Xem Nhiều 5/2022 # Đề Tài:phương Pháp Giải Pt Nghiệm Nguyên # Top Trend

Xem 15,840

Cập nhật thông tin chi tiết về Đề Tài:phương Pháp Giải Pt Nghiệm Nguyên mới nhất ngày 26/05/2022 trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Cho đến thời điểm hiện tại, bài viết này đã đạt được 15,840 lượt xem.

--- Bài mới hơn ---

  • Phương Pháp Giải Phương Trình Nghiệm Nguyên
  • Hệ Phương Trình Bậc Nhất Hai Ẩn (Nâng Cao)
  • Giải Phương Trình Bậc 2 Số Phức
  • Nâng Cao Toán Lớp 8
  • Phương Pháp Giải Nhanh Bài Tập Phương Trình Oxi Hóa
  • A. Những vấn đề chung

    I/ Lý do chọn đề tài:

    Các bài toán về phương trình nghiệm nguyên là những bài toán khó. Đường lối chung để giải phương trình này là dựa vào đặc điểm của phương trình để thu hẹp miền chứa nghiệm.

    Để phát huy tính tích cực, tự giác, chủ động trong học tập của mỗi học sinh, đối với mỗi dạng toán này cũng như việc tạo ra sự hứng thú say mê học tập của các em là việc rất cần thiết của các thầy cô giáo dạy toán. Do vậy tôi muốn trao đổi kinh nghiệm về một số phương pháp thường dùng để giải phương trình nghiệm nguyên hay gặp trong chương trình toán cấp 2 mà tôi đã làm.

    II/ Mục đích:

    Giúp học sinh nắm được một số phương pháp cơ bản để giải phương trình nghiệm nguyên.

    III/ Nhiệm vụ:

    – Đưa ra các phương pháp và ví dụ minh hoạ

    – Rút kinh nghiệm

    IV/ Đối tượng và phạm vi nghiên cứu:

    – Đối tượng: các tài liệu về phương trình nghiệm nguyên

    – Phạm vi nghiên cứu: các bài toán về phương trình nghiệm nguyên trong chương trình toán cấp 2.

    V/ Phương pháp nghiên cứu:

    – Nghiên cứu tài liệu

    – Trao đổi kinh nghiệm

    – Tổng kết rút kinh nghiệm

    Thử lại:

    x= k.(k+1); y = 3k+1 thoả mãn phương trình đã cho.

    Vậy phương trình (1) có nghiệm tổng quát:

    III/ Phương pháp dùng bất đẳng thức:

    1. Phương pháp sắp thứ tự các ẩn:

    Ví dụ 6: Tìm 3 số nguyên dương sao cho tổng của chúng bằng tích của chúng

    Giải:

    Gọi các số nguyên dương phải tìm là x, y, z. Ta có: x + y + z = x.y.z (1)

    Do x, y, z có vai trò như nhau ở trong phương trình (1) nên có thể sắp thứ tự các ẩn như sau:

    Giải:

    Do vai trò bình đẳng của x và y. Giả sử , dùng bất đẳng thức để giới hạn khoảng giá trị của số nhỏ y

    Ta có:

    (1)

    Mặt khác do

    Do đó

    nên (2)

    Từ (1) và (2) ta có : . Do y

    +Với y =4 ta được:

    + Với y = 5 ta được: loại vì x không là số nguyên

    + Với y = 6 ta được:

    Vậy các nghiệm nguyên dương của phương trình là: (4; 12), (12; 4) , (6; 6)

    3/ Phương pháp chỉ ra nghiệm nguyên:

    Ví dụ 8: Tìm số tự nhiên x sao cho 2x+3x=5x

    Giải:

    Chia hai vế cho 5x, ta được:

    (1)

    +Với x=0 vế trái của phương trình (1) bằng 2 (loại)

    + Với x = 1 thì vế trái của phương trình bằng 1 ( đúng)

    + Với x thì:

    Nên: ( loại)

    Vậy nghiệm duy nhất của phương trình là x = 1

    4/ Sử dụng điều kiện của phương trình bậc hai có nghiệm

    Ta viết phương trình f(x; y) = 0 dưới dạng phương trình bậc hai đối với một ẩn đã chọn. Chẳng hạn chọn ẩn x, khi đó y là tham số, điều kiện cần để phương trình có nghiệm là , để có nghiệm nguyên còn cần phải là số chính phương.

    Ví dụ 9:

    Tìm các nghiệm nguyên của phương trình :

    x+y+xy = x2+y2 (1)

    Giải:

    Phương trình (1) tương đương với: x2-(y+1)x+(y2-y) = 0 (2)

    Điều kiện để (2) có nghiệm là

    --- Bài cũ hơn ---

  • 9 Phương Pháp Giải Phương Trình Nghiệm Nguyên
  • Giải 9 Bài Pt Mũ & Log Bằng Ẩn Số Phụ
  • Các Dạng Phương Trình Quy Về Phương Trình Bậc Hai
  • Dạng Bài Tập Về Áp Dụng Công Thức Giải Bất Phương Trình Lớp 10 Phải Biết
  • Đạo Hàm Và Bài Toán Giải Phương Trình, Bất Phương Trình Lượng Giác
  • Bạn đang xem bài viết Đề Tài:phương Pháp Giải Pt Nghiệm Nguyên trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!

  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100