Giải Bài Tập Toán Lớp 8: Bài 7. Hình Bình Hành

Xem 3,960

Cập nhật thông tin chi tiết về Giải Bài Tập Toán Lớp 8: Bài 7. Hình Bình Hành mới nhất ngày 19/04/2021 trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Cho đến thời điểm hiện tại, bài viết này đã đạt được 3,960 lượt xem.

--- Bài mới hơn ---

  • Hình Bình Hành Toán Lớp 8 Bài 7 Giải Bài Tập
  • Giải Toán Lớp 8 Bài 7: Hình Bình Hành
  • Giải Bài Tập Hình Bình Hành.
  • Giải Toán Lớp 8 Bài 9: Hình Chữ Nhật
  • Giải Bài Tập Sgk Toán Lớp 8 Bài 9: Hình Chữ Nhật
  • §7. HÌNH BÌNH HÀNH A. KIẾN THỨC Cơ BẢN Định nghĩa Hình bình hành là tứ giác có các cạnh đối song song. [AB//CD ABCD là hình bình hành ì AP) // 30 Nliận xét: Hình bình hành là một hình thang có hai cạnh bên song song. Tính châ't ■ ' Định lí: Trong hình bình hành: Các cạnh đối bằng nhau. Các góc đối bằng nhau. TT * 3 .S, „1. ' _ -XX - 1 Hai đường chéo cắt nhau tại trung điếm của mỗi đường. Dấu hiệu nhận biết Tứ giác có các cạnh đối song song là hình bình hành. Tứ giác có các cạnh đối bằng nhau là hình bình hành. Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành. Tứ giác có các góc đối bằng nhau là hình bình hành. Tứ giác có hai đường chéo cắt nhau tại trung điếm của mỗi đường là hình bình hành. B. HƯỚNG DẪN GIẢI BÀI TẬP 1. Bài tập mẫu Cho hình bình hành ABCD; E, F lần lượt là trung điểm của AD, BC. Đường chéo AC cắt BE, DF lần lượt tại p, Q. Gọi R là trung điểm của đoạn thẳng BP. Chứng minh: a) AP = PQ - QC b) Tứ giác ARQE là hình bình hành. Giải Từ (1) và (2) suy ra AP = PQ = QC Theo trên ta có p là trọng tâm của AABD nên: EP=ịpB = PR (gt) 2 Tứ giác ARAE có: PA = PQ (cmt) . PE = PR (cmt) Tức là tứ giác ARQE có các đường chéo cắt nhau ở trung điểm của mỗi đường. Vậy tứ giác ARQE là hình bình hành. Bài tập cơ bản Các tứ giác ABCD, EFGH, MNPQ trên giấy kẻ ô vuông ở hình 71 có là hình bình hành hay không? Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC. Chứng minh rằng BE = DF. Chứng minh rằng DE // BF. b) Tứ giác DEBF là hình gì? Vì sao? Giải 43. Cả ba tứ giác là hình bình hành. Tứ giác ABCD là hình bình hành vì có AB // CD và AB = CD = 3 (dấu hiệu nhận biết 3) Tứ giác EFGH là hình bình hành vì có EH // FG và EH = FH = 3 (dấu hiệu nhận biết 3) Tứ giác MNPQ là hình bình hành vì có MN = QP và MQ = NP (dấu hiệu nhận biết 2)- A B E F / / / ,, G D c H N M - -- / - / / - p- é -* - Chú ý: Với các tứ giác ABCD, EFGH còn có thể nhận biết là hình bình hành bằng dấu hiệu nhận biết 2. Với tứ giác MNPQ còn có thể nhận biết là hình bình hành bằng dấu hiệu nhận biết 5. Tứ giác BEDF có: DE // BF (vì AD // BC) 2 2 Nên BEDF là hình bình hành. Suy ra BE = DF. a) Ta có Bi = Di (cùng bằng nửa hai góc bằ nên AB // CD suy ra Bì - Ị?! (so le trong) Nên Di =Fi- Do đó DE // BF (có hai góc đồng vị bằng nhau) b) Tứ giác DEBF có: DE // BF (chứng minh ở câu a) BE // DF (vì AB // CD) Nên theo định nghĩa DEBF là hình bình hành. Bài tập tương tự Cho AABC; N, p, Q lần lượt là trung điểm của các cạnh AB, BC, CA và I, J, K lần lượt là trung điểm của các đoận thẳng NP, BP, NC. Chứng minh tứ giác IJKQ là hình bình hành. Cho hình bình hành ABCD. Trên đường chéo AC lấy hai điểm E, F sao cho AE = EF = FC. Chứng minh BFDE là hình bình hành. Tia DF cắt cạnh CB tại điểm M. Chứng minh DF = 2FM. 46. Các câu sau đúng hay sai? LUYỆN TẬP Tứ giác có hai cạnh đôi bằng nhau là hình bình hành. Hình thang có hai cạnh bên bằng nhau là hình bình hành. Cho hình 72, trong đó ABCD là hình bình hành. Chứng minh rằng AHCK là hình bình hành. Gọi o là trung điểm của HK. Chứng minh rằng ba điểm A, o, c thẳng hàng. Tứ giác ABCD có E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì? Vì sao? Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở M và N. Chứng minh rằng: AI // CK b) DM = MN = NB Giải a) Đúng, vì hình thang có hai đáy song song lại có thêm hai cạnh đáy bằng nhau nên là hình bình hành theo dấu hiệu nhận biết 5. Đúng, vì khi đó ta được tứ giác có các cạnh đối song song là hình bình hành (định nghĩa). Sai, vì hình thang cân có hai cạnh đối (hai cạnh bên) bằng nhau nhưng nó không phải là hình bình hành. Sai, vì hình thang cân có hai cạnh bên bằng nhau nhưng nó không phải là hình bình hành. a) Hai tam giác vuông AHD và CKB có: AD = CB (gt) Di = Bi (so le trong) N eâ AAHD = ACKB (cạnh huyền, góc nhọn) Suy ra AH = CK Tứ giác AHCK có AH // CK, AH = CK nên là hình bình hành, b) Xét hình bình hành AHCK, trung điểm o của đường chéo HK cũng là trung điểm của đường chéo AC (tính chất đường chéo của hình bình hành). Do đó ba điểm A, 0, c thẳng hàng. Tứ giác EFGH là hình bình hành. Cách 1: EB = EA, FB = FC (gt) nên EF là đường trung bình của AABC. Do đó FF//AC Tương tự HG là đường trung bình của AACD. Do do HG // AC Suy ra EF // HG (1) Từ (1) và (2) suy ra EFGH là hình bình hành (dấu hiệu nhận biết 1). Cách 2: EF là đường trung bình của AABC nên EF = ỉ AC * HG là đường trung bình của AACD nên HG = - AC . Suy ra EF = HG Lại có EF // HG (chứng minh trên) Vậy EFGH là hình bình hành (dấu hiệu nhận biết 3). Tương tự EH//FG (2) a) Tứ giác ABCD có AB = CD, AD = BC nên là hình bình hành. Tứ giác AICK có AK // IC, AK = IC nên là hình bình hành. Do đó AI // CK. A z K , B (vì AI // CK) nên suy ra DM = MN / X Chứng minh tương tự đối với AABM ta có MN = NB. / Vậy DM = MN = NB £ ' * I J

    --- Bài cũ hơn ---

  • Sách Giải Bài Tập Toán Lớp 8 Bài 7: Hình Bình Hành
  • Giải Bài Tập Sgk Giáo Dục Công Dân 8 Bài 2: Liêm Khiết
  • Giải Bài Tập Sbt Gdcd Lớp 8 Bài 2: Liêm Khiết
  • Giải Bài Tập Bài 2 Trang 8 Sgk Gdcd Lớp 8
  • Giải Bài Tập Mai Lan Hương Lớp 9 Test For Unit 7
  • Bạn đang xem bài viết Giải Bài Tập Toán Lớp 8: Bài 7. Hình Bình Hành trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!