Cập nhật thông tin chi tiết về Giải Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số Và Bài Tập Vận Dụng mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.
Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số như thế nào? Giải hệ bằng phương pháp này có ưu điểm gì so với phương pháp thế hay không? chúng ta cùng tìm hiểu qua bài viết này.
I. Phương trình và hệ phương trình bậc nhất hai ẩn
1. Phương trình bậc nhất hai ẩn
– Phương trình bậc nhất hai ẩn: ax + by = c với a, b, c ∈ R (a2 + b2 ≠ 0)
– Tập nghiệm của phương trình bậc nhất hai ẩn: Phương trình bậc nhất hai ẩn ax + by = c luôn luôn có vô số nghiệm. Tập nghiệm của nó được biểu diễn bởi đường thẳng (d): ax + by = c
Nếu a ≠ 0, b = 0 thì phương trình trở thành ax = c hay x = c/a và đường thẳng (d) song song hoặc trùng với trục tung
Nếu a = 0, b ≠ 0 thì phương trình trở thành by = c hay y = c/b và đường thẳng (d) song song hoặc trùng với trục hoành
2. Hệ hai phương trình bậc nhất hai ẩn
+ Hệ phương trình bậc nhất 2 ẩn: <img title="small left{egin{matrix} ax+by=c a'x + b'y=c' end{matrix}
+ Minh họa tập nghiệm của hệ hai phương trình bậc nhất hai ẩn
– Gọi (d): ax + by = c, (d’): a’x + b’y = c’, khi đó ta có:
(d)//(d’) thì hệ vô nghiệm
(d) cắt (d’) thì hệ có nghiệm duy nhất
(d) ≡ (d’) thì hệ có vô số nghiệm
+ Hệ phương trình tương đương: Hệ hai phương trình tương đương với nhau nếu chúng có cùng tập nghiệm
II. Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số
1. Giải hệ phương trình bậc nhất 2 ẩn bằng phương pháp cộng đại số
a) Quy tắc cộng đại số
Quy tắc cộng đại số dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương gồm hai bước:
+ Bước 1: Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được một phương trình mới.
+ Bước 2: Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ (và giữ nguyên phương trình kia).
b) Cách giải hệ phương trình bằng phương pháp cộng đại số.
+ Bước 1: Nhân các vế của hai phương trình với số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.
+ Bước 2: Sử dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).
+ Bước 3: Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho.
* Ví dụ: Giải các hệ PT bậc nhất 2 ẩn sau bằng PP cộng đại số:
a) <img title="small left{egin{matrix} 2x+y=3 x-y=6 end{matrix}
b) <img title="small g_white fn_cm small left{egin{matrix} 2x+3y=5 2x-y=1 end{matrix}
* Lời giải:
a) <img title="small left{egin{matrix} 2x+y=3 & (1) x-y=6 &(2) end{matrix} ight.Leftrightarrow left{egin{matrix} 3x=9 x-y=6 end{matrix}
<img title="small Leftrightarrow left{egin{matrix} x=3 x-y=6 end{matrix} ight.Leftrightarrow left{egin{matrix} x=3 y=-3 end{matrix}
b) <img title="small left{egin{matrix} 2x+3y=5 &(1) 2x-y=1 &(2) end{matrix} ight.Leftrightarrow left{egin{matrix} 4y=4 2x-y=1 end{matrix}
<img title="small left{egin{matrix} y=1 2x-1=1 end{matrix} ight. Leftrightarrow left{egin{matrix} y=1 x=1 end{matrix}
III. Bài tập giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số
* Bài 20 trang 19 sgk toán 9 tập 2: Giải các hệ PT sau bằng PP cộng đại số
a) <img title="small left{egin{matrix} 3x+y=3 2x-y=7 end{matrix}
c) <img title="small g_white fn_cm small left{egin{matrix} 4x+3y=6 2x+y=4 end{matrix}
e) <img title="small g_white fn_cm small left{egin{matrix} 0,3x+0,5y=3 1,5x-2y=1,5 end{matrix}
* Lời giải:
a) <img title="small g_white fn_cm small left{egin{matrix} 3x+y=3 2x-y=7 end{matrix} ight.Leftrightarrow left{egin{matrix} 5x=10 2x-y=7 end{matrix} ight.Leftrightarrow left{egin{matrix} x=2 y=-3 end{matrix}
Lưu ý: Lấy PT(1)+PT(2)
⇒ Kết luận: hệ PT có nghiệm duy nhất (2;-3)
b) <img title="small g_white fn_cm small g_white fn_cm small left{egin{matrix} 2x+5y=8 2x-3y=0 end{matrix} ight.Leftrightarrow left{egin{matrix} 8y=8 2x-3y=0 end{matrix} ight.Leftrightarrow left{egin{matrix} y=1 x=frac{3}{2} end{matrix}
Lưu ý: Lấy PT(1)-PT(2)
⇒ Kết luận: hệ PT có nghiệm duy nhất (2;-3)
c) <img title="small left{egin{matrix} 4x+3y=6 2x+y=4 end{matrix} ight.Leftrightarrow left{egin{matrix} 4x+3y=6 4x+2y=8 end{matrix}
<img title="small Leftrightarrow left{egin{matrix} y=-2 2x+y=4 end{matrix} ight.Leftrightarrow left{egin{matrix} y=-2 x=3 end{matrix}
(lấy PT(1) – PT(2))
⇒ Kết luận: hệ PT có nghiệm duy nhất (2;-3)
d) <img title="small left{egin{matrix} 2x+3y=-2 3x-2y=-3 end{matrix} ight.Leftrightarrow left{egin{matrix} 6x+9y=-6 6x-4y=-6 end{matrix}
<img title="small left{egin{matrix} 13y=0 3x-2y=-3 end{matrix} ight.Leftrightarrow left{egin{matrix} y=0 x=-1 end{matrix}
(Lấy PT(1)-PT(2))
⇒ Kết luận: hệ PT có nghiệm duy nhất (-1;0)
e) <img title="small left{egin{matrix} 0,3x+0,5y=3 1,5x-2y=1,5 end{matrix} ight.Leftrightarrow left{egin{matrix} 1,5x+2,5y=15 1,5x-2y=1,5 end{matrix}
<img title="small Leftrightarrow left{egin{matrix} 4,5y=13,5 1,5x-2y=1,5 end{matrix} ight.Leftrightarrow left{egin{matrix} y=3 x=5 end{matrix}
⇒ Kết luận: hệ PT có nghiệm duy nhất (5;3)
Giải Hệ Phương Trình Bằng Phương Pháp Thế Và Phương Pháp Cộng Đại Số
Cập nhật lúc: 15:22 26-09-2018 Mục tin: LỚP 9
Tài liệu giới thiệu về hai phương pháp chính dùng để giải hệ hai phương trình bậc nhất hai ẩn. Đó là phương pháp thế và phương pháp cộng đại số.
GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP THẾ A. TRỌNG TÂM KIẾN THỨC 1. Quy tắc thế
Quy tắc thế dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương. Quy tắc thế bao gồm hai bước sau:
Bước 1. Từ một phương trình của hệ đã cho (coi là phương trình thức nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thức hai để được một phương trình mới (chỉ còn một ẩn).
Bước 2. Dùng phương trình mới ấy để thay thế cho phương trình thức hai trong hệ (phương trình thức nhất cũng thường được thay thế bởi hệ thức biểu diễn một ẩn theo ẩn kia có được ở bước 1).
2. Tóm tắt cách giải hệ phương trình bằng phương pháp thế
+ Dùng quy tắc thế để biến đổi phương trình đã cho để được một hệ phương trình mới, trong đó có một phương trình một ẩn.
+ Giải phương trình một ẩn vừa có, rồi suy ra nghiệm của hệ đã cho.
GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ A. TRỌNG TÂM KIẾN THỨC 1. Quy tắc cộng đại số
Quy tắc cộng đại số dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương. Quy tắc cộng đại số gồm hai bước sau:
Bước 1: Coognj hay trừ tằng về hai phương trình của hệ phương trình đã cho để được một phương trình mới.
Bước 2: Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ (và giữ nguyên phương trình kia)
2. Tóm tắt cách giải hệ phương trình bằng phương pháp cộng đại số
+ Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.
+ Áp dụng quy tắc cộng đại số để được hệ phương trình mưới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng (0) (tức là phương trình một ẩn).
+ Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho.
Chương Iii. §4. Giải Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số
Chương III. §4. Giải hệ phương trình bằng phương pháp cộng đại số
HỘI THI ỨNG DỤNG CNTT VÀO DẠY HỌCPHÒNG GD & ĐT HẢI LĂNGTRƯỜNG THCS HẢI THƯỢNGTiết 37GIẢI HỆ PHƯƠNG TRÌNHBẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐPHÒNG GD & ĐT HẢI LĂNGTRƯỜNG THCS HẢI THƯỢNGHỘI THI ỨNG DỤNG CNTT VÀO DẠY HỌCkiểm tra Bài cũ2 HS trình bày lên bảng.HS còn lại làm giải câu b trên phiếu học tập.Giải hệ phương trình sau bằng phương pháp thế:kiểm tra Bài cũGiải hệ phương trình sau bằng phương pháp thế:kiểm tra Bài cũGiải hệ phương trình sau bằng phương pháp thế:Vậy hệ phương trình (B) có nghiệm duy nhất (x;y)=(2;3)ĐẠI SỐ 9 Tiết 37; § 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ1. Ví dụ: Ví dụ : Giải hệ phương trình: Vậy hệ phương trình (I) có nghiệm duy nhất (x;y)=(2;3)Bước 1: Cộng theo vế phương trình (1) và phương trình (2) của hệ phương trình (I). Bước 2: Dùng phương trình (3) thu được ở bước 1 thay thế cho một trong hai phương trình của hệ phương trình (I).ĐẠI SỐ 9 Tiết 37; § 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ1. Ví dụ: Ví dụ : Giải hệ phương trình: Vậy hệ phương trình (I) có nghiệm duy nhất (x;y)=(2;3)2. Quy tắc cộng đại số:Bước 1: Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được 1 phương trình mới.Bước2: Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ (và giữ nguyên phương trình kia) ĐẠI SỐ 9 Tiết 37; § 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ1. Ví dụ: Bài 1: Giải hệ phương trình sau bằng phương pháp cộng đại số: 2. Quy tắc cộng đại số:Bước 1: Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được 1 phương trình mới.Bước2: Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ phương trình của hệ (và giữ nguyên phương trình kia) 3. Bài tâp áp dụng:(HD: Cộng theo vế)(HD: Trừ theo vế)ĐẠI SỐ 9 Tiết 37; § 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ1. Ví dụ: Bài 1: Giải hệ phương trình sau bằng phương pháp cộng đại số: 2. Quy tắc cộng đại số:Bước 1: Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được 1 phương trình mới.Bước2: Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ phương trình của hệ (và giữ nguyên phương trình kia) 3. Bài tâp áp dụng:Vậy hệ phương trình (II) có nghiệm duy nhất (x;y)=(-1;2)Vậy hệ phương trình (III) có nghiệm duy nhất (x;y)=(2;3)Chú ý 1: Nếu hệ số của cùng một ẩn bằng nhau thì ta trừ theo vế; nếu hệ số của cùng một ẩn đối nhau thì ta cộng theo vế hai phương trình.ĐẠI SỐ 9 Tiết 37; § 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ1. Ví dụ: Bài 2: Giải hệ phương trình sau bằng phương pháp cộng đại số: 2. Quy tắc cộng đại số:Bước 1: Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được 1 phương trình mới.Bước2: Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ phương trình của hệ (và giữ nguyên phương trình kia) 3. Bài tâp áp dụng:Chú ý 1: Nếu hệ số của cùng một ẩn bằng nhau thì ta trừ theo vế; nếu hệ số của cùng một ẩn đối nhau thì ta cộng theo vế hai phương trình.Hướng dẫn: Nhân hai vế phương trình (1) với 2, rồi trừ theo vế hai phương trình thu được. hoặc nhân hai vế phương trình (2) với 3, rồi cộng theo vế hai phương trình thu được.ĐẠI SỐ 9 Tiết 37; § 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ1. Ví dụ: Bài 2: Giải hệ phương trình sau bằng phương pháp cộng đại số: 2. Quy tắc cộng đại số:Bước 1: Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được 1 phương trình mới.Bước2: Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ phương trình của hệ (và giữ nguyên phương trình kia) 3. Bài tâp áp dụng:Chú ý 1: Nếu hệ số của cùng một ẩn bằng nhau thì ta trừ theo vế; nếu hệ số của cùng một ẩn đối nhau thì ta cộng theo vế hai phương trình.Vậy hệ phương trình (IV) có nghiệm duy nhất (x;y)=(1;3)ĐẠI SỐ 9 Tiết 37; § 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ1. Ví dụ: Bài 2: Giải hệ phương trình sau bằng phương pháp cộng đại số: 2. Quy tắc cộng đại số:3. Bài tâp áp dụng:Chú ý 1: Nếu hệ số của cùng một ẩn bằng nhau thì ta trừ theo vế; nếu hệ số của cùng một ẩn đối nhau thì ta cộng theo vế hai phương trình. Chú ý 2: Khi cần ta có thể nhân hai vế của mỗi phương trình với một số k≠0 thích hợp để cho các hệ số của một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.Vậy hệ phương trình (IV) có nghiệm duy nhất (x;y)=(1;3)ĐẠI SỐ 9 Tiết 37; § 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐBài 3: Giải hệ phương trình sau bằng phương pháp cộng đại số: Hướng dẫn: Nhân hai vế phương trình (1) với 3 và phương trình (2) với 2, rồi trừ theo vế hai phương trình thu được. Hoặc nhân hai vế phương trình (1) với 4 và phương trình (2) với 3, rồi cộng theo vế hai phương trình thu được.1. Ví dụ: 2. Quy tắc cộng đại số:3. Bài tâp áp dụng:Chú ý 1: Nếu hệ số của cùng một ẩn bằng nhau thì ta trừ theo vế; nếu hệ số của cùng một ẩn đối nhau thì ta cộng theo vế hai phương trình. Chú ý 2: Khi cần ta có thể nhân hai vế của mỗi phương trình với một số k≠0 thích hợp để cho các hệ số của một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.ĐẠI SỐ 9 Tiết 37; § 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐBài 3: Giải hệ phương trình sau bằng phương pháp cộng đại số: 1. Ví dụ: 2. Quy tắc cộng đại số:3. Bài tâp áp dụng:Chú ý 1: Nếu hệ số của cùng một ẩn bằng nhau thì ta trừ theo vế; nếu hệ số của cùng một ẩn đối nhau thì ta cộng theo vế hai phương trình. Chú ý 2: Khi cần ta có thể nhân hai vế của mỗi phương trình với một số k≠0 thích hợp để cho các hệ số của một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.Vậy hệ phương trình (V) có nghiệm duy nhất (x;y)=(-1;2) ĐẠI SỐ 9 Tiết 37; § 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐBài 3: Giải hệ phương trình sau bằng phương pháp cộng đại số: 1. Ví dụ: 2. Quy tắc cộng đại số:3. Bài tâp áp dụng:Vậy hệ phương trình (V) có nghiệm duy nhất (x;y)=(-1;2) *)Cách giải hệ phương trình bằng PP cộng đại số:1) Nhân hai vế của mỗi phương trình với một số k≠0 thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0.3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho. ĐẠI SỐ 9 Tiết 37; § 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ1. Ví dụ: Bài 4: Giải hệ phương trình sau bằng phương pháp cộng đại số: 2. Quy tắc cộng đại số:3. Bài tâp áp dụng:*) Cách giải hệ phương trình bằng PP cộng đại số:1) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0.3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho. HS Giải vào phiếu học tập Vậy hệ phương trình (VI) có nghiệm duy nhất (x;y)=(1;2)ĐẠI SỐ 9 Tiết 37; § 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ1. Ví dụ: Bài 20 (SGK/19): Giải hệ phương trình sau bằng phương pháp cộng đại số: 2. Quy tắc cộng đại số:3. Bài tâp áp dụng:*) Cách giải hệ phương trình bằng PP cộng đại số:1) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0.3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho. HD: (1)+(2)HD: (1)-(2)HD: (1) – (2).2HD: (1).3-(2).2HD: (1).5 – (2)ĐẠI SỐ 9 Tiết 37; § 4. GIẢI HỆ PHƯƠNG TRÌNH BẰNG PHƯƠNG PHÁP CỘNG ĐẠI SỐ1. Ví dụ: Bài 21 (SGK/19): Giải hệ phương trình sau bằng phương pháp cộng đại số: 2. Quy tắc cộng đại số:3. Bài tâp áp dụng:*) Cách giải hệ phương trình bằng PP cộng đại số:1) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0.3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho. Hướng dẫn học ở nhàCảm ơn quý thầy cô giáo đã về dự.Chúc thầy cô sức khoẻ, chúc các em học giỏi
Giải Sách Bài Tập Toán 9 Bài 4: Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số
Sách Giải Sách Bài Tập Toán 9 Bài 4: hệ phương trình bằng phương pháp cộng đại số giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 9 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 25 trang 11 Sách bài tập Toán 9 Tập 2: Giải các hệ phương trình sau bằng phương pháp cộng đại số:
Bài 26 trang 11 Sách bài tập Toán 9 Tập 2: Giải các hệ phương trình:
Bài 27 trang 11 Sách bài tập Toán 9 Tập 2: Giải các hệ phương trình:
Vì phương trình 0x – 0y = 39 vô nghiệm nên hệ phương trình đã cho vô nghiệm.
Vì phương trình 0x – 0y = 20 vô nghiệm nên hệ phương trình đã cho vô nghiệm.
Vậy hệ phương trình đã cho có nghiệm (s; t) = (3;2)
Bài 28 trang 11 Sách bài tập Toán 9 Tập 2: Tìm hai số a và b sao cho 5a – 4b = -5 và đường thẳng: ax + by = -1 đi qua điểm A(-7; 4).
Lời giải:
Đường thẳng ax + by = -1 đi qua điểm A(-7; 4) nên tọa độ của A nghiệm đúng phương trình đường thẳng.
Vậy a = 3, b = 5.
Bài 29 trang 11 Sách bài tập Toán 9 Tập 2: Tìm giá trị của a và b để đường thẳng ax – by = 4 đi qua hai điểm A(4; 3), B(-6; -7)
Lời giải:
Đường thẳng ax – by = 4 đi qua hai điểm A(4; 3), B(-6; -7) nên tọa độ của A và B nghiệm đúng phương trình đường thẳng.
*Với điểm A: 4a – 3b = 4
*Với điểm B: -6a + 7b = 4
Vậy a = 4, b = 4.
Bài 30 trang 11 Sách bài tập Toán 9 Tập 2: Giải các hệ phương trình theo hai cách:
*Cách thứ hai: đặt ẩn phụ, chẳng hạn s = 3x – 2, t = 3y + 2
Vậy hệ phương trình đã cho có nghiệm (x; y) = (43/51 ; -44/51 )
*Cách 2: Đặt m = 3x – 2, n = 3y + 2
Ta có hệ phương trình:
Ta có: 3x – 2 = 9/17 ⇔ 3x = 2 + 9/17 ⇔ 3x = 43/17 ⇔ x = 43/51
3y + 2 = – 10/17 ⇔ 3y = -2 – 10/17 ⇔ 3y = – 44/17 ⇔ y = – 44/51
Vậy hệ phương trình đã cho có nghiệm (x; y) = (43/51 ; -44/51 )
Vậy hệ phương trình có nghiệm (x;y) = (1; -2)
*Cách 2: Đặt m = x + y, n = x – y
Ta có hệ phương trình:
Vậy hệ phương trình có nghiệm (x;y) = (1; -2)
Bài 31 trang 12 Sách bài tập Toán 9 Tập 2: Tìm giá trị của m để nghiệm của hệ phương trình
cũng là nghiệm của phương trình 3mx – 5y = 2m + 1.
Vì (x; y) = (11; 6) là nghiệm của phương trình 3mx – 5y = 2m +1 nên ta có:
3m.11 – 5.6 = 2m + 1
⇔ 33m – 30 = 2m + 1 ⇔ 31m = 31 ⇔ m = 1
Bài 32 trang 12 Sách bài tập Toán 9 Tập 2: Tìm giá trị của m để đường thẳng (d): y = (2m – 5)x – 5m đi qua giao điểm của hai đường thẳng (d1): 2x + 3y = 7 và (d2): 3x + 2y = 13
Tọa độ điểm I là I(5; -1)
Đường thẳng (d): y = (2m – 5)x – 5m đi qua I(5; -1) nên tọa độ của I nghiệm đúng phương trình đường thẳng:
Ta có: -1 = (2m – 5).5 – 5m ⇔ -1 = 10m – 25 – 5m
⇔ 5m = 24 ⇔ m = 24/5
Vậy với m = 24/5 thì đường thẳng (d) đi qua giao điểm của hai đường thẳng (d 1) và (d 2).
Bài 33 trang 12 Sách bài tập Toán 9 Tập 2: Tìm giá trị của m để ba đường thẳng sau đây đồng quy: (d1): 5x + 11y = 8, (d2): 10 – 7y = 74, (d3): 4mx + (2m – 1)y = m + 2
Lời giải:
Tọa độ giao điểm của (d 1) và (d 2) là nghiệm của hệ phương trình:
Tọa độ giao điểm của (d 1) và (d 2) là (x; y) = (6; -2)
Để ba đường thẳng (d 1), (d 2), (d 3) đồng quy thì (d 3) phải đi qua giao điểm của (d 1) và (d 2), nghĩa là (x; y) = (6; -2) nghiệm đúng phương trình đường thẳng (d 3).
Khi đó ta có: 4m.6 + (2m – 1).(-2) = m + 2
⇔ 24m – 4m + 2 = m + 2 ⇔ 19m = 0 ⇔ m = 0
Vậy với m = 0 thì 3 đường thẳng (d 1), (d 2), (d 3) đồng quy.
Bài 34 trang 12 Sách bài tập Toán 9 Tập 2: Nghiệm chung của ba phương trình đã cho được gọi là nghiệm của hệ gồm ba phương trình ấy. Giải hệ phương trình là tìm nghiệm chung của tất cả các phương trình trong hệ. Hãy giải các hệ phương trình sau:
Thay x = 3, y = 5 vào vế trái của phương trình (3) ta được:
5.3 – 2.5 = 15 – 10 = 5 (thỏa)
Vậy (x; y) = (3; 5) là nghiệm của phương trình (3).
Hệ phương trình đã cho có nghiệm (x; ) = (3; 5)
Thay x = -3, y = 31/5 vào vế trái của phương trình (2), ta được:
-3.(-3) + 2.31/5 = 9 + 62/5 = 107/5 ≠ 22
Vậy (x; y) = (-3; 31/5 ) không phải là nghiệm của phương trình (2).
Hệ phương trình đã cho vô nghiệm.
Bài 1 trang 12 Sách bài tập Toán 9 Tập 2: Giải các hệ phương trình:
Hai giá trị x = 2; y = -2 thỏa mãn điều kiện bài toán.
Vậy hệ phương trình đã cho có một nghiệm (x; y) = (2; -2)
Bài 2 trang 12 Sách bài tập Toán 9 Tập 2: Hãy xác định hàm số bậc nhất thỏa mãn mỗi điều kiện sau:
a) Đồ thị hàm số đi qua hai điểm M(-3; 1) và N(1; 2)
b) Đồ thị hàm số đi qua hai điểm M(√2 ; 1) và N(3; 3√2 – 1)
c) Đồ thị đi qua điểm M(-2; 9) và cắt đường thẳng (d): 3x – 5y = 1 tại điểm có hoành độ bằng 2.
Lời giải:
Hàm số bậc nhất có dạng y = ax + b (a ≠ 0)
a) Đồ thị hàm số y = ax + b đi qua M(-3; 1) và N(1; 2) nên tọa độ của M và N nghiệm đúng phương trình hàm số.
Điểm M: 1 = -3a + b
Điểm N: 2 = a + b
Hai số a và b là nghiệm của hệ phương trình:
b) Đồ thị hàm số y = ax + b đi qua M(√2 ; 1) và N(3; 3√2 – 1) nên tọa độ của M và N nghiệm đúng phương trình hàm số.
Hai số a và b là nghiệm của hệ phương trình:
c) Điểm N nằm trên đường thẳng (d): 3x – 5y = 1 có hoành độ bằng 2 nên tung độ của N bằng: 3.2 – 5y = 1 ⇔ -5y = -5 ⇔ y = 1
Điểm N( 2; 1)
Đồ thị hàm số y = ax + b đi qua M(-2; 9) và N(2; 1) nên tọa độ của M và N nghiệm đúng phương trình hàm số.
Điểm M: 9 = -2a + b
Điểm N: 1 =2a + b
Hai số a và b là nghiệm của hệ phương trình:
Bài 3 trang 13 Sách bài tập Toán 9 Tập 2: Giải hệ phương trình:
Lời giải:
Điều kiện: x ≠ -y; y ≠ -z; z ≠ -x
Từ hệ phương trình đã cho suy ra: x ≠ 0; y ≠ 0; z ≠ 0
Ta có hệ phương trình:
Cộng từng vế ba phương trình ta có:
Suy ra:
Vậy hệ phương trình đã cho có một nghiệm (x; y; z) = (1; 2; 3).
Bạn đang xem bài viết Giải Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số Và Bài Tập Vận Dụng trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!