do đó, giới hạn này có giới hạn bằng 1. Bài tập 19: Giới hạn 4 2 4 3 lim 3 2 n n n    bằng: a. 4 3 b. 1 3 c.  d. 4 Đáp án: C Bậc lớn nhất của tử là 2 hệ số bằng 4 2 , bậc lớn nhất của mẫu là bậc nhất nên giới hạn này có giới hạn bằng  Bài tập 20: Giới hạn 4 2 4 2 3 2 3 1 lim 1 n n n n n       bằng: a. -3 b.  c. 2 d. 1 Đáp án: B Bậc lớn nhất của tử là bậc 4 hệ số bằng -3, bậc của mẫu là bậc 2 nên giới hạn này bằng  Bài tập 21: Giới hạn 2 3 1 lim 3 2 2 n n n    bằng: a. 3 b. 1 c. 3 d.0 Đáp án: A Thực hiện tương tự như những bài trên Bài tập 22: Giới hạn 2 2 3 2 1 lim 4 2 n n n n     bằng:

14. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 14 a. 3 2 b. 3 4 c. 1 2 d.  Đáp án: D Thực hiện tương tự như những bài trên Bài tập 23: Giới hạn 2 4 1 lim 3 2 1 2 n n n n     bằng: a. 4 3 b. 4 3 2 c. 0 d. 2 Đáp án: B Thực hiện tương tự như những bài trên Bài tập 24: Giới hạn 4 3 2 2 3 4 lim 3 2 n n n n n     bằng: a.  b. 3 3 c.  d. 1 3  Đáp án: B Thực hiện tương tự như những bài trên Bài tập 25: Giới hạn 1 lim n n n n    bằng: a. 1 b.  c. -1 d. 1 2 Đáp án: A Thực hiện tương tự như những bài trên Bài tập 26: Giới hạn 3 3 8 4 2 lim 5 1 n n n    bằng:

15. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 15 a. 8 5 b.  c. 2 5 d. 4 5 Đáp án: C Thực hiện tương tự như những bài trên Bài tập 27: Giới hạn 2 4 lim 1 n n n n  bằng: a.2 b. 4 c.  d. 0 Đáp án: D Thực hiện tương tự như những bài trên Bài tập 28: Giới hạn 2 1 2 3 … lim 2 1 n n n       bằng: a. 0 b. 1 4 c. 1 2 d.  Đáp án: B Sử dụng phương pháp quy nạp toán học ta có:       2 2 2 22 1 11 2 3 … 2lim lim lim lim 2 1 2 1 4 2 22 2 1 n n n nn n n n n n n n nn n                 Áp dụng các nhận xét ở giới hạn dãy hữu tỉ ta có giới hạn này bằng 1 4

16. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 16 Loại 2: Giới hạn của dãy có căn thức. Phương pháp : Nếu dãy số có chứa căn thức mà không có dạng hữu tỉ để xét bậc, thì ta tiến hành nhân thêm lượng liên hiệp để tính giới hạn. Nhưng đồng thời các em cũng sử dụng nhận xét ở tính giới hạn hữu tỉ. Lưu ý : + Biểu thức nhân lượng liên hiệp bậc hai :    2 2 A B A B A B    + Biểu thức nhân lượng liên hiệp bậc ba :       2 2 3 3 2 2 3 3 A B A AB B A B A B A AB B A B           Sau khi nhân thêm lượng liên hiệp ta cũng có thể sử dụng nhận xét về giới hạn của dãy số hữu tỉ để có thể tinh giới hạn nhanh hơn. Hướng dẫn giải a. Ta có biến đổi:                          n n n n n n n n n n n n n n n n n n n n n n n 2 2 2 2 2 2 2 2 2 2 lim 2 lim 2 2 2 2 lim lim lim 1 22 2 1 1 b. Ta có biến đổi: Bài tập mẫu 1: Tính các giới hạn sau: a.   n n n2 lim 2 b.    2 lim 2 3n n n c.   3 3 lim 2n n d. 1 lim 3 2 2 1n n   e.  2 lim 1 2 5n n n    f.  3 3 2 2 lim 3 1 4n n n n   

17. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 17                  2 2 2 2 2 3 2 3 lim 2 3 lim 2 3 n n n n n n n n n n n n                             2 2 2 2 22 2 3 2 3 lim lim 2 3 2 3 3 2 2 3 2 lim lim 1 1 12 32 3 1 11 1 n n n n n n n n n n n n n n nn n 2 2 3n n n   là biểu thức liên hợp của 2 2 3n n n   c. Ta có biến đổi:         2 233 3 3 33 3 3 2 233 33 2 2 2. lim 2 lim 2 2. n n n n n n n n n n n n                         3 3 3 3 2 22 23 33 3 3 33 3 2 2 lim lim 2 2. 2 2. n n n n n n n n n n n n                 2 233 33 2 lim 0 2 2.n n n n       d. Ta có biến đổi:      1 3 2 2 1 lim lim 3 2 2 1 3 2 2 1 3 2 2 1 3 2 2 1 lim lim 3 2 2 1 3 2 2 1 n n n n n n n n n n n n n n                           e. Ta có biến đổi:

18. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 18          2 2 2 2 2 2 2 2 2 2 2 1 2 5 1 2 5 lim 1 2 5 lim 1 2 5 1 2 5 2 5 lim lim 1 2 5 1 2 5 2 5 lim 1 1 2 5 n n n n n n n n n n n n n n n n n n n n n n n n n n n n                                            f. Ta có biến đổi:              3 33 2 2 3 2 2 3 3 2 2 3 3 2 2 lim 3 1 4 lim 3 1 4 lim 3 1 4 lim 3 1 lim 4 n n n n n n n n n n n n n n n n n n n n n n                          Đặt:     3 3 2 1 2 2 lim 3 1 lim 4 L n n n L n n n             Với L1 ta sử dụng nhân lượng liên hiệp bậc ba.             3 3 2 1 2 3 3 33 2 3 2 3 2 2 2 3 33 2 3 2 2 3 2 3 2 3 33 2 3 2 2 2 2 3 33 2 3 2 2 lim 3 1 3 1 3 1 3 1 lim 3 1 3 1 3 1 lim 3 1 3 1 3 1 lim 3 1 3 1 L n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n                                           Với L1 ta sử dụng nhân lượng liên hiệp bậc hai.

19. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 19     2 2 2 2 2 2 2 2 2 4 4 lim 4 lim 4 4 4 lim lim 2 4 4 n n n n n n L n n n n n n n n n n n n n n n n                      Vậy:    3 3 2 2 1 2lim 3 1 4 1 2 1n n n n L L           Hướng dẫn giải a) Ta có biến đổi:             2 2 2 2 2 22 2 2 2 2 2 3 2 1 3 2 1 lim 3 2 1 lim 3 2 1 3 2 1 3 2 2 1 lim lim 3 2 1 3 2 1 5 1 5 lim 23 2 1 n n n n n n n n n n n n n n n n n n n n n n n n n n n n n                                            b)Ta có biến đổi:    1 1 3 lim lim 1 3 1 3 1 3 1 3 1 3 lim lim 1 3 2 n n n n n n n n n n n n n n                           c) Ta có biến đổi: Bài tập mẫu 2: Tính các giới hạn sau: a) 2 lim( 3 2 1)n n n    b) 1 lim 1 3n n   c) 2 lim( 3 1 1)n n n    d) 2 4 4 lim 2 1 n n n n           

20. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 20     2 2 2 2 2 2 2 2 3 1 1 3 1 1 lim 3 1 1 lim 3 1 1 3 1 1 3 2 lim lim 3 1 1 3 1 1 n n n n n n n n n n n n n n n n n n n n n n n                                    d) Ta có biến đổi:             2 2 2 2 2 2 2 2 4 4 4 44 4 lim lim 2 1 2 1 4 4 4 4 4 4 lim lim 1 2 1 4 4 2 1 4 4 n n n n n nn n n n n n n n n n n n n n n n n n n n                                     Bài tập trắc nghiệm tự luyện Bài tập 1: Giới hạn 2 3 1 lim 1 n n n n     bằng: a. 1 b. 1 2 c.  d. 0 Đáp án: D Ta có biến đổi:             2 2 2 2 2 2 2 2 3 1 3 13 1 lim lim 1 1 3 1 3 1 3 1 lim lim 0 1 3 1 1 3 1 n n n n n nn n n n n n n n n n n n n n n n n n n n                              Vì bậc của tử là bậc nhất và bậc lớn nhất của mẫu là bậc hai. Nên giới hạn này bằng 0. Bài tập 2: Giới hạn 2 3 2 lim 3 2 n n n n    bằng: a.   2 3 3 2 b.   2 3 3 1 c. 3 3 d. 1 2

21. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 21 Đáp án: B Ta có biến đổi:            2 2 2 2 2 2 3 2 3 23 2 lim lim 3 2 3 2 3 2 2 2 2 lim 3 3 13 2 3 2 n n n n n nn n n n n n n n n n n n n n                 Bài tập 3: Giới hạn 2 2 lim( 2 1 2 1)n n   bằng: a. 1 b. 4 c.  d. 0 Đáp án: D Ta có biến đổi:     2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1 lim 2 1 2 1 lim 2 1 2 1 2 1 2 1 2 lim lim 0 2 1 2 1 2 1 2 1 n n n n n n n n n n n n n n                          Bậc lớn nhất của tử là bậc 0 và bậc lớn nhất của mẫu là bậc nhất. Do đó, giới hạn này bằng 0. Bài tập 4: Giới hạn lim( 3 2 3 2)n n   bằng: a. 9 b.  c. 0 d. 6 Đáp án: C Ta có biến đổi:     3 2 3 2 3 2 3 2 lim 3 2 3 2 lim 3 2 3 2 3 2 3 2 4 lim lim 0 3 2 3 2 3 2 3 2 n n n n n n n n n n n n n n                         

22. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 22 Bài tập 5: Giới hạn lim ( 3 2)n n n   bằng: a.  b. 5 c. 3 2 d. 0 Đáp án: A Ta có biến đổi:        3 2 3 2 lim 3 2 lim 3 2 3 2 lim lim 3 2 3 2 n n n n n n n n n n n n n n n n n n                           Bài tập 6: Giới hạn 3 2 3 2 1 1 lim 4 3 n n n n n n      bằng: a.  b. 0 c. 1 2 d.   1 2 2 1 Đáp án: D Ta có biến đổi:          3 2 3 2 3 2 3 3 3 2 3 2 3 2 3 2 3 3 2 3 2 3 2 3 2 3 3 3 2 3 2 3 3 2 3 2 2 1 1 2 1 lim lim 4 3 4 3 2 1 2 1 lim 4 3 2 1 2 1 1 lim lim 4 3 2 1 4 3 2 1 n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n                                           Bậc cao nhất của tử là bậc ba có hệ số bằng 1 và bậc cao nhất của mẫu sau khi nhân phân phối ta được bậc ba hệ số bằng  2 2 1 . Nên giới hạn này có giới hạn bằng   1 2 2 1

23. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 23 Bài tập 7: Giới hạn 3 3 2 4 lim 1 n n n n     bằng: a. 0 b. 1 c. 2 d.  Đáp án: A Ta có biến đổi:                 2 3 3 33 3 3 2 3 3 2 3 33 3 2 3 3 2 3 33 3 2 2 3 33 3 2 2 4 2 4 2 4 2 4 lim lim 1 1 2 4 2 4 2 4 lim 1 2 4 2 4 2 4 lim 0 1 2 4 2 4 n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n                                                             

24. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 24 Dạng 3: Dãy số chứa lũy thừa – Mũ Phương pháp: Tương tự như dãy hữu tỉ, ta tiến hành chia tử và mẫu cho mũ với cơ số lớn nhất Một số công thức lưu ý: + nn n a a b b        + 1 n n a a   + 1 n n a a + 1 1n  Giới hạn của lũy thừa: lim 0n a  với 0 1a  . Hướng dẫn giải a. Ta có biến đổi: Chia tử và mẫu cho 5n ta được 22 5 1 155 5lim lim 3 5 332. 3. 2. 3 5 5 5 n n n n n n n n n n               Vì 2 0 1 5 3 0 1 5         nên ta có 2 lim 0 5 3 lim 0 5 n n                 b. Ta có biến đổi: 1 1 1 3 2 3 .3 2 .2 3.3 2.2 lim lim lim 25.3 4.2 5.3 2.2 5.3 4. 2 n n n n n n nn n n n n            Ta có biến đổi: Chia tử và mẫu cho 3n ta được Bài tập mẫu 1: Tính các giới hạn sau: a. 2 5 lim 2.3 3.5 n n n n   b. 1 1 1 3 2 lim 5.3 4.2 n n n n      c. 1 1 1 3 2 5 lim 5.5 3.2 3 n n n n n n        d. 10 1 lim 2 5 n n n   e. 9 1 lim 3 1 n n  

25. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 25 23 2 3 2.3. 2. 333 3lim lim 2 53 25. 2. 5 2. 3 3 3 n n n n n n nn n n                Vì 2 0 1 3   nên 2 lim 0 3 n       c. Ta có biến đổi: 1 1 1 3 2 5 3 .3 2 .2 5 3.3 2.2 5 lim lim lim 5.5 3.2 3 5.5 3.2 3 .3 5.5 3.2 3.3 n n n n n n n n n n n n n n n n n n                  Chia tử và mẫu cho 5n ta được: 3 23 2 5 3. 2. 13. 2. 15 55 5 5lim lim 5 2 3 52 35. 3. .3 5 3. 3. 5 5 5 5 5 n n n n n n n n n n n n n n n n                               Vì 2 0 1 5 3 0 1 5         nên ta có 2 lim 0 5 3 lim 0 5 n n                 d. Ta có biến đổi: chia tử và mẫu cho 10n ta được 110 1 1 10 1 1010 10lim lim lim 2 52 5 1 1 10 10 5 2 n n n n n n n n nn n n n                        Vì 1 0 1 10 1 0 1 5 1 0 1 2             nên ta có 1 lim 0 10 1 lim 0 5 1 lim 0 2 n n n                          e. Chia tử và mẫu cho 3n ta được:

26. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 26 19 1 1 99 1 9 9lim lim lim 1 3 13 1 1 1 3 3 3 n n n n n n nn n n                   Vì 1 0 1 9 1 0 1 3         nên ta có 1 lim 0 9 1 lim 0 3 n n                 Lưu ý: Khi chia cho 3n vào trong căn bậc hai nghĩa là chia cho 9n Trích dẫn: Cũng tương tự giới hạn của dãy số hữu tỉ. Ta cũng hoàn toàn có thể tự nhẩm được kết quả của giới hạn dãy số dạng này. Bằng cách quan sát hệ số của những số mũ với cơ số lớn nhất ở tử và mẫu. Từ đó ta hoàn toàn có thể tính nhanh để thực hiện những bài toán giới hạn dưới dạng trắc nghiệm. Bài tập trắc nghiệm tự luyện Bài tập 1: Giới hạn 1 3 lim 4 3 n n   bằng: a. 1 4 b.  c. 1 d. 3 4 Đáp án: C Vì hệ số của sơ số cao nhất của tử là 1 và hệ số của cơ số cao nhất ở mẫu là 1 nên giới hạn đó bằng 1. Bài tập 2: Giới hạn 1 4.3 7 lim 2.5 7 n n n n    bằng: a. 1 b. 7 c. 3 5 d. 7 5 Đáp án: B Thật vậy trước khi nhận xét ta có biến đối       1 4.3 7 4.3 7 .7 lim lim 2.5 7 2.5 7 n n n n n n n n

27. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 27 Vì hệ số của sơ số cao nhất của tử là 7 và hệ số của cơ số cao nhất ở mẫu là 1 nên giới hạn đó bằng 7. Bài tập 3: Giới hạn 1 2 4 6 lim 5 8 n n n n     bằng: a. 0 b. 6 8 c.  d. 4 5 Đáp án: A Thật vậy trước khi nhận xét ta có biến đối           1 2 2 4 6 4 .4 6 .6 4.4 36.6 lim lim lim 5 8 5 8 5 8 n n n n n n n n n n n n q Nhận xét: Cơ số cao nhất của tử là 6 và cơ số cao nhất của mẫu là 8. Nên giới hạn đó bằng 0. Bài tập 4: Giới hạn 1 2 5 lim 1 5 n n n    bằng: a. 2 b. 1 5 c. 2 5 d. 5 Đáp án: D Ta có biến đổi:       1 2 5 2 5.5 lim lim 1 5 1 5 n n n n n n Vì hệ số của sơ số cao nhất của tử là 5 và hệ số của cơ số cao nhất ở mẫu là 1 nên giới hạn đó bằng 5. Bài tập 5: Giới hạn 1 2.3 7 lim 5 2.7 n n n n    bằng: a. 2 b. 1 5 c. 1 2  d. 0 Đáp án: C

28. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 28 Vì hệ số của sơ số cao nhất của tử là -1 và hệ số của cơ số cao nhất ở mẫu là 2 nên giới hạn đó bằng 1 2  . Bài tập 6: Giới hạn 1 1 2.3 6 lim 2 (3 5) n n n n    bằng: a.  b. 1 2 c.1 d. 1 3 Đáp án: D Ta có biến đổi:            1 1 2.3 6 1 2.3 6 1 2.3 6 lim lim lim 2 (3 5) 2 (3.3 5) 3.6 5.2 n n n n n n n n n n n n Vì hệ số của sơ số cao nhất của tử là 1 và hệ số của cơ số cao nhất ở mẫu là 3 nên giới hạn đó bằng 1 3 . Dạng 2: Tìm giới hạn bằng chứng minh hoặc theo định nghĩa Phương pháp 1: Dùng định lí kẹp Phát biểu: Cho 3 dãy số ( ),( ),( )n n nu v w . Nếu ,n n nu v w n   và lim lim limn n nu w L v L    Một số kiến thức cũ: 1 sin 1u    + 1 cos 1u   Hướng dẫn giải Ta có nhận xét: Bài tập mẫu 1: Tính các giới hạn sin(3 ) lim n n

29. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 29  1 sin 3 1 1 sin(3 ) 1 n n n n n       Ta có: 1 lim 0 1 lim 0 n n             nên sin(3 ) lim 0 n n  Hướng dẫn giải Ta có:  2 2 2 cos3 cos3 cos3 lim 2 lim 2 lim 2 lim n n n n n n                          Thực hiện tương tự bài tập mẫu 1 ta được:   2 2 2 1 cos 3 1 1 cos(3 ) 1 n n n n n       Ta có: 2 2 1 lim 0 1 lim 0 n n             nên cos(3 ) lim 0 n n  Do đó: 2 cos3 lim 2 2 n n          Hướng dẫn giải Ta có: ( 1) ( 1) ( 1) lim 1 lim lim1 lim 1 1 1 1 n n n n n n               Ta có nhận xét : Bài tập mẫu 3: Chứng minh rằng: ( 1) lim 1 1 1 n n        Bài tập mẫu 2: Chứng minh rằng: 2 cos3 lim 2 2 n n         

30. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 30     1 1 1 11 1 1 1 1 n n n n n             Mà: 1 lim 0 1 1 lim 0 1 n n                 nên ( 1) lim 0 1 n n    Do đó: ( 1) lim 1 1 1 n n        Bài tập trắc nghiệm tương tự Bài tập 1: Giới hạn sin3 lim 2 1 n n n   bằng : a. 1 2 b. 3 2 c. 0 d.  Đáp án: A Ta có biến đổi: sin3 sin3 lim lim lim 2 1 2 1 2 1 n n n n n n n       Mà khi n dần ra  thì ta có : 1 lim 2 1 2 sin3 lim 0 2 1 n n n n         Nên: sin3 1 lim 2 1 2 n n n    Bài tập 2: Giới hạn sin 3 n n u n  bằng a.  b. 1 c. 3 d. 0 Đáp án: D Thực hiện tương tự như những bài tập trên áp dụng định lí kẹp

31. Chuyên đề: Giới hạn dãy số- Chương IV: Đại số và Giải tích 11 Nguyễn Quốc Tuấn (Tổng biên tập của Xuctu.com)-090.567.1232 Trang số 31 Bài tập 3: Giới hạn 2 cos 3 2 n n n u n    bằng : a. 2 3 b. 1 3 c. 0 d.  Đáp án: A Thực hiện tương tự như những bài tập trên áp dụng định lí kẹp Bài tập 4: Giới hạn 1 2 2 ( 1) 2 lim 5 cos n n n n     bằng : a.  b. 2 5 c. 2 5  d. 1 5  Đáp án: C Thực hiện tương tự như những bài tập trên áp dụng định lí kẹp Bài tập 5: Giới hạn 2 1 2 2 ( 1) cos 3 n n n u n n      bằng a. 2 3 b. 3 2 c. 2 3  d. 1 Đáp án: A Thực hiện tương tự như những bài tập trên áp dụng định lí kẹp Bài tập 6: Giới hạn sin cos sin 2 n n n u n n   bằng a. 2 b. 2 c. 0 d. 4  Đáp án: C Thực hiện tương tự như những bài tập trên áp dụng định lí kẹp

Bạn đang xem bài viết Dãy Số – Tập Hợp trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!