Xem Nhiều 2/2023 #️ Đề Tài: Hướng Dẫn Học Sinh Tìm Lời Giải Cho Bài Toán Chứng Minh Bằng Phương Pháp Phân Tích Ngược Trong Môn Hình Học Lớp 7 # Top 3 Trend | Caffebenevietnam.com

Xem Nhiều 2/2023 # Đề Tài: Hướng Dẫn Học Sinh Tìm Lời Giải Cho Bài Toán Chứng Minh Bằng Phương Pháp Phân Tích Ngược Trong Môn Hình Học Lớp 7 # Top 3 Trend

Cập nhật thông tin chi tiết về Đề Tài: Hướng Dẫn Học Sinh Tìm Lời Giải Cho Bài Toán Chứng Minh Bằng Phương Pháp Phân Tích Ngược Trong Môn Hình Học Lớp 7 mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.

ĐỀ TÀI: HƯỚNG DẪN HỌC SINH TÌM LỜI GIẢI CHO BÀI TOÁN CHỨNG MINH BẰNG PHƯƠNG PHÁP PHÂN TÍCH NGƯỢC TRONG MÔN HÌNH HỌC LỚP 7 I. ĐẶT VẤN ĐỀ 1. Lý do chọn chuyên đề: Trong chương trình hình học THCS các bài tập yêu cầu chứng minh chiếm tỉ lệ lớn nên yêu cầu giáo viên giảng dạy cần hướng dẫn học sinh tìm cách chứng minh bài toán chứ không đơn thuần là giúp học sinh có được lời giải bài toán. Thông qua việc hướng dẫn của giáo viên giúp học sinh tự đúc kết được phương pháp chứng minh, tiến tới có được phương pháp học tập bộ môn hình học. Với chương trình hình học 6, học sinh mới chỉ làm quen với các khái niệm mở đầu về hình học. Học sinh được tiếp cận kiến thức bằng con đường quy nạp không hoàn toàn, từ quan sát, thử nghiệm, đo đạc, vẽ hình để đi dần đến kiến thức mới. Học sinh nhận thức các hình và mối liên hệ giữa chúng bằng mô tả trực quan với sự hỗ trợ của trực giác, của tưởng tượng là chủ yếu. Lên lớp 7 học sinh bước đầu làm quen với các mối quan hệ vuông góc, song song, bằng nhau… Với yêu cầu về kĩ năng từ thấp đến cao đòi hỏi phải có sự suy luận lôgíc hợp lý, khả năng sử dụng ngôn ngữ chính xác thông qua các bài tập chứng minh. Việc làm quen và tiếp cận với bài toán chứng minh đối với học sinh lớp 7 còn mới mẻ nên đại đa số học sinh chưa biết chứng minh như thế nào và bắt đầu từ đâu. Nếu vấn đề này không được khắc phục ngay từ lớp 7 thì HS sẽ không thể tiếp thu được kiến thức hình học ở các lớp trên. Do vậy vai trò của giáo viên giảng dạy lúc này rất quan trọng. Giáo viên là người hướng dẫn, phân tích giúp học sinh tìm ra cách chứng minh bài toán hình học từ đó hình thành kĩ năng phân tích, tổng hợp kiến thức và kĩ năng trình bày lời giải. Từ đó hình thành phương pháp học toán cho HS. Với các lý do trên nên tôi chọn đề tài “Hướng dẫn học sinh tìm lời giải cho bài toán chứng minh bằng phương pháp phân tích ngược trong môn hình học lớp 7”. 2. Cơ sở lí luận của đề tài: Trong trường THCS môn toán được coi là môn khoa học luôn được chú trọng nhất và cũng là môn có nhiều khái niệm trừu tượng. Đặc biệt phải khẳng định là phân môn hình học có nhiều khỏi niệm trừu tượng nhất, kiến thức trong bài tập lại phong phú, rất nhiều so với nội dung lý thuyết mới học. Bên cạnh đó yêu cầu bài tập lại cao, nhiều bài toán ở dạng chứng minh đòi hỏi phải suy diễn chặt chẽ lô gíc và có trình tự. SGK hình học 7, các kiến thức được trình bày theo con đường kết hợp trực quan và suy diễn, lập luận. Bằng đo dạc, vẽ hình, gấp hình, quan sát …học sinh dự đoán các kết luận hình học và tiếp cận các định lý. Nhờ đó giúp HS có hứng thú học tập, chịu khó tìm tòi khám phá kiến thức. Sách giáo khoa hình học 7 tiếp tục bổ sung kiến thức mở đầu của hình học phẳng lớp 6. làm quen với các khái niệm mới: Hai đường thẳng vuông góc, hai đường thẳng song song, quan hệ bằng nhau của hai tam giác, tam giác cân, tam giác đều, định lí Pitago, quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Chương trình hình học 7 là bước chuyển tiếp quan trọng về tư duy để giúp HS học tốt được chương trình hình học 8 và 9. Hệ thống các bài tập đa dạng phong phú được thể hiện dưới nhiều hình thức, phần lớn là các bài tập chứng minh, từ đó đòi hỏi HS phải có phương pháp phân tích hợp lí để tìm được lời giải cho bài toán. Vì vậy việc hướng dẫn học sinh cách phân tích tìm lời giải cho bài toán là hết sức quan trọng để khơi dậy hứng thú học tập, giúp học sinh học toán nhẹ nhàng hào hứng, đạt kết quả tốt hơn. 3. Cơ sở thực tiễn của chuyên đề a)Đối với giáo viên: Cơ bản là có tinh thần tự bồi dưỡng thường xuyên, liên tục để nâng cao trỡnh độ chuyên môn nghệp vụ. Có trách nhiệm đối với học sinh, đối với trường lớp Phương pháp giảng dạy đó có sự đổi mới hơn theo hướng tích cực hóa hoạt động của người học, từng bước áp dụng công nghệ thông tin vào giảng dạy. Tuy nhiên một bộ phận không nhỏ giáo viên còn lúng túng trong việc phân tích, hướng dẫn cho HS tìm ra lời giải cho bài toán. GV thường phân tích xuôi chiều từ giả thiết đến kết luận, khiến HS không hiểu tại sao và nguyên nhân nào đưa đến lời giải của bài toán vì thế không vận dụng được vào giải các bài toán khác, do đó HS không biết cách học toán, cụ thể là cách suy nghĩ để tìm lời giải cho một bài toán. Đặc biệt là các bài toán chứng minh trong môn hình học, khiến HS tiếp thu một cách thụ động, thiếu tự nhiên, thiếu tính sáng tạo, dẫn đến kết quả học tập thấp. b)Đối với học sinh: Một bộ phận học sinh, khoảng 20% rất tích cực học tập, rèn luyện, có động cơ học tập đúng đắn nên đó c kết quả học tập tốt. Một bộ phận lớn học sinh, khoảng 35% cú kết quả học tập trung bình, trong số này có khoảng 15% nếu có phương pháp học phù hợp thì sẽ đạt mức khá . Số còn lại (45%) học yếu, trên lớp hầu như không tiếp thu được bài học,. trong đó phần lớn là do các em không có phương pháp học toán phù hợp, không có kĩ năng phân tích, tìm lời giải cho bài toán. Qua tìm hiểu tôi thấy nguyên nhân do trong quá trình dạy học thầy cô giáo chưa hướng dẫn học sinh phương pháp học tập đúng đắn, các hình thức tổ chức các hoạt động dạy học trong giờ học chưa phong phú nên chưa kích thích được học sinh hứng thú học tập. II. Mục tiêu, phạm vi và đối tượng của chuyên đề: 1.Mục tiêu Thông qua chuyên đề tôi muốn trao đổi thêm về phương pháp giảng dạy hình học 7 để có hiệu quả giảng dạy cao nhất. Giúp cho học sinh có hướng suy nghĩ tìm tòi lời giải cho một bài toán chứng minh hình học, nhằm dần hình thành kĩ năng phân tích, tổng hợp kiến thức, Giúp phát triển tư duy và rèn khả năng tự học cho HS, đáp ứng yêu cầu đổi mới giáo dục. 2.Phạm vi Có rất nhiều con đường, nhiều phương pháp để tìm lời giải cho một bài toán hình học, nhưng vì điều kiện thời gian chuyên đề chỉ đề cập đến một phương pháp quan trọng và phổ biến trong việc tìm cách chứng minh bài toán hình học: Phương pháp phân tích ngược trong môn hình học 7. 3. Đối tượng HS khối 7, môn hình học 7. III.NỘI DUNG 1. Các bài toán chứng minh trong hình học 7 thường gồm: – Chứng minh bằng nhau: Đoạn thẳng bằng nhau, góc bằng nhau, tam giác bằng nhau…ứng dụng để: So sánh góc, đoạn thẳng, CM trung điểm của đoạn thẳng, tia phân giác của góc… – Chứng minh song song: – Chứng minh vuông góc. – Chứng minh thẳng hàng. – Chứng minh các đường thẳng đồng quy – Chứng minh các yếu tố cố định,…. 2. Phương pháp chung để tìm lời giải bài toán a) Tìm hiểu nội dung bài toán + Giả thiết là gì? Kết luận là gì? Hình vẽ minh họa ra sao? Sử dụng kí hiệu như thế nào? + Phát biểu bài toán dưới những dạng khác nhau để hiểu rõ bài toán. + Dạng toán nào? + Kiến thức cơ bản cần có là gì? b) Xây dựng chương trình giải: Chỉ rõ các bước giải theo một trình tự thích hợp. c) Thực hiện chương trình giải: Trình bày bài làm theo các bước đã được chỉ ra. Chú ý các sai lầm thường gặp trong tính toán, biến đổi. d) Kiểm tra và nghiên cứu lời giải + Xem xét có sai lầm không, có phải biện luận kết quả không + Nghiên cứu bài toán tương tự, mở rộng hay lật ngược vấn để,… 3. Phương pháp chứng minh bài toán hình học theo hướng phân tích đi lên * Ngoài việc tuân thủ theo bốn bước chung, ta đi sâu vào hai bước: Tìm hiểu và xây dựng chương trình giải. – Bài toán yêu cầu phải chứng minh điều gì? ( Kết luận A) – Đề chứng được kết luận A ta phải chứng minh được điều gì? ( Kết Luận X) – Để chứng minh được kết luận X ta dựa vào dấu hiệu nào, chứng minh điều gì? ( Kết luân Y)…. -Quá trình phân tích trên dừng lại khi đã sử dụng được giả thiết của bài toán và các kiến thức đã học trước đó. Sơ đồ phân tích bài toán như sau: Để chứng minh A Phải cm X Phải cm Y Phải cm …. Phải cm Z (CM được từ GT) Lưu ý: Khi trình bày lời giải, học sinh phải tiến hành theo hướng ngược lại. 4. Kết quả đạt được sau khi thực hiện chuyên đề Trước khi xây dựng chuyên đề này tôi tiến hành khảo sát học sinh khối 7 về chứng minh bài toán hình học, kết quả là: Số lượng học sinh được kiểm tra Tỉ lệ học sinh biết chứng minh (mức độ chuẩn KTKN) 67 35 HS chiếm 52,2% Sau khi thực hiện chuyên đề kết quả đạt được như sau: Số lượng học sinh được kiểm tra Tỉ lệ học sinh biết chứng minh (mức độ chuẩn KTKN) 67 47 HS chiếm 70,1% 5. Các ví dụ cụ thể: Ví dụ 1: Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng AB = CE AC

Tài Liệu Hướng Dẫn Học Sinh Tìm Lời Giải Cho Bài Toán Chứng Minh Bằng Phương Pháp Phân Tích Ngược Trong Môn Hình Học Lớp 7

Hướng dẫn học sinh tìm lời giải cho bài toán chứng minh bằng phương pháp phân tích ngược trong môn hình học lớp 7 ================================================================ ĐỀ TÀI: HƯỚNG DẪN HỌC SINH TÌM LỜI GIẢI CHO BÀI TOÁN CHỨNG MINH BẰNG PHƯƠNG PHÁP PHÂN TÍCH NGƯỢC TRONG MÔN HÌNH HỌC LỚP 7 I. ĐẶT VẤN ĐỀ 1. Lý do chọn chuyên đề: Trong chương trình hình học THCS các bài tập yêu cầu chứng minh chiếm tỉ lệ lớn nên yêu cầu giáo viên giảng dạy cần hướng dẫn học sinh tìm cách chứng minh bài toán chứ không đơn thuần là giúp học sinh có được lời giải bài toán. Thông qua việc hướng dẫn của giáo viên giúp học sinh tự đúc kết được phương pháp chứng minh, tiến tới có được phương pháp học tập bộ môn hình học. Với chương trình hình học 6, học sinh mới chỉ làm quen với các khái niệm mở đầu về hình học. Học sinh được tiếp cận kiến thức bằng con đường quy nạp không hoàn toàn, từ quan sát, thử nghiệm, đo đạc, vẽ hình để đi dần đến kiến thức mới. Học sinh nhận thức các hình và mối liên hệ giữa chúng bằng mô tả trực quan với sự hỗ trợ của trực giác, của tưởng tượng là chủ yếu. Lên lớp 7 học sinh bước đầu làm quen với các mối quan hệ vuông góc, song song, bằng nhau… Với yêu cầu về kĩ năng từ thấp đến cao đòi hỏi phải có sự suy luận lôgíc hợp lý, khả năng sử dụng ngôn ngữ chính xác thông qua các bài tập chứng minh. Việc làm quen và tiếp cận với bài toán chứng minh đối với học sinh lớp 7 còn mới mẻ nên đại đa số học sinh chưa biết chứng minh như thế nào và bắt đầu từ đâu. Nếu vấn đề này không được khắc phục ngay từ lớp 7 thì HS sẽ không thể tiếp thu được kiến thức hình học ở các lớp trên. Do vậy vai trò của giáo viên giảng dạy lúc này rất quan trọng. Giáo viên là người hướng dẫn, phân tích giúp học sinh tìm ra cách chứng minh bài toán hình học từ đó hình thành kĩ năng phân Phạm Thị Nhài 2 THCS Hồng Thuận Hướng dẫn học sinh tìm lời giải cho bài toán chứng minh bằng phương pháp phân tích ngược trong môn hình học lớp 7 ================================================================ tích, tổng hợp kiến thức và kĩ năng trình bày lời giải. Từ đó hình thành phương pháp học toán cho HS. Với các lý do trên nên tôi chọn đề tài “Hướng dẫn học sinh tìm lời giải cho bài toán chứng minh bằng phương pháp phân tích ngược trong môn hình học lớp 7”. 2. Cơ sở lí luận của đề tài: Trong trường THCS môn toán được coi là môn khoa học luôn được chú trọng nhất và cũng là môn có nhiều khái niệm trừu tượng. Đặc biệt phải khẳng định là phân môn hình học có nhiều khỏi niệm trừu tượng nhất, kiến thức trong bài tập lại phong phú, rất nhiều so với nội dung lý thuyết mới học. Bên cạnh đó yêu cầu bài tập lại cao, nhiều bài toán ở dạng chứng minh đòi hỏi phải suy diễn chặt chẽ lô gíc và có trình tự. SGK hình học 7, các kiến thức được trình bày theo con đường kết hợp trực quan và suy diễn, lập luận. Bằng đo dạc, vẽ hình, gấp hình, quan sát …học sinh dự đoán các kết luận hình học và tiếp cận các định lý. Nhờ đó giúp HS có hứng thú học tập, chịu khó tìm tòi khám phá kiến thức. Sách giáo khoa hình học 7 tiếp tục bổ sung kiến thức mở đầu của hình học phẳng lớp 6. làm quen với các khái niệm mới: Hai đường thẳng vuông góc, hai đường thẳng song song, quan hệ bằng nhau của hai tam giác, tam giác cân, tam giác đều, định lí Pitago, quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Chương trình hình học 7 là bước chuyển tiếp quan trọng về tư duy để giúp HS học tốt được chương trình hình học 8 và 9. Hệ thống các bài tập đa dạng phong phú được thể hiện dưới nhiều hình thức, phần lớn là các bài tập chứng minh, từ đó đòi hỏi HS phải có phương pháp phân tích hợp lí để tìm được lời giải cho bài toán. Vì vậy việc hướng dẫn học sinh cách Phạm Thị Nhài 3 THCS Hồng Thuận Hướng dẫn học sinh tìm lời giải cho bài toán chứng minh bằng phương pháp phân tích ngược trong môn hình học lớp 7 ================================================================ phân tích tìm lời giải cho bài toán là hết sức quan trọng để khơi dậy hứng thú học tập, giúp học sinh học toán nhẹ nhàng hào hứng, đạt kết quả tốt hơn. 3. Cơ sở thực tiễn của chuyên đề a)Đối với giáo viên: Cơ bản là có tinh thần tự bồi dưỡng thường xuyên, liên tục để nâng cao trỡnh độ chuyên môn nghệp vụ. Có trách nhiệm đối với học sinh, đối với trường lớp Phương pháp giảng dạy đó có sự đổi mới hơn theo hướng tích cực hóa hoạt động của người học, từng bước áp dụng công nghệ thông tin vào giảng dạy. Tuy nhiên một bộ phận không nhỏ giáo viên còn lúng túng trong việc phân tích, hướng dẫn cho HS tìm ra lời giải cho bài toán. GV thường phân tích xuôi chiều từ giả thiết đến kết luận, khiến HS không hiểu tại sao và nguyên nhân nào đưa đến lời giải của bài toán vì thế không vận dụng được vào giải các bài toán khác, do đó HS không biết cách học toán, cụ thể là cách suy nghĩ để tìm lời giải cho một bài toán. Đặc biệt là các bài toán chứng minh trong môn hình học, khiến HS tiếp thu một cách thụ động, thiếu tự nhiên, thiếu tính sáng tạo, dẫn đến kết quả học tập thấp. b)Đối với học sinh: Một bộ phận học sinh, khoảng 20% rất tích cực học tập, rèn luyện, có động cơ học tập đúng đắn nên đó c kết quả học tập tốt. Một bộ phận lớn học sinh, khoảng 35% cú kết quả học tập trung bình, trong số này có khoảng 15% nếu có phương pháp học phù hợp thì sẽ đạt mức khá . Số còn lại (45%) học yếu, trên lớp hầu như không tiếp thu được bài học,. trong đó phần lớn là do các em không có phương pháp học toán phù hợp, không có kĩ năng phân tích, tìm lời giải cho bài toán. Qua tìm hiểu tôi thấy nguyên nhân do trong quá trình dạy học thầy cô giáo chưa hướng dẫn học sinh phương pháp học tập đúng đắn, các hình thức tổ chức Phạm Thị Nhài 4 THCS Hồng Thuận Hướng dẫn học sinh tìm lời giải cho bài toán chứng minh bằng phương pháp phân tích ngược trong môn hình học lớp 7 ================================================================ các hoạt động dạy học trong giờ học chưa phong phú nên chưa kích thích được học sinh hứng thú học tập. II. Mục tiêu, phạm vi và đối tượng của chuyên đề: 1.Mục tiêu Thông qua chuyên đề tôi muốn trao đổi thêm về phương pháp giảng dạy hình học 7 để có hiệu quả giảng dạy cao nhất. Giúp cho học sinh có hướng suy nghĩ tìm tòi lời giải cho một bài toán chứng minh hình học, nhằm dần hình thành kĩ năng phân tích, tổng hợp kiến thức, Giúp phát triển tư duy và rèn khả năng tự học cho HS, đáp ứng yêu cầu đổi mới giáo dục. 2.Phạm vi Có rất nhiều con đường, nhiều phương pháp để tìm lời giải cho một bài toán hình học, nhưng vì điều kiện thời gian chuyên đề chỉ đề cập đến một phương pháp quan trọng và phổ biến trong việc tìm cách chứng minh bài toán hình học: Phương pháp phân tích ngược trong môn hình học 7. 3. Đối tượng HS khối 7, môn hình học 7. III.NỘI DUNG 1. Các bài toán chứng minh trong hình học 7 thường gồm: – Chứng minh bằng nhau: Đoạn thẳng bằng nhau, góc bằng nhau, tam giác bằng nhau…ứng dụng để: So sánh góc, đoạn thẳng, CM trung điểm của đoạn thẳng, tia phân giác của góc… – Chứng minh song song: – Chứng minh vuông góc. – Chứng minh thẳng hàng. Phạm Thị Nhài 5 THCS Hồng Thuận Hướng dẫn học sinh tìm lời giải cho bài toán chứng minh bằng phương pháp phân tích ngược trong môn hình học lớp 7 ================================================================ – Chứng minh các đường thẳng đồng quy – Chứng minh các yếu tố cố định,…. 2. Phương pháp chung để tìm lời giải bài toán a) Tìm hiểu nội dung bài toán + Giả thiết là gì? Kết luận là gì? Hình vẽ minh họa ra sao? Sử dụng kí hiệu như thế nào? + Phát biểu bài toán dưới những dạng khác nhau để hiểu rõ bài toán. + Dạng toán nào? + Kiến thức cơ bản cần có là gì? b) Xây dựng chương trình giải: Chỉ rõ các bước giải theo một trình tự thích hợp. c) Thực hiện chương trình giải: Trình bày bài làm theo các bước đã được chỉ ra. Chú ý các sai lầm thường gặp trong tính toán, biến đổi. d) Kiểm tra và nghiên cứu lời giải + Xem xét có sai lầm không, có phải biện luận kết quả không + Nghiên cứu bài toán tương tự, mở rộng hay lật ngược vấn để,… 3. Phương pháp chứng minh bài toán hình học theo hướng phân tích đi lên * Ngoài việc tuân thủ theo bốn bước chung, ta đi sâu vào hai bước: Tìm hiểu và xây dựng chương trình giải. – Bài toán yêu cầu phải chứng minh điều gì? ( Kết luận A) – Đề chứng được kết luận A ta phải chứng minh được điều gì? ( Kết Luận X) – Để chứng minh được kết luận X ta dựa vào dấu hiệu nào, chứng minh điều gì? ( Kết luân Y)…. Phạm Thị Nhài 6 THCS Hồng Thuận Hướng dẫn học sinh tìm lời giải cho bài toán chứng minh bằng phương pháp phân tích ngược trong môn hình học lớp 7 ================================================================ -Quá trình phân tích trên dừng lại khi đã sử dụng được giả thiết của bài toán và các kiến thức đã học trước đó. Sơ đồ phân tích bài toán như sau: Để chứng minh A Phải cm X Phải cm Y Phải cm …. Phải cm Z (CM được từ GT) Lưu ý: Khi trình bày lời giải, học sinh phải tiến hành theo hướng ngược lại. 4. Kết quả đạt được sau khi thực hiện chuyên đề Trước khi xây dựng chuyên đề này tôi tiến hành khảo sát học sinh khối 7 về chứng minh bài toán hình học, kết quả là: Số lượng học sinh được kiểm Tỉ lệ học sinh biết chứng minh (mức độ tra chuẩn KTKN) 67 35 HS chiếm 52,2% Sau khi thực hiện chuyên đề kết quả đạt được như sau: Số lượng học sinh được kiểm Tỉ lệ học sinh biết chứng minh (mức độ tra chuẩn KTKN) 67 47 HS chiếm 70,1% 5. Các ví dụ cụ thể: Ví dụ 1: Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng a) AB = CE b) AC

Đề Tài Hướng Dẫn Học Sinh Phân Tích Đề Bài Và Giải Bài Toán Bằng Cách Lập Hệ Phương Trình

– Trong xu hướng phát triển chung, xã hội luôn đặt ra những yêu cầu mới cho sự nghiệp đào tạo con người. Chính vì vậy, việc dạy và học cũng không ngừng đổi mới để đáp ứng yêu cầu ngày càng cao của xã hội. Trước tình hình đó, mỗi giáo viên cũng phải luôn tìm tòi, sáng tạo, tìm ra phương pháp dạy mới phù hợp với đối tượng học sinh để phát huy cao nhất tính chủ động, sáng tạo, tích cực của người học, nâng cao năng lực phân tích, tìm tòi, phát hiện và giải quyết vấn đề, rèn luyện và hoàn thành các kỹ năng vận dụng thành thạo các kiến thức một cách chủ động, sáng tạo trong thực tế cuộc sống.

– Đối với lứa tuổi học sinh THCS nói chung và đối tượng nghiên cứu là học sinh lớp 9 nói riêng. Mặc dù tuổi các em không phải còn nhỏ nhưng khả năng phân tích, suy luận còn rất nhiều hạn chế nhất là đối với đối tượng học sinh học yếu và lười học. Chính vì vậy nên trong những dạng toán của môn đại số lớp 9 thì dạng toán giải bài toán bằng cách lập hệ phương trình đối với các em là dạng khó.

II/ LÝ DO CHỦ QUAN.

ư sau: -Vòi 1 chảy một mình trong mấy giờ ? h/s trả lời -Hai vòi chảy chung trong mấy giờ ? Gv vẽ sơ đồ phân tích ra : vòi 1: 9 giờ 2 vòi: giờ Thời gian k/lượng c/việc (7) vòi 1: 9 giờ 9.x ( bể ) (8) sau đó 2 vòi: giờ . ( bể ) (9) Khi đó chảy đầy bể = 100% ( bể ) = 1 -Trong 9 giờ vòi 1 chảy được bao nhiêu phần bể ? h/s trả lời – gv ghi xuống bên dưới sơ đồ . -Trong giờ 2 vòi chảy được bao nhiêu phần bể ? h/s trả lời – gv ghi xuống bên dưới sơ đồ . -Vậy ta có phương trình (2) như thế nào ? h/s: 9.x + . = 1 -Từ đó ta có hpt nào ? h/s: Giải -Gv yêu cầu hs lập luận để lập hpt dựa vào các bước của bảng phân tích. h/s lần lượt đứng trả lời. -Yêu cầu h/s giải hpt tìm được nghiệm : (TM) -Yêu cầu 1 h/s đứng trả lời bài toán: Vậy nếu ngay từ đầu chỉ mở một mình vòi thứ hai thì sau 8 giờ sẽ đầy bể. Gv nhấn mạnh lại: Khi trả lời phải chú ý: Thời gian hoàn thành công việc của người 1 là: Thời gian hoàn thành công việc của người 2 là: */ Bài toán 4: ( Bài 2 – Đề kiểm tra chương III- Sách nâng cao Toán 9, Tập 2 – Nhà xuất bản Hà Nội ). ” Hai đội công nhân cùng làm một đoạn đường trong 24 ngày thì xong. Mỗi ngày đội thứ hai làm được khối lượng công việc nhiều gấp đôi đội thứ nhất. Hỏi nếu làm một mình thì mỗi đội làm xong đoạn đường đó trong bao lâu ? ” */ Gv cùng h/s phân tích: -Yêu cầu 1 h/s đọc đề bài toán. -Bài toán thuộc dạng nào ? Tương tự các ví dụ trên : Gv dùng hệ thống câu hỏi – h/s trả lời – Gv ghi vào bảng Thời gian hoàn thành công việc (giờ) Năng suất làm việc trong 1 giờ Hai đội (5) 24 (6) Đội 1 (3) (1) x (đk: 0 < x <) Đội 2 (4) (2) y (đk: 0 < y < ) -Vậy lập được pt (1) như thế nào ? h/s: -Bài toán cho biết thêm điều gì ? h/s: Mỗi ngày đội thứ hai làm được khối lượng công việc nhiều gấp đôi đội thứ nhất. – Em hiểu điều đó như thế nào ? h/s: Năng suất của đội hai làm gấp đôi năng suất của đội 1. -Vậy ta có phương trình 2 lập như thế nào ? h/s: y = 2.x -Từ đó ta có hpt nào ? h/s: Giải -Gv yêu cầu hs lập luận để lập hpt dựa vào các bước của bảng phân tích. h/s lần lượt đứng trả lời. -Yêu cầu h/s giải hpt được nghiệm : (TM) -Yêu cầu 1 h/s đứng trả lời bài toán. Gv nhấn mạnh lại: Khi trả lời phải chú ý: Thời gian hoàn thành công việc của người 1 là: Thời gian hoàn thành công việc của người 2 là: */ Bài toán 5: ( Bài 3 – Đề thi tuyển sinh vào lớp 10 THPT năm 2007 -2008 tỉnh Đăk Lăk) ” Hai máy cày cùng làm việc trong 5 giờ thì xong cánh đồng. Nếu máy thứ nhất làm việc trong 6 giờ và máy thứ hai làm việc trong 10 giờ thì hai máy cày được 10% cánh đồng. Hỏi mỗi máy cày làm việc riêng thì cày xong cánh đồng trong mấy giờ ? */ Gv cùng h/s phân tích: -Yêu cầu 1 h/s đọc đề bài toán. -Bài toán thuộc dạng nào ? -Bài toán có gì khác so với các bài toán trước ? h/s: Bài toán không cho thời gian hoàn thành công việc của hai đội. -Vậy bài toán cho điều gì ? h/s: Cho hai máy cày cùng làm việc trong 5 giờ thì cày xong cánh đồng. -Vậy thời gian cày xong cả cánh đồng của 2 máy là bao lâu ? h/s: Thời gian cày xong cả cánh đồng của 2 máy là: 5.18 = 90 giờ. Tương tự các ví dụ trên : Gv dùng hệ thống câu hỏi – h/s trả lời – Gv ghi vào bảng Thời gian hoàn thành công việc (giờ) Năng suất làm việc trong 1 giờ Hai máy (5) 90 (6) Máy 1 (3) (1) x (đk: 0 < x <) Máy 2 (4) (2) y (đk: 0 < y <) -Vậy lập được pt (1) như thế nào ? h/s: -Bài toán cho biết thêm điều gì ? h/s trả lời: Thời gian làm Khối lượng c/việc (7) máy 1: 6 giờ 6.x (cánh đồng ) (8) máy 2: 10 giờ 10.y ( cánh đồng ) (9) thì 2 máy làm được 10% = ( cánh đồng ) -Vậy với thời gian đó thì mỗi máy làm được bao nhiêu phần cánh đồng ? h/s trả lời – Gv ghi lên tóm tắt. -Vậy ta có phương trình 2 lập như thế nào ? h/s: -Từ đó ta có hpt nào ? h/s: Giải: Gv yêu cầu hs lập luận để lập hpt dựa vào các bước của bảng phân tích. h/s lần lượt đứng trả lời. -Yêu cầu h/s giải hpt được nghiệm : (TM) -Yêu cầu 1 h/s đứng trả lời bài toán. Gv nhấn mạnh lại: Khi trả lời phải chú ý: Thời gian hoàn thành công việc của người 1 là: Thời gian hoàn thành công việc của người 2 là: Như vậy thông qua các ví dụ trên ta thấy: Sau này khi các em giải bài toán bằng cách lập hệ phương trình dạng ” Làm chung – Làm riêng” chỉ cần lập được bảng phân tích là các em có thể dựa vào đó để lập luận lập được hpt, ngoài ra cách gọi ẩn gián tiếp khiến cho hệ phương trình các em lập được cũng dễ dàng giải hơn. Cũng cần nhấn mạnh thêm rằng hầu như tất cả các bài tập giải bài toán bằng cách lập hệ phương trình dạng ” Làm chung – Làm riêng” đều có thể áp dụng cách phân tích bằng bảng để lập hệ phương trình. 4/ Kết quả sau khi thực hiện: Năm học 2006-2007: Lớp Sĩ số Số h/s biết cách phân tích bài toán để lập hpt Số h/s chưa biết cách phân tích bài toán để lập hpt Số lượng % Số lượng % 9A1 38 30 78,9% 8 21,1% 9A2 40 29 72,5% 11 27,5% Năm học 2007-2008: Lớp Sĩ số Số h/s biết cách phân tích bài toán để lập hpt Số h/s chưa biết cách phân tích bài toán để lập hpt Số lượng % Số lượng % 9A1 42 38 90,5% 4 9,5% 9A2 45 35 77,8% 10 22,2% Năm học 2008-2009: Lớp Sĩ số Số h/s biết cách phân tích bài toán để lập hpt Số h/s chưa biết cách phân tích bài toán để lập hpt Số lượng % Số lượng % 9A1 42 40 95,2% 2 4,8% */ TÓM LẠI Qua các ví dụ trên, ta thấy giải bài toán bằng cách lập hệ phương trình dạng ” Làm chung – Làm riêng” không phải là dạng toán quá khó, mà chỉ cần biết cách phân tích bài toán và gọi ẩn một cách hợp lý là học sinh có thể nhìn vào bảng phân tích để lập luận lập được hệ phương trình và có thể giải được bài toán từ đó khiến các em yêu thích bộ môn hơn. Sau khi thực hiện SKKN trong ba năm học gần đây, tôi thấy số học sinh nắm được cách lập hệ phương trình và giải bài toán bằng cách lập hệ phương trình dạng ” Làm chung – Làm riêng” đã tăng lên rõ rệt. Đa số các em đã có chiều hướng tích cực, ham làm bài tập, các em trước đây lười học và lười làm bài tập thì giờ đây đã có sự chuẩn bị tốt hơn, tiết học cũng thấy sôi nổi, hào hứng hơn, học sinh nào cũng muốn được phát biểu để phân tích và lập hệ phương trình chứ không còn đơn điệu một mình thầy cô giải như trước kia nữa. Học sinh bàn luận với nhau về cách phân tích và giải các bài tập khác trong sách bài tập, sách tham khảo không chỉ trong tiết học mà còn cả ở cả ngoài giờ học, không khí học tập sôi nổi hơn tạo tâm lí tốt cho các thầy các cô khi bước vào tiết dạy. Học sinh biết vận dụng các kiến thức của Toán học vào thực tế cuộc sống một cách năng động, sáng tạo, linh hoạt cũng là một trong những yêu cầu và nhiệm vụ mà người học Toán cần rèn luyện và tích lũy hơn nữa. 5/ Ưu – nhược điểm +/ ƯU ĐIỂM -Là giáo viên trẻ, thời gian công tác còn ít nhưng với lòng nhiệt tình ham học hỏi, tôi luôn tìm tòi, sáng tạo tìm ra các phương pháp dạy phù hợp với đối tượng học sinh trong từng dạng toán. -SKKN có thể áp dụng nhiều cho đối tượng học sinh học Yếu; Trung bình và Khá đang chiếm đa số trong các lớp học +/ HẠN CHẾ -Học sinh ở địa bàn đa số là con nhà nông, điều kiện kinh tế khó khăn, thời gian ở nhà phần lớn là giúp đỡ gia đình nên giành cho tự học là còn ít. -Phong trào học ở địa phương chưa cao, đa phần phụ huynh chưa quan tâm nhiều đến việc học của con em mình, ngoài ra còn một phần lớn các em đua đòi, ham chơi nên ý thức học tập còn yếu. -Phương pháp dạy này chưa phát huy nhiều đối với học sinh Giỏi. Phần IV NHỮNG ĐỀ XUẤT KIẾN NGHỊ Căn cứ vào nhiệm vụ đã đề cập và kết quả nghiên cứu sau nhiều năm của đề tài, tôi mạnh dạn đề xuất một số ý kiến chủ quan của bản thân về phương pháp dạy giải bài toán bằng cách lập hệ phương trình dạng ” Làm chung – Làm riêng” nói riêng và của bộ môn nói chung nhằm góp phần giúp học sinh nắm được cách giải, từ đó khiến các em yêu thích bộ môn hơn và góp phần nâng cao chất lượng của bộ môn: */ Đối với lãnh đạo nhà trường: – Tăng cường các chuyên đề về phương pháp giải của từng dạng toán để phù hợp với các đối tượng học sinh của trường. – Đổi mới cách sinh hoạt của tổ bộ môn, chú trọng hơn đến phương pháp nâng cao chất lượng học tập của học sinh chứ không nên mang nặng tính hình thức. – Nếu có thể cho áp dụng SKKN trong toàn khối 9 để kiểm tra tính thực tế. – Tạo điều kiện tối đa cho giáo viên được nâng cao trình độ chuyên môn, nghiệp vụ. */ Đối với giáo viên: – Luôn tìm tòi, sáng tạo trong dạy học, tìm ra những phương pháp mới phù hợp với đối tượng học sinh từ đó nâng cao chất lượng bộ môn. – Đổi mới cách giải bài tập, gây hứng thú học tập cho học sinh học môn Toán. – Tận tâm hơn với nghề dạy học, tôn trọng những kết quả đạt được của học sinh dù là nhỏ nhất. Phần V KẾT LUẬN CHUNG Đề tài “Hướng dẫn học sinh giải bài toán bằng cách lập hệ phương trình dạng ” Làm chung – Làm riêng” thông qua cách phân tích đề bài, gọi ẩn một cách hợp lý không chỉ giúp các em học sinh Trung bình, Yếu tìm ra cách giải bài toán một cách đơn giản, dễ trình bày lập luận mà còn rèn luyện cho học sinh khả năng quan sát, suy luận, phát triển tư duy, óc sáng tạo, giúp các em có kĩ năng vận dụng kiến thức Toán học vào thực tế cuộc sống. Để giúp học sinh học tập tích cực, chủ động, sáng tạo hơn thì giáo viên phải tìm ra những cách giải hay hơn, sâu sắc hơn. Chính vì vậy giáo viên cần chuẩn bị kĩ lưỡng và công phu cho tiết dạy, ngoài ra giáo viên còn cần phải khéo léo sử dụng các câu hỏi tạo ra tình huống có vấn đề, học sinh phát hiện kiến thức để lôi cuốn học sinh vào tiết học một cách nhẹ nhàng và tự nhiên. Mặc dù bản thân tôi đã có cố gắng nhiều trong quá trình viết SKKN nhưng vì thời gian có hạn, quá trình công tác và kinh nghiệm còn ít nên không thể tránh được những thiếu sót. Kinh nghiệm của bản thân còn mang nặng tính chủ quan và hơi phiến diện. Rất mong nhận được các ý kiến đóng góp của các thầy cô và đồng nghiệp có tâm huyết để đề tài của tôi được hoàn thiện và có thể áp dụng vào thực tiễn. Xin chân thành cảm ơn! Bình Hòa, Ngày 12 tháng 10 năm 2009 Người viết Phaïm Höõu Caûnh

Đề Tài Phương Pháp Giải Bài Toán Quang Hình Học Lớp 9

Môn vật lý là một trong những môn học lý thú, hấp dẫn trong nhà trường phổ thông, đồng thời nó cũng được áp dụng rộng rãi trong thực tiễn đời sống hàng ngày của mỗi con người chúng ta. Hơn nữa môn học này càng ngày lại càng càng yêu cầu cao hơn để đáp ứng kịp với công cuộc CNH- HĐH đất nước , nhằm từng bước đáp ứng mục tiêu giáo dục đề ra ” Nâng cao dân trí, đào tạo nhân lực, bồi dưỡng nhân tài”, góp phần xây dựng Tổ Quốc ngày một giàu đẹp hơn.

-Hơn nữa đội ngũ học sinh là một lực lượng lao động dự bị nòng cốt và thật hùng hậu về khoa học kỹ thuật, trong đó kiến thức, kỹ năng vật lý đóng góp một phần không nhỏ trong lĩnh vực này. Kiến thức, kỹ năng vật lý cũng được vận dụng và đi sâu vào cuộc sống con người góp phần tạo ra của cải, vật chất cho xã hội ngày một hiện đại hơn.

Ta đã biết ở giai đoạn 1 ( lớp 6 và lớp 7 ) vì khả năng tư duy của học sinh còn hạn chế, vốn kiến thức toán học chưa nhiều nên SGK chỉ đề cập đến những khái niệm, những hiện tượng vật lý quen thuộc thường gặp hàng ngày. Ở giai đoạn 2 ( lớp 8 và lớp 9 ) khả năng tư duy của các em đã phát triển, đã có một số hiểu biết ban đầu về khái niệm cũng như hiện tượng vật lý hằng ngày. Do đó việc học tập môn vật lý ở lớp 9 đòi hỏi cao hơn nhất là một số bài toán về điện, quang ở lớp 9 mà các em HS được học vào năm thứ ba kể từ khi thay sách GK lớp 9 .

Thực tế qua ba năm dạy chương trình thay sách lớp 9 bản thân nhận thấy: Các bài toán quang hình học lớp 9 mặc dù chiếm một phần nhỏ trong chương trình Vật lý 9, nhưng đây là loại toán các em hay lúng túng, nếu các em được hướng dẫn một số điểm cơ bản thì những loại toán này không phải là khó.

Từ những lý do trên, để giúp HS lớp 9 có một định hướng về phương pháp giải bài toán quang hình học lớp 9, nên chúng tôi đã chọn đề tài này để viết sáng kiến kinh nghiệm.

ính, qua mắt, qua máy ảnh do đó không thể giải được bài toán. c) Môt. số chưa nắm được kí hiệu các loại kính, các đặt điểm của tiêu điểm, các đường truyền của tia sáng dặt biệt, chưa phân biệt được ảnh thật hay ảnh ảo. Một số khác không biết biến đổi công thức toán . d) Chưa có thói quen định hướng cách giải một cách khoa học trước những bài toán quang hình học lớp 9. III- NHỮNG GIẢI PHÁP GIẢI QUYẾT: Những bài toán quang hình học lớp 9 được gói gọn ở chương III từ tiết 40 đến tiết 51. Mặc dù các em đã học phần quang ở năm lớp 7, nhưng chỉ là những khái niệm cơ bản, cho nên những bài toán loại này vẫn còn mới lạ đối với HS, mặc dù không quá phức tạp đối với HS lớp 9 nhưng vẫn tập dần cho HS có kỹ năng định hướng bài giải một cách có hệ thống, có khoa học, dễ dàng thích ứng với các bài toán quang hình học đa dạng hơn ở các lớp cấp trên sau này . Để khắc phục những nhược điểm đã nêu ở trên, tôi đã đưa ra một số giải pháp cần thiết cho HS bứơc đầu có một phương pháp cơ bản để giải loại bài toán quang hình lớp 9 dược tốt hơn: 1. Giáo viên cho HS đọc kỹ đề từ 3 đến 5 lần cho đến khi hiểu. Sau đó hướng dẫn HS phân tích đề: Hỏi: * Bài toán cho biết gì? * Cần tìm gì? Yêu cầu gì? * Vẽ hình như thế nào? Ghi tóm tắt. * Vài học sinh đọc lại đề ( dựa vào tóm tắt để đọc ). Ví dụ 1: Một người dùng một kính lúp có số bội giác 2,5X để quan sát một vật nhỏ AB được đặt vuông góc với trục chính của kính và cách kính 8cm. a)Tính tiêu cự của kính? Vật phải đặt trong khoảng nào trước kính? b)Dựng ảnh của vật AB qua kính (không cần đúng tỉ lệ), ảnh là ảnh thật hay ảo? c) Ảnh lớn hay nhỏ hơn vật bao nhiêu lần? Giáo viên cho học sinh đọc vài lần. Hỏi: * Bài toán cho biết gì? -Kính gì? Kính lúp là loại thấu kínhgì?Số bội giác G? -Vật AB được đặt như thế nào với trục chính của thấu kính?Cách kính bao nhiêu? -Vật AB dược đặt ở vị trí nào so với tiêu cự? * Bài toán cần tìm gì? Yêu cầu gì? -Tìm tiêu cự? Để tính tiêu cự của kính lúp cần sử dụng công thức nào? -Để nhìn rõ ảnh qua kính lúp vật phải đặt trong khoảng nào trước kính? -Dựng ảnh của vật AB qua kính ta phải sử dụng các tia sáng đặt biệt nào? -Xác định ảnh thật hay ảo? -So sánh ảnh và vật? * Một HS lên bảng ghi tóm tắt sau đó vẽ hình . (cả lớp cùng làm ) Cho biết Kính lúp G = 2,5X OA = 8cm a) G = ?Vật đặt khoảng nào? b) Dựng ảnh của AB. Ảnh gì? c) * Cho2 học sinh dựa vào tóm tắt đọc lại đề. ( có như vậy HS mới hiểu sâu đề ). *Để giải đúng bài toán cần chú ý cho HS đổi về cùng một đơn vị hoặc đơn vị của số bội giác phải được tính bằng cm. 2 .a) Để học sinh dựng ảnh, hoặc xác định vị trí của vật chính xác qua kính,mắt hay máy ảnh GV phải luôn kiểm tra, khắc sâu HS: *Các sơ đồ ký hiệu quen thuộc như: -Thấu kính hội tụ, thấu kính phân kì: ; -Vật đặt vuông góc với trục chính: hoặc O F' F * * -Trục chính, tiêu điểm F và F', quang tâm O: -Phim ở máy ảnh hoăc màng lưới ở mắt: Màng lưới -Ảnh thật: hoặc ; -Ảnh ảo: hoặc * Các Định luật, qui tắc. qui ước, hệ quả như: - Định luật truyền thẳng của ánh sáng, định luật phản xạ ánh sáng, định luật khúc xạ ánh sáng -Đường thẳng nối tâm mặt cầu gọi là trục chính. -O gọi là quang tâm của thấu kính -F và F' đối xứng nhau qua O, gọi là các tiêu điểm. -Đường truyền các tia sáng đặt biệt như: Thấu kính hội tụ: +Tia tới song song với trục chính cho tia ló đi qua tiêu điểm F. +Tia tới đi qua tiêu điểm F, cho tia ló song song với trục chính. +Tia tới đi qua quang tâm O, truyền thẳng. +Tia tới bất kỳ cho tia ló đi qua tiêu điểm phụ ứng với trục phụ song song với tia tới. * * F O O F' F * * F' Thấu kính phân kì: +Tia tới song song với trục chính,cho tia ló kéo dài đi qua tiêu điểm F'. +Tia tới đi qua tiêu điểm F, cho tia ló song song với trục chính. +Tia tới đi qua quang tâm O, truyền thẳng. +Tia tới bất kỳ, cho tia ló có đường kéo dài đi qua tiêu điểm phụ, ứng với trục phụ song song với tia tới. O * F' * * * F F' F O -Máy ảnh: +Vật kính máy ảnh là một thấu kính hội tụ. +Ảnh của vật phải ở ngay vị trí của phim cho nên muốn vẽ ảnh phải xác định vị trí đặt phim. B P O A Q -Mắt, mắt cận và mắt lão: +Thể thuỷ tinh ở mắt là một thấu kính hội tụ -Màng lưới như phim ở máy ảnh. +Điểm cực viễn: điểm xa mắt nhất mà ta có thẻ nhìn rõ được khi không điều tiết. +Điểm cực cận: điểm gần mắt nhất mà ta có thể nhìn rõ được . Kính cận là thấu kính phân kì. B CV A F, * Mắt Kinh cận +Mắt lão nhìn rõ những vật ở xa, nhưng không nhìn rõ những vật ở gần. Kính lão là thấu kính hội tụ. Mắt lão phải đeo kính hội tụ để nhìn rõ các vật ở gần. B F * Kinh lão * CC A Mắt -Kính lúp: +Kính lúp là thấu kính hội tụ có tiêu cự ngắn +Để dựng ảnh, hoặc xác định vị trí một vật qua kính lúp cần phải đặt vật trong khoảng tiêu cự của kính. Ảnh qua kính lúp phải là ảnh ảo lớn hơn vật B O F A * *Ở Ví dụ1: -Dựng ảnh của vật AB qua kính lúp: +Ta phải đặt vật AB trong khoảng tiêu cự của kính lúp +Dùng hai tia đặt biệt để vẽ ảnh A'B' Ở ví dụ 1 -Câu a) Vật đặt trong khoảng nào? Câu b) ảnh gì? +Ở đây vật kính là một kính lúp cho nên vật phải đặt trong khoảng tiêu cự mới nhìn rõ được vật. Ảnh của vật qua thấu kính sẽ là ảnh ảo và lớn hơn vật. *Các thông tin: -Thấu kính hội tụ: +Vật đặt ngoài tiêu cự cho ảnh thật, ngược chiều +Vật đặt rất xa thấu kính cho ảnh thật có vị trí cách thấu kính một khoảng bằng tiêu cự. +Vật đặt trong khoảng tiêu cự cho ảnh ảo, lớn hơn vật, cùng chiều với vật -Thấu kính phân kỳ: +Vật đặt ở mọi vị trí trước thấu kính phân kì luôn cho ảnh ảo,cùng chiều, nhỏ hơn vật và luôn nằm trong khoản tiêu cự của thấu kính. +Vật đặt rất xa thấu kính, ảnh ảo của vật có vị trí cách thấu kính một khoảng bằng tiêu cự -Máy ảnh: +Ảnh trên phim là ảnh thật, nhỏ hơn vật và ngược chiều với vật. -Mắt cận: + Mắt cận nhìn rõ những vật ở gần, nhưng không nhìn rõ những vật ở xa. + Mắt cận phải đeo kính phân kì. -Mắt lão: . +Mắt lão nhìn rõ những vật ở xa, nhưng không nhìn rõ những vật ở gần. + Mắt lão phải đeo kính hội tụ để nhìn rõ các vật ở gần. -Kính lúp: +Vật cần quan sát phải đặt trong khoảng tiêu cự của kính để cho một ảnh ảo lớn hơn vật.Mắt nhìn thấy ảnh ảo đó. 3. Nắm chắc các công thức vật lý, các hệ thức của tam giác đồng dạng,dùng các phép toán để biến đổi các hệ thức, biểu thức : * Công thức tính số bội giác: G = -Trở lại ví dụ1 : G = = * Hệ thức tam giác đồng dạng, và các phép toán biến đổi: ž ž A B' B A/'',''''''' F F' O Ta trở lại câu c) ví dụ1: c) * OA'B' Đồng dạng vớiOAB , nên ta có : (1) * F'A'B' đồng dạng với F'OI, nên ta có: (2) Từ (1) và (2) ta có: (cm) (3) Thay (3) vào (1) ta có : *Vậy ảnh lớn gấp 5 lần vật * Chú ý phần này là phần cốt lõi để giải được một bài toán quang hình học, nên đối với một số HS yếu toán hình học thì GV thường xuyên nhắc nhở về nhà rèn luyện thêm phần này : -Một số HS mặc dù đã nêu được các tam giác đồng dạng , nêu được một số hệ thức nhưng không thể biến đổi suy ra các đại lượng cần tìm - Trường hợp trên GV phải nắm cụ thể tùng HS. Sau đó giao nhiệm vụ cho một số em khá trong tổ, nhóm giảng giải, giúp đỡ để cùng nhau tiến bộ. 4.Hướng dẫn HS phân tích đề bài toán quang hình học một cách lôgich, có hê thống: Ví dụ 2: Đặt vật AB cao 12cm vuông góc với trục chính của một thấu kính hội tụ (A nằm trên trục chính) và cách thấu kính 24cm thì thu được một ảnh thật cao 4cm. Tính khoảng cách từ ảnh đến thấu kính và tính tiêu cự của thấu kính. *Hướng dẫn học sinh phân tích bài toán , sau đó tổng hợp lại rồi giải: I B - Để hướng dẫn HS phân tích, tìm hiểu bài toán phải cho HS đọc kỷ đề ,ghi tóm tắt sau đó vẽ hình. Cho biết: * * A' O F' TK hội tụ F B' A AB = 12cm; OA = 24cm A'B' = 4cm(ảnh thật) OA' = ? OF = OF' = ? -Hướng dẫn học sinh phân tích bài toán: *Muốn tính OA' ta cần xét các yếu tố nào? (OAB ~ OA'B') OA' =...... *Muốn tính OF' = f ta phải xét hai tam giác nào đồng dạng với nhau? (OIF' ~ A'B'F') *OI như thế nào với AB; F'A' = ? -Hướng dẫn HS giải theo cách tổng hợp lại: Tìm OA' F'A' OI OF' ; GIải: *Khoảng cách từ ảnh đến thấu kính hội tụ là: OAB ~ OA'B' suy ra *Tiêu cự của thấu kính: OIF' ~ A'B'F' Do OI = AB nên: ĐS: OA = 8cm OF = 6cm IV. KẾT QUẢ: Sau gần hai tháng áp dụng các giải pháp đã nêu tôi thấy kết quả HS giải bài toán " Quang hình học lớp 9 " khả quan hơn. Đa số các HS yếu đã biết vẽ hình , trả lời được một số câu hỏi định tính Tất cả các HS đã chủ động khi giải loại toán này, tất cả các em đều cảm thấy thích thú hơn khi giải một bài toán quang hình học lớp 9. *Kết quả đợt khảo sát cuối tháng 4/2007: Lớp Sĩ số Điểm trên 5 Điểm 9-10 Điểm 1-2 Điểm trên 5 tăng SL Tỷ lệ SL Tỷ lệ SL Tỷ lệ SL Tỷ lệ 91 38 31 82% 7 18% 0 0 11 29% 92 37 29 78% 3 8% 2 5,4% I3 35% 93 39 27 69% 3 7,5% 2 5,1% 12 31% 94 39 33 85% 6 15% 1 2,6% 14 36% 95 39 30 77% 7 18% 1 0 11 28% 96 37 32 86% 10 27% 0 0 10 27% K9 229 182 79% 36 16% 6 2,6% 71 31% Kết quả Khối 9: Điểm trên 5: Tăng 31% Điểm 1-2 :giảm 6,1% ; Điểm 9 - 10 tăng: 10,8% V. BÀI HỌC KINH NGHIỆM: -Để giúp HS hứng thú và đạt kết quả tốt trong việc giải toán quang hình học lớp 9, điều cơ bản nhất mỗi tiết dạy giáo viên phải tích cực, nhiệt tình, truyền đạt chính xác, ngắn gọn nhưng đầy đủ nội dung, khoa học và lô gích nhằm động não cho HS phát triển tư duy, độ bền kiến thức tốt. - Những tiết lý thuyết, thực hành cũng như tiết bài tập GV phải chuẩn bị chu đáo bài dạy, hướng dẫn HS chuẩn bị bài theo ý định của GV, có như vậy GVmới cảm thấy thoải mái trong giờ giải và sửa các bài tập quang hình học từ đó khắc sâu được kiến thức và phương pháp giải bài tập của HS. Thường xuyên nhắc n

Bạn đang xem bài viết Đề Tài: Hướng Dẫn Học Sinh Tìm Lời Giải Cho Bài Toán Chứng Minh Bằng Phương Pháp Phân Tích Ngược Trong Môn Hình Học Lớp 7 trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!