Xem Nhiều 5/2022 # Đề Thi Xác Suất Thống Kê Và Đáp Án # Top Trend

Xem 16,731

Cập nhật thông tin chi tiết về Đề Thi Xác Suất Thống Kê Và Đáp Án mới nhất ngày 24/05/2022 trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Cho đến thời điểm hiện tại, bài viết này đã đạt được 16,731 lượt xem.

--- Bài mới hơn ---

  • Đề Thi Trắc Nghiệm Xác Suất Thống Kê Có Lời Giải
  • Bí Kíp Ôn Thi Những Môn “thần Thánh” Cho K40
  • 5 Công Cụ Xác Suất
  • Tập Bản Đồ Địa Lí 6 Bài 8: Sự Chuyển Động Của Trái Đất Quanh Mặt Trời
  • Giải Bài Tập Sgk Tin Học 6 Bài 1: Và Tin Học
  • , Student at Nha trang culture art and tourism college

    Published on

    1. 1. Page 1 BỘ ĐỀ THI VÀ LỜI GIẢI XÁC SUẤT THỐNG KÊ1 1. Đường kính của một loại trục máy là một đại lượng ngẫu nhiên có phân phối chuẩn ĐỀ SỐ 1 2 2 ( 250 ; 25 )N mm mmµ σ= = . Trục máy được gọi là hợp quy cách nếu đường kính từ 245mm đến 255mm. Cho máy sản xuất 100 trục. Tính xác suất để: a. Có 50 trục hợp quy cách. b. Có không quá 80 trục hợp quy cách. 2. Quan sát một mẫu (người) , ta có bảng thống kê chiều cao X(cm), trọng lượng Y(kg): X Y 150-155 155-160 160-165 165-170 170-175 50 5 55 2 11 60 3 15 4 65 8 17 70 10 6 7 75 12 a. Ước lượng chiều cao trung bình với độ tin cậy 95%γ = . b. Những người cao từ 170cm trở lên gọi là quá cao. Ước lượng trọng lượng trung bình những người quá cao với độ tin cậy 99%. c. Một tài liệu thống kê cũ cho biết tỷ lệ những người quá nặng ( 70kg≥ ) là 30%. Cho kết luận về tài liệu đó, với mức ý nghĩa 10%α = . d. Lập phương trình tương quan tuyến tính của Y theo X. BÀI GIẢI 1. Gọi D là đường kính trục máy thì 2 2 ( 250 ; 25 )D N mm mmµ σ∈= = . Xác suất trục hợp quy cách là: 1 Đề thi:GS Đặng Hấn. Lời giải:Th.S Lê Lễ. Tài liệu dùng cho sinh viên đại học, học viên thi Th.s, NCS.
    2. 6. Page 6 1H : đường kính cây không có phân phối chuẩn X 20-22 22-24 24-26 26-28 28-30 in 7 14 33 27 19 25,74x = , 2,30xs = ,N=100. Nếu X tuân thep phân phối chuẩn thì 1 22 25,74 20 25, 2,30 2,30 74 ( ) ( ) ( 1,63) ( 2,50)p − − = Φ − Φ = Φ − − Φ − (2,50) (1,63) 1 0,9484 0,0516= Φ − Φ = − = 2 24 25,74 22 25, 2,30 2,30 74 ( ) ( ) ( 0,76) ( 1,63)p − − = Φ − Φ = Φ − − Φ − (1,63) (0,76) 0,9484 0,7764 0,172= Φ − Φ = − = 3 26 25,74 24 25 2,30 2,3 ,74 ( ) ( ) (0,11) ( 0,76 0 )p − − = Φ − Φ = Φ − Φ − (0,11) (0,76) 1 0,5438 0,7764 1 0,3203=Φ + Φ − = + − = 4 28 25,74 26 25 2,30 2,30 ,74 ( ) ( ) (0,98) (0,11)p − − = Φ − Φ = Φ − Φ 0,8365 0,5438 0,2927= − = 5 30 25,74 28 25,74 ( ) ( ) (1,85) (0,98) 0, 2,30 2, 1 4 30 63p − − = Φ − Φ = Φ − Φ = Lớp 20-22 22-24 24-26 26-28 28-30 in 7 14 33 27 19 ip 0,0516 0,1720 0,3203 0,2927 0,1634 , .i in N p= 5,16 17,20 32,03 29,27 16,34 , 2 2 2 2 ( ) (7 5,16) (19 16,34) 1,8899 5,16 16,34 i i i n n n − − − Χ = Σ = +…+ =
    3. 7. Page 7 2 2 (0,05;5 2 1) (0,05;2) 5,991− −Χ =Χ = 6 2 2 (0,05;2)Χ < Χ nên chấp nhận 0H :đường kính của cây là đại lượng ngẫu nhiên thuộc phân phối chuẩn với 2 25,74, 5,29µ σ= = c. xts n ≤  ⇒ 2 ( )xts n ≥  (0,05) 1,96, 2,30, 5 0,5xt s mm cm= = = = 21,96.2,30 ( ) 81,3 0,5 n ≥ =. 82n⇒ ≥ Đã điều tra 100 cây , vậy không cần điều tra thêm nữa. d. (1 ) (1 )a a a a a a f f f f f t p f t n n − − − ≤ ≤ + 35 0,35 100 af= = 1 1 0,99 0,01α γ= − = − = (0,01) 2,58t = 0,35.0,65 0,35.0,65 100 0,35 2,58 0,35 2, 8 0 5 10 p− ≤ ≤ + 0,227 0,473p≤ ≤ Tỷ lệ cây loại A trong khoảng từ 22,7% đến 47,3%. 6 Số lớp là 5, phân phối chuẩn 2 ( ; )N µ σ có 2 tham số nên: tra bảng chi bình phương 2 Χ với bậc tự do bằng: số lớp-số tham số-1=5-2-1=2.
    4. 8. Page 8 ĐỀ SỐ 3 1. Một xí nghiệp có 2 máy. Trong ngày hội thi, mỗi công nhân sẽ chọn ngẫu nhiên một máy và sản xuất 100 sản phẩm. Nếu số sản phẩm loại I không ít hơn 70 thì được thưởng. Giả sử công nhân A xác suất sản xuất sản phẩm loại I với 2 máy lần lượt là 0,6 và 0,7. a. Tính xác suất để A được thưởng. b. Giả sử A dự thi 200 lần, số lần A được thưởng tin chắc nhất là bao nhiêu? c. A phải dự thi ít nhất bao nhiêu lần để xác suất có ít nhất một lần được thưởng không dưới 90%? 2. Theo dõi số kẹo X (kg) bán trong 1 tuần, ta có: ix 0-50 50-100 100-150 150-200 200-250 250-300 300-350 in 9 23 27 30 25 20 5 a. Để ước lượng số kẹo trung bình bán được trong 1 tuần với độ chính xác 10kg và độ tin cậy 99% thì cần điều tra thêm bao nhiêu tuần nữa? b. Bằng cách thay đổi mẫu mã, người ta thầy số kẹo trung bình bán được trong 1 tuần là 200kg. Việc thay đổi này có hiệu quả gì vể bản chất không? (mức ý nghĩa 5%) c. Những tuần bán từ 250kg trở lên là những tuần hiệu quả. Ước lượng tỷ lệ những tuần hiệu quả với độ tin cậy 90%. d. Ước lượng số kẹo trung bình bán được trong những tuần có hiệu quả với độ tin cậy 98%. BÀI GIẢI 1. a. Gọi T là biến cố công nhân A được thưởng . I: Biến cố công nhân A chọn máy I. II: Biến cố công nhân A chọn máy II. ( ) ( ) 0,5P I P II= = ( ) ( ). ( / ) ( ). ( / ) ( ). P T P I P T I P II P T II P I P X P II P Y= + = ≤ ≤ + ≤ ≤ trong đó (100;0,6) (60;24), (100;0,7) (70;21)X B N Y B N∈ ≈ ∈ ≈
    5. 9. Page 9 100 60 70 60 ( ) 21 ( ) (6,55) (0) 1 0,5 0,5p Y − − ≤ ≤ = Φ − Φ = Φ − Φ = − = Vậy 1 ( ) (0,0207 0,5) 0,26 2 P T= + = b. Gọi Z là số lần được thưởng trong 200 lần A tham gia thi , (200;0,26)Z B∈ ( ) 1 200.0,26 0,74 ( ) 200.0,26 0,74 1np q Mod Z np q Mod Z− ≤ ≤ − + ⇒ − ≤ ≤ − + 51,26 ( ) 52,56Mod Z≤ ≤ . Mod(Z)=52. Số lần A được thưởng tin chắc nhất là 52. c. Gọi n là số lần dự thi. M: Biến cố ít nhất một lần A được thưởng 1 ( ) 1 ( ) 1 0,7 4 n n i P M P T = = − Π = − . 0,741 0,74 0,9 0,74 0,1 log 0,1 7,6n n n− ≥ ⇒ ≤ ⇒ ≥ = 8n→ ≥ . Vậy A phải dự thi ít nhất 8 lần. 2. a. n=139 , 79,3xs = , (0,01) 2,58t = , 10= xts n ≤  → 2 ( )xts n ≥  2 ( ) 2,58.79,3 10 418,6 419n n≥ = → ≥ . Vậy điều tra ít nhất 419-139=280 tuần nữa. b. 0 : 200H µ = 1 : 200H µ ≠ 139, 167,8, 79,3xn x s= = =
    6. 11. Page 11 ĐỀ SỐ 4 1. Có 3 giống lúa, sản lượng của chúng (đơn vị tấn/ha) là 3 đại lượng ngẫu nhiên 1 2 3(8;0,8), (10;0,6), (10;0,5)X N X N X N∈ ∈ ∈ . Cần chọn một trong 3 giống để trồng, theo bạn cần chọn giống nào?Tại sao? 2. Số kw giờ điện sử dụng trong 1 tháng của hộ loại A là (90;100)X N∈ . Một tổ dân phố gồm 50 hộ loại A. Giá điện là 2000 đ/kw giờ, tiền phí dịch vụ là 10 000 đ một tháng. Dự đoán số tiền điện phải trả trong 1 tháng của tổ với độ tin cậy 95%. 3. X( %) và Y(cm) là 2 chỉ tiêu của một sản phẩm. Kiểm tra một số sản phẩm ta có: X Y 0-2 2-4 4-8 8-10 10-12 100-105 5 105-110 7 10 110-115 3 9 16 9 115-120 8 25 8 120-125 15 13 17 8 125-130 15 11 9 130-135 14 6 135-140 5 a. Để ước lượng trung bình X với độ chính xác 0,2% thì đảm bảo độ tin cậy bao nhiêu? b. Những sản phẩm có X dưới 2% là loại II. Ước lượng trung bình Y của sản phẩm loại II với độ tin cậy 95%. c. Các sản phẩm có Y ≥ 125cm là loại I. Để ước lượng trung bình X các sản phẩm loại I cần điều tra thêm bao nhiêu sản phẩm nữa , nếu muốn độ chính xác là 0,3% và độ tin cậy 95%? d. Giả sử Y của sản phẩm loại II có phân phối chuẩn, ước lượng phương sai của Y những sản phẩm loại II với độ tin cậy 90%. BÀI GIẢI 1. Chọn giống 3X vì năng suất trung bình cao nhất (kỳ vọng lớn nhất) và độ ổn định năng suất cao nhất (phương sai bé nhất ) . 2. Trước hết ước lượng khoảng số kw giờ điện 1 hộ loại A phải dùng trong 1 tháng. Dùng quy tắc 2σ , ta có: a u a uσ µ σ− ≤ ≤ + 90, 10a σ= =
    7. 12. Page 12 1 1 0,95 0,05α γ= − = − = ( ) 1 0,974 1,96 2 u u α Φ = − = ⇒ = → 90 1,96.10 90 1,96.10µ− ≤ ≤ + 70,4 109,6µ→ ≤ ≤ Vậy hộ loại A dùng từ 70,4 kw giờ đến 109,6 kg giờ điện trong 1 tháng Trong 1 tháng cả tổ phải trả số tiền từ 50(70,4.2000 10000)+ đồng đến 50(109,6.2000 10000)+ đồng , tức là khoảng từ 7 540 000 đ đến 11 460 000 đồng . 3. a. n=213, 6,545x = , 3,01xs = . 0,2= xts n = → . x t s n =  0,2. 213 0,97 3,01 = = 1 (0,97) 0,8340 2 α − =Φ = (1 0,8340)2 0,332α→ = − = Độ tin cậy 1 0,668 66,8%γ α= − = = . b. 2 2 2106,8315, 3, 2, 7n y s= == , 1 1 0,95 0,05α γ= − = − = (0,05;14) 2,145t = 2 2 2 2 2 2 106,83 2,145. 106,83 2,145. 15 3,72 3, 2 5 7 1 y t y t n n s s µ µ− ≤ ≤ + ⇒ − ≤ ≤ + Vậy 104,77 108,89cm cmµ≤ ≤ , trung bình chỉ tiêu Y của sản phẩm loại II từ 104,77 cm đến 108,89 cm. c. 1 1,91s = , (0,05) 1,96t = , 0,3= . xts n ≤  → 2 ( )xts n ≥ 
    8. 13. Page 13 21,96.1,91 0,3 ( ) 155,7 156n n≥ = → ≥ . Mà 1 60n = , nên điều tra thêm ít nhất 156-60=96 sản phẩm loại I nữa. d. Khoảng ước lượng phương sai 2 2 2 2 2 ( ; 1) (1 ; 1) 2 2 ( 1) ( 1) ] y y n n n s n s α α σ − − − − − ≤ ≤ Χ Χ n=15, 2 13,81ys = , 2 (0,025;14) 6,4Χ =, 2 (0,95;14) 6,571Χ = Khoảng ước lượng phương sai của Y (các sản phẩm loại II) là 14.13,81 14.13,81 +p→ 0,1.0,2.0,3 0,9.0,2.0,3 0,1.0,8.0,3 0,1.0,2.0,7 0,398 0,496p= + + + + = 2. a. 0H : 450µ =
    9. 16. Page 16 2 2 2 0 ( 1) cl n s σ − Χ = → 2 2 (25 1)20,4 400 1 24,994 − Χ= = 2 2 (0,975;24) (1 ; 1) 2 12,4 n α − − Χ =Χ = 2 2 (0,025;24) ( ; 1) 2 39,4 n α − Χ =Χ = 2 2 2 (0,975;24) (0,025;24)Χ < Χ < Χ : Chấp nhận 0H .
    10. 17. Page 17 ĐỀ SỐ 6 1. Một máy sản xuất với tỷ lệ phế phẩm 5%. Một lô sản phẩm gồm 10 sản phẩm với tỷ lệ phế phẩm 30%. Cho máy sản xuất 3 sản phẩm và từ lô lấy thêm 3 sản phẩm. X là số sản phẩm tốt trong 6 sản phẩm này. a. Lập bảng phân phối của X. b. Không dùng bảng phân phối của X, tính M(X) và D(X). 2. Tiến hành quan sát độ bền 2 ( / )X kg mm của một loại thép, ta có: ix (cm) 95-115 115-135 135-155 155-175 175-195 195-215 215-235 in 15 19 23 31 29 21 6 a. Sẽ đạt độ tin cậy bao nhiêu khi ước lượng độ bền trung bình X với độ chính xác 2 3 /kg mm ? b. Bằng cách thay đổi thành phần nguyên liệu khi luyện thép , người ta làm cho độ bền trung bình của thép là 2 170 /kg mm . Cho kết luận về cải tiến này với mức ý nghĩa 1%. c. Thép có độ bền từ 2 195 /kg mm trở lên gọi là thép bền. Ước lượng độ bền trung bình của thép bền với độ tin cậy 98%. d. Có tài liệu cho biết tỷ lệ thép bền là 40%. Cho nhận xét về tài liệu này với mức ý nghĩa 1%. BÀI GIẢI 1. a. 1X : số sản phẩm tốt trong 3 sản phẩm máy sản xuất ra. 1 (3;0,95)X B∈ 3 1 3 k k C C p X k C − = = . 2X 0 1 2 3 ip 1 120 21 120 63 120 25 120 1 2X X X= + : số sản phẩm tốt trong 6 sản phẩm 1 2 1 . 0,000125. 0,007125. 0,000081 120 120 p X p X X p X X== = =+ = == + = Tương tự , ta có : p X X+ = = . 1 2 1 2 1 2 p X p X X p X X p X X== = =+ = =+ = = + 1 2 1 2p X X p X X= =+ = =. 1 2 1 2 1 2 p X p X X p X X p X X== = =+ = =+ = = + 1 2 1 2 1 2 ( ) k np p X npq npq ϕ − = = 1 40 36,332 1 0,2898 ( ) (0,76) 0,062 4,81 4,4,81 4, 181 8 ϕ ϕ − = = = = b. Gọi n là số kiện phải kiểm tra. M: ít nhất một kiện được chấp nhận. 1 ( ) 1 ( ) 1 0,63668 0,9 n n i P M P A = = − Π = − ≥ . 0,636680,63668 0,1 log 0,1 5,1n n≤ ⇒ ≥ = 6n→ ≥ Vậy phải kiểm tra ít nhất 6 kiện. 2. a. 0H : 120µ = 1 : 120H µ ≠ 134, 142,01, 10,46yn y s= = = 0( ) tn y y n T s µ− =
    11. 24. Page 24 ĐỀ SỐ 8 1. Sản phẩm được đóng thành hộp. Mỗi hộp có 10 sản phẩm trong đó có 7 sản phẩm loại A. Người mua hàng quy định cách kiểm tra như sau: Từ hộp lấy ngẫu nhiên 3 sản phẩm, nếu cả 3 sản phẩm loại A thì nhận hộp đó, ngược lại thì loại. Giả sử kiểm tra 100 hộp. a. Tính xác suất có 25 hộp được nhận. b. Tính xác suất không quá 30 hộp được nhận. c. Phải kiểm tra ít nhất bao nhiêu hộp để xác suất có ít nhất 1 hộp được nhận 95%≥ ? 2. Tiến hành khảo sát số gạo bán hàng ngày tại một cửa hàng, ta có ix (kg) 110-125 125-140 140-155 155-170 170-185 185-200 200-215 215-230 in 2 9 12 25 30 20 13 4 a. Giả sử chủ cửa hàng cho rằng trung bình mỗi ngày bán không quá 140kg thì tốt hơn là nghỉ bán. Từ số liệu điều tra, cửa hàng quyết định thế nào với mức ý nghĩa 0,01? b. Những ngày bán ≥ 200kg là những ngày cao điểm. Ước lượng số tiền bán được trung bình trong ngày với độ tin cậy 99%, biết giá gạo là 5000/kg. c. Ước lượng tỷ lệ ngày cao điểm . d. Để ước lượng tỷ lệ ngày cao điểm với độ chính xác 5% thì đảm bảo độ tin cậy bao nhiêu? BÀI GIẢI 1. a. A: biến cố 1 hộp được nhận. 3 7 3 10 ( ) 0,29 C p A C = = X: số hộp được nhận trong 100 hộp. (100;0,29) (29;20,59)X B N∈ ≈ 1 ( ) k np p X npq npq ϕ − = = 1 48 50 1 0,3683 ( ) ( 0,4) 0,07366 25 525 5 ϕ ϕ − = = − = = b. 2( )p S : xác suất phạm sai lầm khi kiểm tra kiện loại II (kiện loại II mà cho là kiện loại I) 3 2 1 3 0 3 7 3 10 0 3 7 1 2 . . ( ) 0,18 C C C C p S C C = + = p(I): xác suất chọn kiện loại I. p(II): xác suất chọn kiện loại II. p(S): xác suất phạm sai lầm. 1 2 2 1 ( ) ( ) ( ) ( ) ( ) .0,5 .0,18 0,39 3 3 p S p I p S p II p S= + = + = 2. a. xy y x y y x x r s s − − = → 53,33 1,18y x= + b. 63,10,29 10,725, tb tt bbn x s == = 1 1 0,99 0,01α γ= − = − = (0,01;28) 2,763t = 63,10 2,7 10 63. 63,10 2,7 ,725 10,7 6 2 9 2 . 2 3 5 9 tb tb tb tb tb tb x t x t n n s s µ µ− ≤ ≤ ⇒+ − ≤ ≤ + Vậy 2 2 57,60 / 68,6 /kg mm kg mmµ≤ ≤ .

    --- Bài cũ hơn ---

  • Bài Tập Xác Suất Thống Kê Có Đáp Án
  • Bài Giải Xác Suất Thống Kê Chương 3
  • Giải Bài Tập I Learn Smart World 7 Workbook
  • Giải Bài Tâp I Learn Smart World 8 Workbook
  • Smart World 8 Workbook Giải Bài Tập
  • Bạn đang xem bài viết Đề Thi Xác Suất Thống Kê Và Đáp Án trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!

  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100