Xem Nhiều 9/2022 ❤️️ Giải Sbt Toán 9: Bài 3. Đồ Thị Của Hàm Số Y = Ax + B (A ≠ 0) ❣️ Top Trend | Caffebenevietnam.com

Xem Nhiều 9/2022 ❤️ Giải Sbt Toán 9: Bài 3. Đồ Thị Của Hàm Số Y = Ax + B (A ≠ 0) ❣️ Top Trend

Xem 10,494

Cập nhật thông tin chi tiết về Giải Sbt Toán 9: Bài 3. Đồ Thị Của Hàm Số Y = Ax + B (A ≠ 0) mới nhất ngày 24/09/2022 trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Cho đến thời điểm hiện tại, bài viết này đã đạt được 10,494 lượt xem.

Giải Bài Tập Sbt Toán Lớp 9 (Tập 1). Bài 3. Đồ Thị Của Hàm Số Y=Ax+B (A≠0)

Bài 3.1, 3.2 Trang 103 Sbt Toán 9 Tập 2: Bài 3 Góc Nội Tiếp

Giải Bài 18, 19, 20 Trang 102 Sbt Toán Lớp 9 Tập 2: Bài 3 Góc Nội Tiếp

Giải Bài Tập Sbt Toán Lớp 9 (Tập 2). Bài 3: Góc Nội Tiếp

Bài 15, 16, 17 Trang 102 Sbt Toán 9 Tập 2: Bài 3 Góc Nội Tiếp

Bài 3. Đồ thị của hàm số y = ax + b

Bài 14 trang 64 Sách bài tập Toán 9 Tập 1:

a. Vẽ đồ thị của các hàm số sau trên cùng một mặt phẳng tọa độ:

y = x + √3 (1)

y = 2x + √3 (2)

b. Gọi giao điểm của đường thẳng y = x + √3 với các trục Ox, Oy theo thứ tự là A, B và giao điểm của đường thẳng y = 2x + √3 với các trục Ox, Oy theo thứ tự là A, C. Tính các góc của tam giác ABC.

a. *Vẽ đồ thị của hàm số y = x + √3

Cho x = 0 thì y = √3 . Ta có: A(0; √3 )

Cách tìm điểm có tung độ bằng √3 trên trục Oy:

– Dựng điểm M(1; 1). Ta có: OM = √2

– Dựng cung tròn tâm O bán kính OM cắt trục OX tại điểm có hoành độ bằng 2

– Dựng điểm N(1; √2 ). Ta có: ON = √3

– Vẽ cung tròn tâm O bán kính ON cắt trục Oy tại A có tung độ 3 cắt tia đối của Ox tại B có hoành độ -3

Đồ thị của hàm số y = x + √3 là đường thẳng AB.

*Vẽ đồ thị của hàm số y = 2x + √3

Cho x = 0 thì y = √3 . Ta có: A(0; √3 )

Đồ thị của hàm số y = 2x + √3 là đường thẳng AC.

Cho hàm số y = (m – 3)x

a. Với giá trị nào của m thì hàm số đồng biến? Nghịch biến?

b. Xác định giá trị của m để đồ thị của hàm số đi qua điểm A(1; 2)

c. Xác định giá trị của m để đồ thị của hàm số đi qua điểm B(1; -2)

d. Vẽ đồ thị của hai hàm số ứng với giá trị của m tìm được ở các câu b, c.

Điều kiện: m – 3 ≠ 0 ⇔ m ≠ 3

*Hàm số nghịch biến khi hệ số a = m – 3 < 0 ⇔ m < 3

Vậy với m < 3 thì hàm số y = (m – 3)x nghịch biến.

b. Đồ thị của hàm số y = (m – 3)x đi qua điểm A(1; 2) nên tọa độ điểm A nghiệm đúng phương trình hàm số.

Ta có: 2 = (m – 3).1 ⇔ 2 = m – 3 ⇔ m = 5

Giá trị m = 5 thỏa mãn điều kiện bài toán.

Vậy với m = 5 thì đồ thị hàm sô y = (m – 3)x đi qua điểm A(1; 2).

c. Đồ thị của hàm số y = (m – 3)x đi qua điểm B(1; -2) nên tọa độ điểm B nghiệm đúng phương trình hàm số.

Ta có: -2 = (m – 3).1 ⇔ -2 = m – 3 ⇔ m = 1

Giá trị m = 1 thỏa mãn điều kiện bài toán.

Vậy với m = 1 thì đồ thị hàm số y = (m – 3)x đi qua điểm B(1; -2)

d. Khi m = 5 thì ta có hàm số: y = 2x

Khi m = 1 thì ta có hàm số: y = -2x

*Vẽ đồ thị của hàm số y = 2x

Cho x = 0 thì y = 0. Ta có: O(0; 0)

Cho x = 1 thì y = 2. Ta có: A(1; 2)

Đường thẳng OA là đồ thị hàm số y = 2x

*Vẽ đồ thị của hàm số y = -2x

Cho x = 0 thì y = 0. Ta có: O(0; 0)

Cho x = 1 thì y = -2. Ta có: B(1; -2)

Đường thẳng OB là đồ thị hàm số y = -2x

Cho hàm số y = (a – 1)x + a

a. Xác định giá trị của a để đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 2.

b. Xác định giá trị của a để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng -3.

c. Vẽ đồ thị của hai hàm số ứng với giá trị của a tìm được ở các câu a, b trên cùng hệ trục tọa độ Oxy và tìm tọa độ giao điểm của hai đường thẳng vừa vẽ được.

a. Hàm số y = (a – 1)x + a (a ≠ 1) là hàm số bậc nhất có đồ thị hàm số cắt trục tung tại điểm có tung độ bằng y = 2 nên a = 2.

b. Hàm số y = (a – 1)x + a (a ≠ 1) là hàm số bậc nhất có đồ thị hàm số cắt trục hoành tại điểm có hoành độ x = -3 nên tung độ giao điểm này bằng 0.

Ta có: 0 = (a – 1)(-3) + a ⇔ -3x + 3 + a = 0

⇔ -2a = -3 ⇔ a = 1,5

c. Khi a = 2 thì ta có hàm số: y = x + 2

Khi a = 1,5 thì ta có hàm số: y = 0,5x + 1,5

*Vẽ đồ thị của hàm số y = x + 2

Cho x = 0 thì y = 2. Ta có: A(0; 2)

Cho y = 0 thì x = -2. Ta có: B(-2; 0)

Đường thẳng AB là đồ thị hàm số y = x + 2

*Vẽ đồ thị hàm số y = 0,5x + 1,5

Cho x = 0 thì y = 1,5. Ta có: C(0; 1,5)

Cho y = 0 thì x = -3. Ta có: D(-3; 0)

Đường thẳng CD là đồ thị hàm số y = 0,5x + 1,5.

*Tọa độ giao điểm của hai đường thẳng:

Gọi I(x 1; y 1) là tọa độ giao điểm của hai đường thẳng.

Ta có: I thuộc đường thẳng y = x + 2 nên y 1 = x 1 + 2

I thuộc đường thẳng y = 0,5x + 1,5 nên y 1 = 0,5x 1 + 1,5

Vậy tọa độ giao điểm của hai đường thẳng là I(-1; 1)

a. Vẽ trên cùng hệ trục tọa độ Oxy đồ thị các hàm số sau đây:

Đường thẳng (d 3) cắt đường thẳng (d 1) và (d 2) theo thứ tự tại A, B. Tìm tọa độ của các điểm A, B.

a. *Vẽ đồ thị của hàm số y = x

Cho x = 0 thì y = 0

Cho x = 1 thì y = 1

Đồ thị hàm số y = x là đường thẳng đi qua gốc tọa độ O(0; 0) và điểm (1; 1)

*Vẽ đồ thị hàm số y = 2x

Cho x = 0 thì y = 0

Cho x = 1 thì y = 2

Đồ thị hàm số y = 2x là đường thẳng đi qua gốc tọa độ O(0; 0) và điểm (1;2)

*Vẽ đồ thị của hàm số y = -x + 3

Cho x = 0 thì y = 3. Ta có điểm (0; 3)

Cho y = 0 thì x = 3. Ta có điểm (3; 0)

Đồ thị hàm số y = -x + 3 là đường thẳng đi qua hai điểm (0; 3) và (3; 0)

b. *Gọi A(x 1; y 1), B(x 2; y 2) lần lượt là tọa độ giao điểm của đường thẳng (d 3) với hai đường thẳng (d 1), (d 2)

Ta có: A thuộc đường thẳng y = x nên y 1 = x 1

A thuộc đường thẳng y = -x + 3 nên y 1 = -x 1 + 3

Vậy tọa độ giao điểm của hai đường thẳng (d 1) và (d 2) là A(1,5; 1,5)

Vậy tọa độ giao điểm của hai đường thẳng (d 2) và (d 3) là B(1; 2).

Bài 1 trang 64 Sách bài tập Toán 9 Tập 1:

Cho hàm số bậc nhất y = (m – 1,5)x + 5 (1)

a) Khi m = 3, đồ thị của hàm số (1) đi qua điểm:

A. (2;7);

B. (2,5;8);

C. (2;8);

D. (-2;3).

b) Khi m = 2, đồ thị của hàm số (1) cắt trục hoành tại điểm:

A. (1;0);

B. (2;0);

C. (-1;0);

D. (-10;0).

a) Chọn C.

b) Chọn D.

Bài 2 trang 65 Sách bài tập Toán 9 Tập 1:

Cho hai đường thẳng d 1 và d 2 xác định bởi các hàm số bậc nhất sau:

Đường thẳng (d 1) và đường thẳng (d 2) cắt nhau tại điểm:

A. (2; -2);

B. (4; -1);

C. (-2; -4);

D. (8;1).

Chọn đáp án B

Bài 3 trang 65 Sách bài tập Toán 9 Tập 1:

Cho ba đường thẳng sau:

Hãy tìm giá trị của k để sao cho ba đường thẳng đồng quy tại một điểm.

* Trước hết tìm giao điểm của hai đường thẳng (d 1) và (d 2).

– Tìm hoành độ của giao điểm:

2/5x + 1/2 = 3/5x – 5/2 ⇔ 1/5x = 6/2 ⇔ x = 15.

– Tìm tung độ giao điểm:

y = 2/5.15 + 1/2 = 6,5.

*Tìm k (bằng cách thay tọa độ của giao điểm vào phương trình (d 3)).

6,5 = k.15 + 3,5 ⇔ 15k = 3 ⇔ k = 0,2.

Trả lời: Khi k = 0,2 thì ba đường thẳng đồng quy tại điểm (15; 6,5).

Bài 4 trang 65 Sách bài tập Toán 9 Tập 1:

Trên mặt phẳng tọa độ Oxy cho ba điểm A, B, C có tọa độ như sau: A(7;7), B(2;5), C(5;2).

a) Hãy viết phương trình của các đường thẳng AB, BC và CA.

b) Coi độ dài mỗi đơn vị trên các trục Ox, Oy là 1cm, hãy tính chu vi, diện tích của tam giác ABC (lấy chính xác đến hai chữ số thập phân).

a) * Gọi phương trình đường thẳng AB là y = ax + b.

Tọa độ các điểm A, B phải thỏa mãn phương trình y = ax + b nên ta có:

*Gọi phương trình của đường thẳng BC là y = a’x + b’.

Tương tự như trên ta có:

*Gọi phương trình của đường thẳng AC là y = a”x + b”.

Vậy phương trình của đường thẳng AC là y = 5/2x – 21/2.

b) * Áp dụng định lý Py-ta-go vào tam giác vuông lần lượt có các cạnh huyền là AB, AC, BC và sử dụng máy tính bỏ túi, tính được AB ≈ 5,39cm; AC ≈ 5,39; BC ≈ 4,24cm.

Do chu vi của tam giác ABC là AB + BC + CA ≈ 15,02cm

*Diện tích tam giác ABC bằng diện tích hình vuông cạnh dài 5cm trừ đi tổng diện tích ba tam giác vuông xung quanh (có cạnh huyền lần lượt là AB, BC, CA). Tính được: S ABC = 10,5 (cm 2).

Giải Bài Tập Sbt Toán 9 Bài 1: Căn Bậc Hai

Giải Sbt Toán 9: Bài 5. Bảng Căn Bậc Hai

Bài 36, 37, 38 Trang 106 Sbt Toán 9 Tập 2: Bài 6 Cung Chứa Góc

Bài Tập 33, 34, 35 Trang 105, 106 Sbt Toán 9 Tập 2 Bài 6 Cung Chứa Góc

Giải Bài 6.1, 6.2, 6.3 Trang 106 Sbt Toán Lớp 9 Tập 2: Bài 6 Cung Chứa Góc

Bạn đang xem bài viết Giải Sbt Toán 9: Bài 3. Đồ Thị Của Hàm Số Y = Ax + B (A ≠ 0) trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!

Yêu thích 2317 / Xu hướng 2407 / Tổng 2497 thumb
🌟 Home
🌟 Top