Xem Nhiều 1/2023 #️ Giải Toán Lớp 7 Bài 9: Tính Chất Ba Đường Cao Của Tam Giác # Top 3 Trend | Caffebenevietnam.com

Xem Nhiều 1/2023 # Giải Toán Lớp 7 Bài 9: Tính Chất Ba Đường Cao Của Tam Giác # Top 3 Trend

Cập nhật thông tin chi tiết về Giải Toán Lớp 7 Bài 9: Tính Chất Ba Đường Cao Của Tam Giác mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.

Giải Toán lớp 7 Bài 9: Tính chất ba đường cao của tam giác

Bài 58 (trang 83 SGK Toán 7 tập 2): Hãy giải thích tại sao trực tâm của tam giác vuông trùng với đỉnh góc vuông và trực tâm của tam giác tù nằm ở bên ngoài tam giác.

Lời giải

– Trường hợp tam giác vuông:

Vậy trong tam giác vuông thì trực tâm trùng với đỉnh góc vuông.

– Trường hợp tam giác tù:

Từ B kẻ đường thẳng BK vuông góc với CA. Ta có: KA, KC lần lượt là hình chiếu của BA, BC.

Tương tự với đường cao CP.

Vậy trực tâm của tam giác tù nằm ở bên ngoài tam giác đó.

Bài 59 (trang 83 SGK Toán 7 tập 2): Cho hình 57.

a) Chứng minh NS ⊥ LM

b) Khi góc LNP = 50 o, hãy tính góc MSP và góc PSQ.

Hình 57

Lời giải

a) Từ hình vẽ ta có: LP ⊥ MN; MQ ⊥ LN

ΔMNL có S là giao điểm của hai đường cao LP và MQ nên S chính là trực tâm của tam giác (định lí ba đường cao).

b) ΔNMQ vuông tại Q có góc LNP = 50 o nên góc QMN = 40 o

ΔMPS vuông tại P có góc QMP = 40 o nên góc MSP = 50 o

Vì hai góc MSP và PSQ là hai góc kề bù nên suy ra:

Bài 60 (trang 83 SGK Toán 7 tập 2): Trên đường thẳng d, lấy ba điểm phân biệt I, J, K (J ở giữa I và K).

Kẻ đường thẳng l vuông góc với d tại J. Trên l lấy điểm M khác với điểm J. Đường thẳng qua I vuông góc với MK cắt l tại N.

Chứng minh KN ⊥ IM.

Lời giải

Nối M với I ta được ΔMIK.

Trong ΔMIK có: MJ ⊥ IK (do l ⊥ d) và IN ⊥ MK

Do đó N là trực tâm của ΔMIK.

Suy ra KN là đường cao thứ ba của ΔMIK hay NK ⊥ IM (đpcm).

Bài 61 (trang 83 SGK Toán 7 tập 2): Cho tam giác ABC không vuông. Gọi H là trực tâm của nó.

a) Hãy chỉ ra các đường cao của tam giác HBC. Từ đó hãy chỉ ra trực tâm của tam giác đó.

b) Tương tự, hãy lần lượt chỉ ra trực tâm của các tam giác HAB và HAC.

Lời giải

Các đường thẳng HA, HB, HC lần lượt cắt cạnh đối BC, Ac, AB tại N, M, E.

a) ΔHBC có:

HN ⊥ BC nên HN là đường cao

BE ⊥ HC nên BE là đường cao

CM ⊥ BH nên CM là đường cao

Vậy A là trực tâm của ΔHBC.

b) Tương tự, trực tâm của ΔAHB là C; ΔAHC là B.

Bài 62 (trang 83 SGK Toán 7 tập 2): Chứng minh rằng một tam giác có hai đường cao (xuất phát từ các đỉnh của hai góc nhọn) bằng nhau thì tam giác đó là tam giác cân. Từ đó suy ra một tam giác có ba đường cao bằng nhau thì tam giác đó là tam giác đều.

Lời giải

Sách Giải Bài Tập Toán Lớp 7 Bài 9: Tính Chất Ba Đường Cao Của Tam Giác

Sách giải toán 7 Bài 9: Tính chất ba đường cao của tam giác – Luyện tập (trang 83) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 7 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Trả lời câu hỏi Toán 7 Tập 2 Bài 9 trang 81: Dùng eke vẽ 3 đường cao của tam giác ABC.

Hãy cho biết ba đường cao của tam giác đó có cùng đi qua một điểm hay không.

Ta vẽ đường ba đường cao của tam giác ABC như hình vẽ

Ba đường cao đó là : AH, BI, CK

Dựa vào hình vẽ ta thấy ba đường cao của tam giác cùng đi qua một điểm

Trả lời câu hỏi Toán 7 Tập 2 Bài 9 trang 82: Hãy phát biểu và chứng minh các trường hợp còn lại của nhận xét trên (xem như những bài tập).

– Bài tập 1: Nếu một tam giác có một đường trung trực đồng thời là đường phân giác thì tam giác đó là một tam giác cân

Xét ΔABC có AI vừa là đường trung trực vừa là đường phân giác

AI là đường trung trực ⇒ AI ⊥ BC và I là trung điểm BC

Xét hai tam giác vuông ΔABI và ΔACI có:

AI chung

∠(BAI) = ∠(CAI) (do AI là phân giác góc BAC)

⇒ ΔABI = ΔACI (góc nhọn – cạnh góc vuông)

⇒ AB = AC (hai cạnh tương ứng)

⇒ ΔABC cân tại A

– Bài tập 2: Nếu một tam giác có một đường trung trực đồng thời là đường cao thì tam giác đó là một tam giác cân

Xét ΔABC có AI vừa là đường trung trực vừa là đường cao

⇒ AI ⊥ BC và I là trung điểm BC

Xét hai tam giác vuông ΔABI và ΔACI có:

AI chung

IB = IC ( do I là trung điểm BC)

⇒ ΔABI = ΔACI (hai cạnh góc vuông)

⇒ AB = AC (hai cạnh tương ứng)

⇒ ΔABC cân tại A

– Bài tập 3: Nếu một tam giác có một đường phân giác đồng thời là đường cao thì tam giác đó là một tam giác cân

Xét ΔABC có AI vừa là đường phân giác vừa là đường cao

AI là đường cao ⇒ AI ⊥ BC

Xét hai tam giác vuông ΔABI và ΔACI có:

AI chung

∠(BAI) = ∠(CAI) (do AI là phân giác góc BAC)

⇒ ΔABI = ΔACI (góc nhọn – cạnh góc vuông)

⇒ AB = AC (hai cạnh tương ứng)

⇒ ΔABC cân tại A

– Bài tập 4: Nếu một tam giác có một đường trung tuyến đồng thời là đường cao thì tam giác đó là một tam giác cân

Xét ΔABC có AI vừa là đường trung tuyến vừa là đường cao

AI là đường cao ⇒ AI ⊥ BC

AI là đường trung tuyến ⇒ I là trung điểm BC

Xét hai tam giác vuông ΔABI và ΔACI có:

AI chung

IB = IC ( do I là trung điểm BC)

⇒ ΔABI = ΔACI (hai cạnh góc vuông)

⇒ AB = AC (hai cạnh tương ứng)

⇒ ΔABC cân tại A

Bài 9: Tính chất ba đường cao của tam giác – Luyện tập (trang 83)

Bài 58 (trang 83 SGK Toán 7 tập 2): Hãy giải thích tại sao trực tâm của tam giác vuông trùng với đỉnh góc vuông và trực tâm của tam giác tù nằm ở bên ngoài tam giác.

Lời giải:

+ Xét ΔABC vuông tại A

AB ⏊AC ⇒ AB là đường cao ứng với cạnh AC và AC là đường cao ứng với cạnh AB

hay AB, AC là hai đường cao của tam giác ABC.

Mà AB cắt AC tại A

⇒ A là trực tâm của tam giác vuông ABC.

Vậy: trực tâm của tam giác vuông trùng với đỉnh góc vuông

+ Xét ΔABC tù có góc A tù, các đường cao CE, BF (E thuộc AB, F thuộc AC), trực tâm H.

+ Giả sử E nằm giữa A và B, khi đó

Vậy E nằm ngoài A và B

⇒ tia CE nằm ngoài tia CA và tia CB ⇒ tia CE nằm bên ngoài ΔABC.

+ Tương tự ta có tia BF nằm bên ngoài ΔABC.

+ Trực tâm H là giao của BF và CE ⇒ H nằm bên ngoài ΔABC.

Vậy : trực tâm của tam giác tù nằm ở bên ngoài tam giác.

Bài 9: Tính chất ba đường cao của tam giác – Luyện tập (trang 83)

Bài 59 (trang 83 SGK Toán 7 tập 2): Cho hình 57.

a) Chứng minh NS ⊥ LM

b) Khi góc LNP = 50 o, hãy tính góc MSP và góc PSQ.

Hình 57 Lời giải:

a) Trong ΔMNL có:

LP ⊥ MN nên LP là đường cao của ΔMNL.

MQ ⊥ NL nên MQ là đường cao của ΔMNL.

Mà LP, MQ cắt nhau tại điểm S

Nên: theo tính chất ba đường cao của một tam giác, S là trực tâm của tam giác.

⇒ đường thẳng SN là đường cao của ΔMNL.

hay SN ⊥ ML.

b)

+ Ta có : trong tam giác vuông, hai góc nhọn phụ nhau nên :

ΔNMQ vuông tại Q có:

Bài 9: Tính chất ba đường cao của tam giác – Luyện tập (trang 83)

Bài 60 (trang 83 SGK Toán 7 tập 2): Trên đường thẳng d, lấy ba điểm phân biệt I, J, K (J ở giữa I và K).

Kẻ đường thẳng l vuông góc với d tại J. Trên l lấy điểm M khác với điểm J. Đường thẳng qua I vuông góc với MK cắt l tại N.

Chứng minh KN ⊥ IM.

l ⊥ d tại J, và M, J ∈ l ⇒ MJ ⟘ IK ⇒ MJ là đường cao của ΔMKI.

N nằm trên đường thẳng qua I và vuông góc với MK ⇒ IN ⟘ MK ⇒ IN là đường cao của ΔMKI.

IN và MJ cắt nhau tại N .

Theo tính chất ba đường cao của ta giác ⇒ N là trực tâm của ΔMKI.

⇒ KN cũng là đường cao của ΔMKI ⇒ KN ⟘ MI.

Vậy KN ⏊ IM

Bài 9: Tính chất ba đường cao của tam giác – Luyện tập (trang 83)

Bài 61 (trang 83 SGK Toán 7 tập 2): Cho tam giác ABC không vuông. Gọi H là trực tâm của nó.

a) Hãy chỉ ra các đường cao của tam giác HBC. Từ đó hãy chỉ ra trực tâm của tam giác đó.

b) Tương tự, hãy lần lượt chỉ ra trực tâm của các tam giác HAB và HAC.

Gọi D, E, F là chân các đường vuông góc kẻ từ A, B, C của ΔABC.

⇒ AD ⟘ BC, BE ⟘ AC, CF ⟘ AB.

a) ΔHBC có :

AD ⊥ BC nên AD là đường cao từ H đến BC.

BA ⊥ HC tại F nên BA là đường cao từ B đến HC

CA ⊥ BH tại E nên CA là đường cao từ C đến HB.

AD, BA, CA cắt nhau tại A nên A là trực tâm của ΔHCB.

b) Tương tự :

+ Trực tâm của ΔHAB là C (C là giao điểm của ba đường cao : CF, AC, BC)

+ Trực tâm của ΔHAC là B (B là giao điểm của ba đường cao : BE, AB, CB)

Bài 9: Tính chất ba đường cao của tam giác – Luyện tập (trang 83)

Bài 62 (trang 83 SGK Toán 7 tập 2): Chứng minh rằng một tam giác có hai đường cao (xuất phát từ các đỉnh của hai góc nhọn) bằng nhau thì tam giác đó là tam giác cân. Từ đó suy ra một tam giác có ba đường cao bằng nhau thì tam giác đó là tam giác đều.

Lời giải:

+ TH1: Xét ΔABC vuông tại A có các đường cao AD, BA, CA.

BA, CA là hai đường cao xuất phát từ hai góc nhọn B và C của ΔABC.

AB = AC ⇒ ΔABC cân tại A (đpcm).

+ TH2: Xét ΔABC không có góc nào vuông, hai đường cao BD = CE (như hình vẽ minh họa)

Xét hai tam giác vuông EBC và DCB có :

BC (cạnh chung)

CE = BD (giả thiết)

⇒ ∆EBC = ∆DCB (cạnh huyền – cạnh góc vuông)

+ Xét ΔABC ba đường cao BD = CE = AF (như hình vẽ minh họa)

CE = BD ⇒ ΔABC cân tại A (như cmt) ⇒ AB = AC.

CE = AF ⇒ ΔABC cân tại B (như cmt) ⇒ AB = BC:

⇒ AB = AC = BC

⇒ ΔABC đều.

Giải Toán Lớp 7 Bài 8: Tính Chất Ba Đường Trung Trực Của Tam Giác

Giải Toán lớp 7 Bài 8: Tính chất ba đường trung trực của tam giác

Bài 52 (trang 79 SGK Toán 7 tập 2): Chứng minh định lí: Nếu tam giác có một đường trung tuyến đồng thời là đường trung trực ứng với cùng một cạnh thì tam giác đó là một tam giác cân.

Lời giải

Bài 53 (trang 80 SGK Toán 7 tập 2): Ba gia đình quyết định đào chung một cái giếng (h.50). Phải chọn vị trí của giếng ở đâu để các khoảng cách từ giếng đến các nhà bằng nhau?

Hình 50

Lời giải

Giả sử mỗi ngôi nhà là một đỉnh của tam giác ABC chẳng hạn. Để điểm đào giếng cách đều ba ngôi nhà (ba đỉnh của tam giác) thì điểm đó chính là giao điểm ba đường trung trực của tam giác đó (áp dụng định lí giao điểm của ba đường trung trực).

Bài 54 (trang 80 SGK Toán 7 tập 2): Vẽ đường tròn đi qua ba đỉnh của tam giác ABC trong các trường hợp sau:

Lời giải

Tâm đường tròn chính là giao điểm của hai đường trung trực của hai cạnh bất kì trong tam giác ABC.

a) Tam giác có ba góc đều nhọn thì tâm đường tròn nằm trong tam giác.

b) Tam giác vuông thì tâm đường tròn nằm trên cạnh huyền.

c) Tam giác có góc tù thì tâm đường tròn nằm ngoài tam giác.

Bài 55 (trang 80 SGK Toán 7 tập 2): Cho hình 51: Chứng minh ba điểm B, C, D thẳng hàng.

Hình 51

Lời giải

Nối BD và CD.

Bài 56 (trang 80 SGK Toán 7 tập 2): Sử dụng bài 55 để chứng minh rằng: Điểm cách đều ba đỉnh của một tam giác vuông là trung điểm của cạnh huyền của tam giác đó.

Từ đó hãy tính độ dài đường trung tuyến xuất phát từ đỉnh góc vuông theo độ dài cạnh huyền của một tam giác vuông.

Lời giải

a) Giả sử ΔABC vuông góc tại A. Vẽ hai đường trung trực của hai cạnh góc vuông AB, AC cắt nhau tại M. Ta chứng minh M là trung điểm của BC.

Vì M là giao điểm hai đường trung trực d1, d2 của AB, AC mà AB ⊥ AC nên B, M, C thẳng hàng (Bài tập 55)

Vì M thuộc đường trung trực của AB nên MA = MB. (1)

Vì M thuộc đường trung trực của AC nên MA = MC.

Do B, M, C thẳng hàng và M cách đều BC nên M là trung điểm của BC

b) Từ (1) và (2) ở câu a) suy ra:

MA = MB = MC = BC/2

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền.

Bài 57 (trang 80 SGK Toán 7 tập 2): Có một chi tiết máy (mà đường viền ngoài là đường tròn) bị gãy. Làm thế nào để xác định được bán kính của đường viền này?

Lời giải

– Lấy 3 điểm A, B, C bất kì trên đường viền. Ba điểm này tạo thành tam giác ABC và tâm và bán kính đường tròn ngoại tiếp tam giác này chính là tâm và bán kính của đường viền.

– Vẽ trung trực của 2 cạnh AB, BC, chúng cắt nhau tại O. Từ tính chất đường trung trực suy ra OA = OB = OC

Do đó O chính là tâm đường tròn này. Khi đó OA hoặc OB hoặc OC chính là bán kính cần xác định.

Bài 70, 71, 72, 73 Trang 50, 51 : Bài 9 Tính Chất Ba Đường Cao Của Tam Giác

Giải bài 70, 71, 72, 73 trang 50, 51 chương iii. quan hệ giữa các yếu tố trong tam giác. các đường đồng quy của tam giác. Hướng dẫn Giải bài tập trang 50, 51 bài 9 tính chất ba đường cao của tam giác Sách Bài Tập (SBT) Toán lớp 7 tập 2. Câu 70: Cho tam giác ABC vuông tại B. Điểm nào là trực tâm của tam giác đó?…

Câu 70 trang 50 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Cho tam giác ABC vuông tại B. Điểm nào là trực tâm của tam giác đó?

( Rightarrow CB bot AB) nên CB là đường cao kẻ từ đỉnh C.

B là giao điểm của 2 đường cao AB và CB. Vậy B là trực tâm của ∆ABC.

Câu 71 trang 50 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Cho hình bên.

a) Chứng minh rằng: (CI bot AB.)

b) Cho (widehat {ACB} = 40^circ ). Tính (widehat {BI{rm{D}}},widehat {DIE})

( Rightarrow ) CI là đường cao thứ ba

Vậy (CI bot AB)

b) Trong tam giác vuông BEC có

(widehat {BEC} = 90^circ )

( Rightarrow widehat {EBC} + widehat C = 90^circ ) (tính chất tam giác vuông)

( Rightarrow widehat {EBC} = 90^circ – widehat C = 90^circ – 40^circ = 50^circ ) hay (widehat {IB{rm{D}}} = 50^circ )

Trong tam giác IDB có (widehat {I{rm{DB}}} = 90^circ )

( Rightarrow widehat {IB{rm{D}}} + widehat {BI{rm{D}}} = 90^circ ) (tính chất tam giác vuông)

( Rightarrow widehat {BI{rm{D}}} = 90^circ – widehat {IB{rm{D}}} = 90^circ – 50^circ = 40^circ )

(widehat {BI{rm{D}}} + widehat {DIE} = 180^circ ) (2 góc kề bù)

( Rightarrow widehat {DIE} = 180^circ – widehat {BI{rm{D}}} = 180^circ – 40^circ = 140^circ )

Câu 72 trang 51 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Cho H là trực tâm của tam giác ABC không vuông. Tìm trực tâm của các tam giác HAB, HAC, HBC.

(AH bot BC,BH bot AC,CH bot AB)

Trong ∆AHB ta có:

(eqalign{& AC bot BH cr & BC bot AH cr} )

Hai đường cao kẻ từ A và B cắt nhau tại C.

Vậy C là trực tâm của ∆AHB.

Trong ∆HAC ta có:

(eqalign{& BA bot CH cr & CB bot BH cr} )

Hai đường cao kẻ từ A và C cắt nhau tại B, Vậy B là trực tâm của ∆HAC.

Trong ∆HBC ta có:

(eqalign{& BA bot HC cr & CA bot BH cr} )

Hai đường cao kẻ từ B và C cắt nhau tại A. Vậy A là trực tâm của ∆HBC.

Câu 73 trang 51 Sách Bài Tập (SBT) Toán lớp 7 tập 2

Tam giác ABC có các đường cao BD và CE bằng nhau. Chứng minh rằng tam giác cân đó là tam giác cân.

(widehat {B{rm{D}}C} = widehat {CEB} = 90^circ )

BD = CE (gt)

BC cạnh huyền chung

Do đó: ∆BDC = ∆CEB (cạnh huyền, cạnh góc vuông)

( Rightarrow ) (widehat {DCB} = widehat {EBC})

Hay (widehat {ACB} = widehat {ABC})

Vậy ∆ABC cân tại A.

Bạn đang xem bài viết Giải Toán Lớp 7 Bài 9: Tính Chất Ba Đường Cao Của Tam Giác trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!