Xem Nhiều 3/2023 #️ Giáo Án Môn Giải Tích 12 Tiết 1, 2, 3: Tính Đơn Điệu Của Hàm Số # Top 9 Trend | Caffebenevietnam.com

Xem Nhiều 3/2023 # Giáo Án Môn Giải Tích 12 Tiết 1, 2, 3: Tính Đơn Điệu Của Hàm Số # Top 9 Trend

Cập nhật thông tin chi tiết về Giáo Án Môn Giải Tích 12 Tiết 1, 2, 3: Tính Đơn Điệu Của Hàm Số mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.

Ngày:18/08/2008 §1. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ A –Mục tiêu: – Có kỹ năng thành thạo giải toán về xét tính đơn điệu của hàm số bằng đạo hàm. – Chứng minh Bất đẳng thức đơn giản bằng đạo hàm. – Thaùi ñoä: tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới. – Tö duy: hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ. B – Chuẩn bị của GV và HS: GV:Hệ thống các dạng bài tập. HS:Giải trước bài tập ở nhà, máy tính Casio FX C- Phương pháp: D- Tiến trình lên lớp: Hoạt đñộng của Gv Hoạt đñộng của Hs Hoạt động 1: Gv chuẩn bị đồ thị y = cosx xét trên đoạn [;] , và yêu cầu Hs chỉ ra các khoảng tăng, giảm của hàm số đó. Để từ đó Gv nhắc lại định nghĩa sau cho Hs: 1. Nhắc lại định nghĩa: Hµm sè y = f(x) đuợc gäi lµ : – §ång biÕn trªn K nÕu “x1; x2Î(a; b), x1< x2Þ f(x1) < f(x2) – NghÞch biÕn trªn K nÕu “x1; x2Î(a; b), x1 f(x2) (với K là khoảng, hoặc đoạn, hoặc nửa khoảng) – Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là đơn điệu trên K. Qua định nghĩa trên Gv nêu lên nhận xét sau cho Hs: f(x) đồng biến trên K Û f(x) nghịch biến trên K Û GV yêu cầu HS hòa thành bảng sau Dẫn đến định lý(đk đủ để hàm số đơn điệu trang 5 SGK) Hoạt động 2: GV: Nếu thay khoảng I trong định lý bởi đoạn hoặc nửa khoảng.Khi đó phải bổ sung đk gì để hàm số đơn điệu trên đoạn hoặc nửa khoảng đó? Dẫn đến chú ý Gv giới thiệu với Hs vd1 (SGK, trang 5) để Hs hiểu rõ chú ý trên) Hoạt động 3: GV: Tìm các khoảng ĐB và NB của hàm số còn đgl xét chiều biến thiên của hàm số . Qua định lí trên hãy nêu cách xét chiều biến thiên của hàm số Gv giới thiệu với Hs vd2 (SGK, trang 6) để Hs hiểu rõ định lý trên) HĐ4: củng cố Cho HS thực hiện HĐ1 SGK HS chú ý theo dõi HS quan sát đồ thị của hàm số cosin và trả lời HS ghi chú định lí trang 5 SGK HS ghi chú ý HS trả lời Tìm tập xác định của hàm số. Tính đạo hàm f’(x). Tìm các điểm xi (i = 1, 2, , n) mà tại đó đạo hàm bằng 0 hoặc không xác định. Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên. Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số. HS trình bày vd trên bảng Tiết 2 Hoạt đñộng của Gv Hoạt đñộng của Hs Hoạt động 5: Gv giới thiệu với Hs vd3 (SGK, trang 6) để dẫn đến nhận xét SGK trang 7 HĐ6: củng cố Cho HS thực hiện HĐ2 SGK HS trình bày vd trên bảng HS ghi chú nhận xét trong SGK + Tính đạo hàm. + Xét dấu đạo hàm + Kết luận CÂU HỎI VÀ BÀI TẬP HĐ7: Giải bài 1a, d, e, f trang 7 Hoạt đñộng của Gv Hoạt đñộng của Hs GV Phân công HS giải nhóm Nhận xét và hoàn chỉnh Yêu cầu HS nêu cách giải HĐ8: Giải bài 2a trang 7, 3b trang 8 Hoạt đñộng của Gv Hoạt đñộng của Hs GV yêu cầu HS nêu cách giải Gọi 2 HS giải GV yêu cầu HS còn lại phải tự giải và nhận xét bài giải của bạn HS chú ý cách giải HS lên trình bày . Các HS còn lại tự giải sau đó so sánh với bài giải của bạn HĐ9: Giải bài 4, 5 trang 8 Hoạt đñộng của Gv Hoạt đñộng của Hs GV yêu cầu HS nêu cách giải Gọi 2 HS giải GV yêu cầu HS còn lại phải tự giải và nhận xét bài giải của bạn Hàm số y = ax3 + bx2 + cx + d nghịch biến trên y’0, Hàm số y = ax3 + bx2 + cx + d đồng biến trên y’0, HS lên trình bày . Các HS còn lại tự giải sau đó so sánh với bài giải của bạn E. Củng cố và dặn dò: + Gv yêu cầu HS nhắc lại cách xét chiều biến thiên của hàm số + GV khắc sâu thêm chú ý trang 5, nhận xét trang 7. + Về giải bài tập 2b trang 7, 3a trang 8; bài 6,7, 8 trang 8; bài 9, 10 trang 9(SGK) +Sách bài tập: 2,3,4 trang10 ; 5,6,7,8 trang 11 ————————————————————————————————————————————— ————————————————————————————————————————————— ————————————————————————————————————————————— Tiết PPCT:3 Ngày:22/08/2008 LUYỆN TẬP TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ A –Mục tiêu: – Kiến thức cơ bản: HS thông hiểu điều kiện đủ để hàm số đồng biến hoặc nghịch biến trên một khoảng, một nửa khoảng, hoặc một đoạn. – Kỹ năng: HS vận dụng được đlý về điều kiện đủ của tính đơn điệu để xét chiều biến thiên của hàm số. – Thaùi ñoä: tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội. – Tö duy: hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ. B – Chuẩn bị của GV và HS: GV:b¶ng minh ho¹ ®å thÞ. HS:Xem lại kiến thức cũ: dấu của nhị thức, tam thức, đạo hàm, đồ thị của hs đã biết C- Phương pháp: D- Tiến trình lên lớp: 1/ ổn định lớp : kiểm tra sĩ số 2/ Kiểm tra bài cũ Câu hỏi : Nêu các bước xác định tính đơn điệu của hàm số áp dụng xét tính đơn điệu của hàm số y = x3 + 6×2 – 9x – 3/ Bài mới: HOẠT ĐỘNG 1 : Giải bài tập 6e Hoạt động của GV Hoạt động của HS Ghi bảng Ghi đề bài 6e Yêu cầu học sinh thực hiện các bước Tìm TXĐ Tính y/ xét dấu y/ Kết luận GV yêu cầu 1 HS nhận xét bài giải GV nhận xét đánh giá, hoàn thiện Ghi bài tập Tập trung suy nghĩ và giải Thưc hiện theo yêu cầu của GV HS nhận xét bài giải của bạn 6e/ Xét chiều biến thiên của hàm số y = Giải TXĐ xR y/ = y/ = 0 x = 1 Bảng biến thiên x – 1 + y – 0 + y Hàm số đồng biến trên (1 ; +) và nghịch biến trên (-; 1) Hoạt động 2 :Giải bài tập 6f GV ghi đề bài 6f Hướng dẫn tương tự bài 6e Yêu cầu 1 HS lên bảng giải GV nhận xét ,hoàn chỉnh HS chép đề ,suy nghĩ giải HS lên bảng thực hiện 6f/ Xét chiều biến thiên của hàm số y = – 2x Giải TXĐ D = R {-1} y / = y/ < 0 x-1 Hàm số nghịch biến trên (-; -1) và (-1 ; +) Hoạt động 3 : Giải bài tập 7 Ghi đề bài 7 Yêu cầu HS nêu cách giải Hướng dẫn và gọi 1 HS Lên bảng thực hiện Gọi 1 HS nhận xét bài làm của bạn GV nhận xét đánh giá và hoàn thiện Chép đề bài Trả lời câu hỏi Lên bảng thực hiện HS nhận xét bài làm 7/ c/m hàm số y = cos2x – 2x + 3 nghịch biến trên R Giải TXĐ D = R y/ = -2(1+ sin2x) 0 ; x R y/ = 0 x = – +k (k Z) Do hàm số liên tục trên R nên liên tục trên từng đoạn [- + k ; – +(k+1) ] và y/ = 0 tại hữu hạn điểm trên các đoạn đó Vậy hàm số nghịch biến trên R Hoạt động 4 : Giải bài tập 9 Ghi đề bài 9 GV hướng dẫn: Đặt f(x)= sinx + tanx -2x Y/câù HS nhận xét tính liên tục của hàm số trên [0 ; ) y/c bài toán c/m f(x)= sinx + tanx -2x đồng biến trên [0 ; ) Tính f / (x) Nhận xét giá trị cos2x trên (0 ; ) và so sánh cosx và cos2x trên đoạn đó cos2x +? Hướng dẫn HS kết luận HS ghi đề bài tập trung nghe giảng Trả lời câu hỏi HS tính f/(x) Trả lời câu hỏi HS nhắc lại BĐT côsi x(0 ; ) Giải Xét f(x) = sinx + tanx – 2x f(x) liên tục trên [0 ; ) f/ (x) = cosx + -2 với x(0 ; ) ta có vì theo BĐT côsi x(0 ; ) 4/ Củng cố : Nêu cách giải 3 dạng toán cơ bản là Xét chiều biến thiên C/m hàm số đồng biến, nghịch biến trên khoảng , đoạn ; nữa khoảng cho trước C/m 1 bất đẳng thức bằng xử dụng tính đơn điệu của hàm số 5/ Hướng dẫn học và bài tập về nhà Nắm vững lý thuyết về tính đơn điệu của hàm số Nắm vững cách giải các dạng toán bằng cách xử dụng tính đơn điệu Giải đầy đủ các bài tập còn lại của sách giáo khoa Tham khảo và giải thêm bài tập ở sách bài tập ————————————————————————————————————————————— ————————————————————————————————————————————— —————————————————————————————————————————————

Giáo Án Môn Đại Số &Amp; Giải Tích 11 Tiết 1: Hàm Số Lượng Giác

Tiết dạy: 01 Bài 1: HÀM SỐ LƯỢNG GIÁC

– Nắm được định nghĩa hàm số sin và côsin, từ đó dẫn tới định nghĩa hàm số tang và hàm số côtang như là những hàm số xác định bởi công thức.

– Nắm được tính tuần hoàn và chu kì của các HSLG sin, côsin, tang, côtang.

– Biết tập xác định, tập giá trị của 4 HSLG đó, sự biến thiên và biết cách vẽ đồ thị của chúng.

– Diễn tả được tính tuần hoàn, chu kì và sự biến thiên của các HSLG.

– Biểu diễn được đồ thị của các HSLG.

– Xác định được mối quan hệ giữa các hàm số y = sinx và y = cosx, y = tanx và y = cotx.

Ngày soạn: 15/08/2008 Chương I: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC Tiết dạy: 01 Bàøi 1: HÀM SỐ LƯỢNG GIÁC I. MỤC TIÊU: Kiến thức: Nắm được định nghĩa hàm số sin và côsin, từ đó dẫn tới định nghĩa hàm số tang và hàm số côtang như là những hàm số xác định bởi công thức. Nắm được tính tuần hoàn và chu kì của các HSLG sin, côsin, tang, côtang. Biết tập xác định, tập giá trị của 4 HSLG đó, sự biến thiên và biết cách vẽ đồ thị của chúng. Kĩ năng: Diễn tả được tính tuần hoàn, chu kì và sự biến thiên của các HSLG. Biểu diễn được đồ thị của các HSLG. Xác định được mối quan hệ giữa các hàm số y = sinx và y = cosx, y = tanx và y = cotx. Thái độ: Biết phân biệt rõ các khái niệm cơ bản và vận dụng từng trường hợp cụ thể. Tư duy các vấn đề của toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập kiến thức đã học về lượng giác ở lớp 10. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: H. Đ. 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung Hoạt động 1: Ôn tập một số kiến thức đã học về lượng giác 15' H1. Cho HS điền vào bảng giá trị lượng giác của các cung đặc biệt. H2. Trên đtròn lượng giác, hãy xác định các điểm M mà sđ = x (rad) ? · Các nhóm thực hiện yêu cầu. Hoạt động 2: Tìm hiểu khái niệm hàm số sin và côsin 18' · Dựa vào một số giá trị lượng giác đã tìm ở trên nêu định nghĩa các hàm số sin và hàm số côsin. H. Nhận xét hoành độ, tung độ của điểm M ? Đ. Với mọi điểm M trên đường tròn lượng giác, hoành độ và tung độ của M đều thuộc đoạn [-1; 1] I. Định nghĩa 1. Hàm số sin và côsin a) Hàm số sin Qui tắc đặt tương ứng mỗi số thực x với số thực sinx sin: R ® R x sinx đgl hàm số sin, kí hiệu y = sinx Tập xác định của hàm số sin là R. b) Hàm số côsin Qui tắc đặt tương ứng mỗi số thực x với số thực cosx cos: R ® R x cosx đgl hàm số côsin, kí hiệu y = cosx Tập xác định của hàm số cos là R. Chú ý:Với mọi x Ỵ R, ta đều có: -1 £ sinx £ 1, -1 £ cosx £ 1 . Hoạt động 3: Củng cố 10' · Nhấn mạnh: - Đối số x trong các hàm số sin và côsin được tính bằng radian. · Câu hỏi: 1) Tìm một vài giá trị x để sinx (hoặc cosx) bằng ; ; 2 2) Tìm một vài giá trị x để tại đó giá trị của sin và cos bằng nhau (đối nhau) ? 1) sinx = Þ x =; sinx = Þ x = ; sinx = 2 Þ không có 2) sinx = cosx Þ x = ; 4. BÀI TẬP VỀ NHÀ: Bài 2 SGK. Đọc tiếp bài "Hàm số lượng giác". IV. RÚT KINH NGHIỆM, BỔ SUNG:

Giáo Án Giải Tích 12 Kì 1

Và vẽ đồ thị hàm số

Tiết 1+2: sự đồng biến, nghịch biến của hàm số – luyện tập

– Biết mối liên hệ giữa tính đồng biến, nghịch biến của một hàm số và dấu của

đạo hàm cấp một của nó.

– Biết cách xét tính đồng biến, nghịch biến của một hàm số trên một khoảng dựa

vào dấu đạo hàm cấp một của nó.

– Phát triển tư duy logic, óc tưởng tượng.

– Cẩn thận, chính xác, nghiêm túc.

II-Chuẩn bị của GV và HS

Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 1 Ngày soạn: 06/09/2008 Ngày giảng: 08/09/2008 Ch−ơng I: ứng dụng đạo hàm để khảo sát Và vẽ đồ thị hàm số Tiết 1+2: sự đồng biến, nghịch biến của hàm số - luyện tập I-Mục tiêu 1) Kiến thức - Biết mối liên hệ giữa tính đồng biến, nghịch biến của một hàm số và dấu của đạo hàm cấp một của nó. 2) Kỹ năng - Biết cách xét tính đồng biến, nghịch biến của một hàm số trên một khoảng dựa vào dấu đạo hàm cấp một của nó. 3) T− duy - Phát triển t− duy logic, óc t−ởng t−ợng. 4) Thái độ - Cẩn thận, chính xác, nghiêm túc. II-Chuẩn bị của GV và HS 1) Giáo viên Giáo án, SGV, phấn màu. 2) Học sinh Vở ghi, SGK. III-Ph−ơng pháp dạy học Gợi mở, vấn đáp giải quyết vấn đề đan xen HĐ nhóm. IV-Tiến trình bài học 1) Kiểm tra bài cũ (không) 2) Bài mới HĐ1: Nhắc lại định nghĩa HĐGV HĐHS Ghi bảng GV treo bảng phụ y x xx y=x 21 2 f(x )1 f(x )2 HXy chỉ ra các khoảng đồng biến, nghịch biến của hàm số y=x2? Lấy x1<x2 trong khoảng ( )0;+∞ nh− hình vẽ. HXy sao sánh 1( )f x và 2( )f x ? Cho HS nhận xét t−ơng tự nếu lấy x1<x2 trong khoảng Quan sát hình vẽ và trả lời câu hỏi. Hàm số đồng biến trên khoảng ( )0;+∞ và nghịch biến trên khoảng ( )0;−∞ . 1( )f x < 2( )f x Nhận xét t−ơng tự. I. Tính đơn điệu của hàm số Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 2 ( )0;−∞ ? Từ đó GV nhắc lại định nghĩa cho HS. Nếu hàm số ( )f x đồng biến (nghịch biến) trên K hXy nhận xét về dấu của tỷ số 2 1 2 1 ( ) ( )f x f x x x − − ? GV đ−a ra nhận xét nh− SGK. GV cho HS quan sát hình trên bảng phụ và nhận xét h−ớng đi của đồ thị trong các tr−ờng hợp HS đồng biến, nghịch biến? ( )f x đồng biến trên K thì 2 1 2 1 ( ) ( ) 0 f x f x x x − > − ( )f x nghịch biến trên K thì 2 1 2 1 ( ) ( ) 0 f x f x x x − < − HS đồng biến thì đồ thị HS đi lên từ trái sang phải. HS nghịch biến thì đồ thị HS đi xuống từ trái sang phải. 1) Nhắc lại định nghĩa Hàm số ( )y f x= đồng biến (tăng) trên K nếu với mỗi cặp 1 2,x x thuộc K mà 1x nhỏ hơn 2x thì 1( )f x nhỏ hơn 2( )f x , tức là 1 2 1 2( ) ( );x x f x f x< ⇒ < Hàm số ( )y f x= nghịch biến (giảm) trên K nếu với mỗi cặp 1 2,x x thuộc K mà 1x nhỏ hơn 2x thì 1( )f x lớn hơn 2( )f x , tức là 1 2 1 2( ) ( );x x f x f x Hàm số đồng biến hoặc nghịch biến trên K đ−ợc gọi chung là hàm số đơn điệu trên K. Nhận xét: a) ( )f x đồng biến trên K thì 2 1 2 1 ( ) ( ) 0 f x f x x x − > − ( )f x nghịch biến trên K thì 2 1 2 1 ( ) ( ) 0 f x f x x x − < − b) Hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải. Hàm số nghịch biến trên K thì đồ thị đi lên từ trái sang phải. HĐ2: Tính đơn điệu và dấu của đạo hàm Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 3 HĐGV HĐHS Ghi bảng GV treo bảng phụ trong hoạt động 1 và yêu cầu HS tính đạo hàm cấp 1 đồng thời xét dấu của đạo hàm và điền vào bảng sau: Dựa vào bảng kết quả hXy nhận xét: Khi y'<0, HS đồng biến hay nghịch biến? nghịch biến? GV tổng quát hóa vấn đề từ đó đ−a ra định lí: GV đặt câu hỏi mở rộng: Khi y'=0 thì HS đồng biến hay nghịch biến? Từ đó GV đ−a ra chú ý: Tính đạo hàm và xét dấu của đạo hàm. Điền kết quả vào bảng. Khi y'<0, HS nghịch biến. Nghe giảng, ghi nhận kiến thức. ' 0y y C= ⇒ = (hằng số) do đó HS ( )f x không đổi trên K. 2) Tính đơn điệu và dấu của đạo hàm Cho hàm số ( )y f x= có đạo hàm trên K. thuộc K thì hàm số f(x) đồng biến trên K. b) Nếu f'(x)<0 với mọi x thuộc K thì hàm số f(x) nghịch biến trên K. '( ) 0 ( ) đồng biến. '( ) 0 ( ) nghịch biến. f x f x f x f x > ⇒  < ⇒ Chú ý: Nếu '( ) 0,f x x K= ∀ ∈ thì ( )f x không đổi trên K. HĐ3: Bài tập luyện tập HĐGV HĐHS Ghi bảng GV đ−a ra bài tập vận dụng. Giải thích rõ cho HS ý nghĩa của việc tìm khoảng đơn điệu của hàm số. HXy tìm đạo hàm của Nghe giảng, ghi nhận kiến thức. y'=2x-4 Ví dụ 1: Tìm các khoảng đơn điệu của hàm số y=x2- 4x+5. Giải Đạo hàm: y'=2x-4 Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 4 hàm số? HXy xét dấu của đạo hàm? Từ bảng trên hXy suy ra bảng biến thiên của hàm số? Từ bảng biến thiên hXy nêu các khoảng đơn điệu (đồng biến hoặc nghịch biến) của hàm số? Qua ví dụ trên GV đặt vấn đề ng−ợc lại cho HS suy nghĩ thông qua việc phân tích ví dụ trong HĐ3 SGK. Qua đồ thị của hàm số y=x3 hXy nhận xét về tính đồng biến, nghịch biến của hàm số trên toàn tập xác định? Xét dấu của đạo hàm hàm số trên? Qua đó GV khái quát và đ−a ra chú ý: x −∞ 2 +∞ y' - 0 + Lên bảng vẽ bảng biến thiên của hàm số. Trả lời câu hỏi. Hàm số đồng biến trên toàn tập xác định. 2' 3 0,y x x= ≥ ∀ y'<0 khi x<2 y'=0 khi x=2 Vậy ta có bảng biến thiên: Vậy hàm số đồng biến trên khoảng ( )2;+∞ và nghịch biến trên khoảng ( );0−∞ . Chú ý: Giả sử hàm số ( )y f x= có đạo hàm trên K. Nếu ( )'( ) 0 ( ) 0 ,f x f x x K≥ ≤ ∀ ∈ và '( ) 0f x = chỉ tại một số hữu hạn điểm thì hàm số đồng biến (nghịch biến) trên K. 3) Củng cố, dặn dò - Ôn tập lại nội dung cơ bản đX học trong bài, đọc và xem lại các định lí và ví dụ trong bài. - Làm các bài tập 1, 2 SGK Tr10 và bài tập bổ sung. Bài tập bổ sung: Bài 1: Tìm các khoảng đơn điệu của các hàm số: a) y=x4+8x3+5 b) y=x-sinx Bài 2: Sử dụng tính đồng biến, nghịch biến của hàm số để chứng minh rằng với 1 2x x + ≥ Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 5 Ngày giảng: 09/09/2008 sự đồng biến, nghịch biến của hàm số - luyện tập (Tiết 2) 4) Kiểm tra bài cũ Câu hỏi: 1) HXy phát biểu định lý về sự liên hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm? 2) Vận dụng giải bài tập sau: Xét tính đơn điệu của hàm số y=x3-3x2+5? 5) Bài mới HĐ3: Quy tắc xét tính đơn điệu của hàm số HĐGV HĐHS Ghi bảng Chia lớp thành 3 nhóm và tổ chức cho HS HĐ nhóm làm VD 2. GV nhận xét, chỉnh sửa bổ sung và đ−a ra đáp án bằng bảng phụ. Qua ví dụ trên GV yêu cầu HS khái quát các b−ớc để xét tính đơn điệu của hàm số. Tiến hành HĐ nhóm d−ới sự h−ớng dẫn của GV. Trình bày kết quả, bổ sung và nhận xét chéo. Khái quát các b−ớc. II. Quy tắc xét tính đơn điệu của hàm số Ví dụ 2: Xét tính đơn điệu của hàm số y=x3- 3x2+5? Giải Hàm số trên xác định với mọi x thuộc ℝ . Đạo hàm: y'=3x2-6x 0 ' 0 2 x y x = = ⇔  = Ta có bảng biến thiên Vậy hàm số đồng biến trên các khoảng ( );0−∞ và ( )2;+∞ , hàm số nghịch biến trên khoảng (0;2). 1) Quy tắc B1: Tìm tập xác định. B2: Tính đạo hàm '( )f x . Tìm các điểm ( 1,2,3,..., )ix i n= mà tại đó đạo hàm bằng 0 hoặc không xác định. B3: Sắp xếp các điểm ix Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 6 theo thứ tự tăng dần và lập bảng biến thiên. B4: Nêu kết luận về các khoảng đb, nb của hàm số. HĐ4: Bài tập áp dụng HĐGV HĐHS Ghi bảng GV đ−a ra bài tập vận dụng cho HS HĐ nhóm. Nhóm 1, 2, 3: Phần a) Nhóm 4, 5, 6: Phần b) GV nhận xét, chỉnh sửa, bổ sung và đ−a ra đáp án. GV chú ý cho HS cách điền các cận vào bảng biến thiên thông qua việc tính giới hạn. HĐ nhóm d−ới sự h−ớng dẫn của GV. Các nhóm trình bày kết quả và nhận xét chéo, bổ sung kết quả. Nghe giảng, tiếp thu kiến thức. 2) áp dụng Xét tính đơn điệu của các hàm số: a) 3 1 1 x y x + = − b) 2 2 1 x x y x − = − Giải: a) TXĐ: {1}D = ℝ Đạo hàm: ( )2 4 ' 0 1 y x − Bảng biến thiên: b) TXĐ: {1}D = ℝ Đạo hàm: ( ) 2 2 2 2 ' 1 x x y x − + − = − Bảng biến thiên: 6) Củng cố, dặn dò - Ôn tập lại các b−ớc để xét tính đơn điệu của hàm số và xem lại các ví dụ đX làm. - Làm các bài tập 3, 4, 5 SGK Tr10. Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 7 Ngày soạn: 09/09/2008 Ngày giảng: 11/09/2008 Tiết 3+4+5: cực trị của hàm số I- Mục tiêu 1) Kiến thức - Biết khái niệm điểm cực đại, cực tiểu, điểm cực trị của hàm số. - Biết các điều kiện đủ để hàm số có điểm cực trị. 2) Kỹ năng - Biết cách tìm điểm cực trị của hàm số. 3) T− duy - Phát triển t− duy logic, óc t−ởng t−ợng. 4) Thái độ - Cẩn thận, chính xác, nghiêm túc. II- Chuẩn bị của GV và HS 1) Giáo viên Giáo án, SGV, phấn màu. 2) Học sinh Vở ghi, SGK. III- Ph−ơng pháp dạy học Gợi mở, vấn đáp giải quyết vấn đề đan xen HĐ nhóm. IV- Tiến trình bài học 1) Kiểm tra bài cũ Câu hỏi: HXy nêu quy tắc xét tính đơn điệu của hàm số? áp dụng xét tính đơn điệu của hàm số y=-x2+1? 2) Bài mới HĐ1: Khái niệm cực đại, cực tiểu HĐGV HĐHS Ghi bảng GV cho HS quan sát đồ thị của hàm số y=-x2+1 và nêu nhận xét: HXy chỉ ra tọa độ của điểm "cao nhất" của đồ thị trong khoảng ( )1;1− ? Điểm này t−ơng ứng với x, y bằng bao nhiêu? Ta nói hàm số y=-x2+1 đạt cực đại tại x=0. T−ơng tự GV cho HS quan sát đồ thị của hàm số 3 22 3 3 x y x x= − + và cho 1 -1 1 y xO y=-x +12 Điểm "cao nhất" của đồ thị trong khoảng ( )1;1− là ( )0;1 . Điểm này t−ơng ứng với x=0; y=1. I. Khái niệm cực đại, cực tiểu Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 8 HS nhận xét t−ơng tự trong các khoảng 1 3 ; 2 2       và 3 ;4 2       ? Ta nói trên khoảng 1 3 ; 2 2       hàm số đạt cực đại tại x=1. Ta nói trên khoảng 3 ;4 2       hàm số đạt cực tiểu tại x=0. Từ đó GV đ−a ra định nghĩa: GV yâu cầu HS lên bảng lập bảng biến thiên của hàm số 3 22 3 3 x y x x= − + ? 1 2 2 3 3 4 Trong khoảng 1 3 ; 2 2       có điểm "cao nhất" là 4 1; 3       t−ơng ứng với 4 1; 3 x y= = . Trong khoảng có điểm "thấp nhất" là (0;3) t−ơng ứng với x=0; y=3. Lên bảng lập bảng biến thiên: x −∞ 1 3 +∞ y' + 0 - 0 + y −∞ 4 3 0 +∞ Định nghĩa: Cho HS ( )y f x= xác định và liên tục trên khoảng (a;b) (có thể a là −∞ , b là +∞ ) và điểm 0 ( ; )x a b∈ . sao cho f(x)<f(x0) với mọi 0 0( ; )x x h x h∈ − + và 0x x≠ thì ta nói hàm số f(x) đạt cực đại tại x0. b) Nếu tồn tại số với mọi 0 0( ; )x x h x h∈ − + và 0x x≠ thì ta nói hàm số f(x) đạt cực tiểu tại x0. Chú ý: 1)Nếu hàm số ( )f x đạt Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 9 GV phân biệt rõ cho HS các khái niệm điểm cực đại (cực tiểu) và khái niệm giá trị cực đại (cực tiểu) trên bảng biến thiên. Dựa vào bảng biến thiên hXy nhận xét: Tại các điểm mà HS đạt CĐ, CT t ... 3)( 2)] log 2 x x x x x x − − ≤ ⇔ − − ≤ ⇔ − − ≤ Giải BPT trên ta có: 1 4x≤ ≤ . Kết của BPT là: 3 4x< ≤ . Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 101 3) Củng cố, dặn dò - Xem lại cách giải bất PT lôgarit cơ bản và ph−ơng pháp giải một số bất PT lôgarit đơn giản. - Làm bài tập 2 SGK Tr90. Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 102 Ngày soạn: 30/11/2008 Ngày giảng: 02/12/2008 Tiết 37: bất ph−ơng trình mũ và bất ph−ơng trình Lôgarit (Tiếp) 1) Kiểm tra bài cũ Câu hỏi: Giải bất ph−ơng trình lôgarit sau: ( )1 2 log 2 1 1− ≥x ? 2) Bài mới HĐ1: Ôn tập lý thuyết HĐGV HĐHS Ghi bảng HXy nêu cách giải BPT mũ cơ bản? Với PT mũ ta có thể sử dụng ph−ơng pháp đ−a về cùng cơ số để giải một số BPT mũ cơ bản. HXy nêu cách giải BPT lôgarit cơ bản? Với PT mũ ta có thể sử dụng ph−ơng pháp đ−a về cùng cơ số để giải một số BPT lôgarit cơ bản. Nếu 0b ≤ , tập nghiệm của x∀ ∈ℝ . Với 0<a<1, nghiệm của bất PT là logax b< . Với 0<a<1 thì nghiệm của BPT là 0<x<ab. I. Lý thuyết 1. BPT mũ 2. BPT lôgarit HĐ2: Bài tập về BPT mũ HĐGV HĐHS Ghi bảng Chữa bài tập số 1 phần b) SGK Tr89: H−ớng dẫn HS đ−a về cùng II. Bài tập 1. Bài tập BPT mũ Bài 1 (SGK Tr89) Giải các BPT mũ: b) 22 3 7 9 9 7 x x−   ≥    BPT t−ơng đ−ơng: Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 103 HĐGV HĐHS Ghi bảng cơ số là 7 9 bằng cách đặt câu hỏi: 9 7 bằng 7 9 mũ bao nhiêu? Từ đó GV giải BPT trên: H−ớng dẫn HS làm các phần còn lại. 1 9 7 7 9 −   =     Quan sát và ghi nhận kiến thức. 22 3 1 7 7 9 9 x x− −    ≥        Vì cơ số 7 1 9 < nên ta có: 2 2 2 3 1 2 3 1 0 1 1 2 x x x x x − ≤ − ⇔ − + ≤ ⇔ ≤ ≤ Vậy nghiệm của BPT là: 1 1 2 x≤ ≤ HĐ2: Bài tập về BPT lôgarit HĐGV HĐHS Ghi bảng Chữa bài tập số 2 phần b) SGK Tr90: Từ đó GV giải BPT trên: H−ớng dẫn HS làm làm các phần còn lại. a) Đ−a về cùng cơ số 8 ( 82 log 16= ). c) Đ−a về cùng cơ số 0,2 hoặc cơ số 5 ( 1 0,2 5 = ) rồi sử dụng tính chất log log log ( . )a a ab c b c− = . d) Đặt ẩn phụ 3logt x= . Quan sát và ghi nhận kiến thức. Nghe giảng, ghi nhận kiến thức. 2. Bài tập BPT lôgarit Bài 2 (SGK Tr90) Giải các BPT lôgarit: b) 1 1 5 5 ĐK: 3 5 0 5 31 0 x x x Vì cơ số 1 1 5 < nên BPT t−ơng đ−ơng: 3 5 1 2x x x+ < + ⇔ < Kết hợp với điều kiện 5 3 BPT là: 5 2 3 x< < 3) Củng cố, dặn dò Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 104 - Hệ thống lại toàn bộ kiến thức trong bài. - Hoàn thiện những bài tập còn lại dựa vào h−ớng dẫn của GV. Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 105 Ngày soạn: 07/12/2008 Ngày giảng: 09/12/2008 Tiết 38+39: ôn tập học kỳ i I- Mục tiêu 1) Kiến thức - Hệ thống lại các kiến thức trong học kỳ I. 2) Kỹ năng - Rèn kỹ năng trình bày và kỹ năng áp dụng ph−ơng pháp giải các dạng toán cơ bản vào các bài cụ thể. 3) T− duy - Phát triển t− duy logic, óc t−ởng t−ợng. 4) Thái độ - Cẩn thận, chính xác, nghiêm túc. II- Chuẩn bị của GV và HS 1) Giáo viên Giáo án, SGV, phấn màu. 2) Học sinh Vở ghi, SGK. III- Ph−ơng pháp dạy học Gợi mở, vấn đáp giải quyết vấn đề đan xen HĐ nhóm. IV- Tiến trình bài học 1) Kiểm tra bài cũ (không) 2) Bài mới HĐ1: Ôn tập lại về khảo sát hàm số HĐGV HĐHS Ghi bảng HXy nêu các b−ớc để khảo sát hàm số? 1. Tập xác định Tìm tập xác định của hàm số. 2. Sự biến thiên * Xét chiều biến thiên của hàm số: + Tính đạo hàm y'; + Tìm các điểm tại đó y'=0 hoặc không xác định; + Xét dấu đạo hàm y' và suy ra chiều biến thiên của hàm số. * Tìm cực trị. * Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm tiệm cận (nếu có). * Lập bảng biến thiên. (Ghi các kết quả tìm đ−ợc vào bảng biến thiên). 3. Đồ thị Khảo sát hàm số Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 106 HĐGV HĐHS Ghi bảng Yêu cầu HS nhắc lại các chú ý khi khảo sát một số hàm th−ờng gặp? Dựa vào kết quả khảo sát để vẽ đồ thị của hàm số. Nhắc lại các chú ý khi khảo sát một số hàm th−ờng gặp. HĐ2: Bài tập về khảo sát hàm số HĐGV HĐHS Ghi bảng GV đ−a ra ví dụ đại diện cho HS nhớ lại về khảo sát hàm số. Xác định đạo hàm y' và giải PT y'=0? Xác định dấu của y'? KL về tính ĐB, NB của hàm số? Từ đó suy ra các điểm cực trị của hàm số? Tính các giới hạn đặc biệt? HXy lập bảng biến thiên của HS? 3' 4 16y x x= − 0 ' 0 2 x y x = = ⇔  = ± Dấu của y': -2 0 2 x + - +- Hàm số ĐB trên các khoảng ( 2;0)− và (2; )+∞ , NB trên khoảng ( ; 2)−∞ − và (0;2) . HS đạt cực đại tại CĐ0; 7x y= = . HS đạt cực tiểu tại CT2; 9x y= ± = − . lim x y →±∞ = +∞ Lên bảng lập bảng biến thiên của hàm số. VD1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số 4 28 7y x x= − + . Giải: (1) Tập xác định: D =ℝ (2) Sự biến thiên Chiều biến thiên 3 2' 4 16 4 ( 4)y x x x x= − = − 0 ' 0 2 x y x = = ⇔  = ± Dấu của 'y : -2 0 2 x + - +- Hàm số ĐB trên các khoảng ( 2;0)− và (2; )+∞ , NB trên các khoảng ( ; 2)−∞ − và (0;2) . * Cực trị HS đạt cực đại tại CĐ0; 7x y= = . HS đạt cực tiểu tại CT2; 9x y= ± = − . * Giới hạn tại vô cực 4 2 4 8 7 lim lim 1 x x y x x x→−∞ →−∞   = − +    = +∞ 4 2 4 8 7 lim lim 1 x x y x x x→+∞ →+∞   = − +    = +∞ * Bảng biến thiên Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 107 HĐGV HĐHS Ghi bảng HXy tìm giao của đồ thị hàm số với trục tung? HXy tìm giao của đồ thị hàm số với trục hoành? GV h−ớng dẫn HS vẽ đồ thị của hàm số. Nhấn mạnh lại cho HS đồ thị hàm số luôn đối xứng qua trục tung. Cho x=0 và tìm y. Cho y=0, giải PT thu đ−ợc để tìm x. Quan sát, ghi nhận kiến thức. (3) Đồ thị Cho 0 7x y= ⇒ = , vậy đồ thị hàm số cắt trục Oy tại điểm (0;7). Cho 1 0 7 x y x = ± = ⇒  = ± vậy đồ thị hàm số cắt Ox tại (-1;0),(1;0),( 7;0)− và ( 7;0) . Đồ thị: 1 7 -9 y x -1 O -2 2 HĐGV HĐHS Ghi bảng GV đ−a ra ví dụ: Nhắc lại ph−ơng pháp làm bài tập dạng trên? H−ớng dẫn HS biến đổi PT trên về dạng: − + = +4 28 7 7x x m rồi sử dụng đồ thị để biện luận. HXy dựa vào đồ thị biện luận số nghiệm của PT trên? Biện luận dựa theo hình vẽ. Khi 7 -9 m + < hay -16m < thì PT vô nghiệm. Khi 7 9 7 7 m m + = − hay có hai nghiệm. Khi 7 7m + = hay 0m = thì PT có 3 nghiệm. Khi 9 7 7m− < + < hay VD2: Dựa vào đồ thị đX khảo sát ở trên hXy biện luận theo tham số m số nghiệm của PT: − = 4 28x x m Giải: Ta đ−a PT về dạng: − + = +4 28 7 7x x m 1 -9 -2 y=m+7 Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 108 HĐGV HĐHS Ghi bảng H−ớng dẫn HS một số khảo sát hàm số cho HS nh− viết PTTT, tìm GTLN, GTNN của hàm số, các trị. 16 0m− < < thì PT có 4 nghiệm. Ghi nhận kiến thức. 3) Củng cố, dặn dò Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 109 Ngày soạn: 14/12/2008 Ngày giảng: 16/12/2008 Tiết 39: ôn tập học kỳ i (Tiếp) 1) Kiểm tra bài cũ Câu hỏi: CM rằng HS 2y x x= − + nghịch biến trên khoảng (3;5)? 2) Bài mới HĐ1: Ôn tập lại về mũ và lôgarit HĐGV HĐHS Ghi bảng HXy nêu các tính chất của lũy thừa và lôgarit? HXy nhắc lại các kiến thức cơ bản về PT mũ và PT lôgarit (các dạng, cách giải,...) Tính chất của lũy thừa: Cho ,a b là những số thực; ,α β là những số thực tùy ý. Khi đó ta luôn có: .a a aα β α β+= a a a α α β β − = ( ) .a aβα α β= ( . ) .a b a bα α α= a a b b α α α   =    Tính chất của lôgarit: log 1 0 a = , log 1 a a = loga ba b= , ( )loga aα α= Cho ba số d−ơng 1 2, ,a b b với 1a ≠ ta có: ( )1 2 1 2log log loga a ab b b b= + 1 2 2 1 2 2 2 log log logb b b b   = −    Cho hai số d−ơng , ; 1a b a ≠ . Với mọi α ta đều có log loga ab b α α= Nhắc lại kiến thức. PT, BPT mũ và lôgarit HĐ2: Bài tập về PT mũ và PT lôgarit HĐGV HĐHS Ghi bảng GV thông qua ví dụ đại Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 110 HĐGV HĐHS Ghi bảng diện cho HS nhớ lại cách giải PT mũ: H−ớng dẫn HS 22log x chính là 22(log )x từ đó dẫn HS đến việc đặt 2log x t= . t có cần điều kiện không? HXy thay trở lại để tìm x? Ta có lấy cả hai nghiệm không? GV thông qua ví dụ đại diện cho HS nhớ lại cách giải PT lôgarit: H−ớng dẫn HS đ−a về cùng cơ số 3: Đây là PT lôgarit cơ bản. HXy giải PT trên? Cho HS nhắc lại một số PP giải PT lôgarit? ( )2 25 5= xx Không cần điều kiện. Thay trở lại để tìm x. Lấy cả hai nghiệm. Ta biến đổi 29 33 1log log log 2 = =x x x 43=x Nhắc lại về một số PP giải PT lôgarit. VD1: Giải ph−ơng trình: 2 2 2log 3log 2 0− + =x x Giải: Đặt 2log x t= . Ta có ph−ơng trình: 2 3 2 0− + =t t 1 2 t t = ⇔  = Thay trở lại ta có: 1 2 2 2 log 1 2 2 log 2 2 4 x x x x = = = ⇔  = = =  Vậy PT có hai nghiệm x=2 và x=4. VD2: Giải ph−ơng trình: 3 9log log 6+ =x x Giải: Ta biến đổi ph−ơng trình nh− sau: 23 3log log 6+ =x x 3 3 1log log 6 2 ⇔ + =x x 3 3 log 6 2 ⇔ =x 3log 4⇔ =x 43⇔ =x Vậy PT có nghiệm 43=x . HĐ3: Bài tập về BPT mũ và BPT lôgarit HĐGV HĐHS Ghi bảng GV đ−a ra bài tập đại diện: Ta dùng ph−ơng pháp nào để giải? Yêu cầu HS lên bảng để giải? GV nhận xét, bổ sung nếu có. Qua bài tập trên GV nhắc Đ−a về cùng cơ số 2. Lên bảng trình bày lời giải. Nhận xét bài làm. VD3: Giải BPT: 2 0,5log log 1x x− ≤ Giải: 2 2log log 1BPT x x⇔ + ≤ 2 2 2log 1 2 2 2 x x x ⇔ ≤ ⇔ ≤ ⇔ − ≤ ≤ ta có nghiệm của BPT là: 0 2x< ≤ hay (0; 2]x∈ Phạm Xuân Hòa THPT Mùn Chung Giáo án Giải tích 12 Trang 111 HĐGV HĐHS Ghi bảng lại về ph−ơng pháp giải BPT mũ cho HS. Ghi nhận kiến thức. 3) Củng cố, dặn dò

Xét Tính Liên Tục Của Hàm Số

Xét tính liên tục của hàm số

A. Phương pháp giải & Ví dụ

Vấn đề 1: Xét tính liên tục của hàm số tại một điểm

– Cho hàm số y = f(x) có tập xác định D và điểm x 0 ∈ D. Để xét tính liên tục của hàm số trên tại điểm x = x 0 ta làm như sau:

+ Tìm giới hạn của hàm số y = f(x) khi x → x 0 và tính f(x 0)

+ Nếu tồn tại thì ta so sánh

với f(x 0).

Nếu = f(x 0) thì hàm số liên tục tại x 0

Chú ý:

1. Nếu hàm số liên tục tại x 0 thì trước hết hàm số phải xác định tại điểm đó.

2.

3. Hàm số liên tục tại x = x 0 ⇔ = k

4. Hàm số liên tục tại điểm x = x 0 khi và chỉ khi

Vấn đề 2: Xét tính liên tục của hàm số trên một tập

Ta sử dụng các định lí về tính liên tục của hàm đa thức, lương giác, phân thức hữu tỉ …

Nếu hàm số cho dưới dạng nhiều công thức thì ta xét tính liên tục trên mỗi khoảng đã chia và tại các điểm chia của các khoảng đó.

Ví dụ minh họa

Bài 1: Xét tính liên tục của hàm số sau tại x = 3

Hướng dẫn:

1. Hàm số xác định trên R

Ta có f(3) = 10/3 và

Vậy hàm số không liên tục tại x = 3

2. Ta có f(3) = 4 và

Vậy hàm số gián đoạn tại x = 3

Bài 2: Xét tính liên tục của các hàm số sau trên toàn trục số

1. f(x) = tan2x + cosx

Hướng dẫn:

1. TXĐ:

Vậy hàm số liên tục trên D

2. Điều kiện xác định:

Vậy hàm số liên tục trên (1;2) ∪ (2,+∞)

Bài 3: Xét tính liên tục của hàm số sau tại điểm chỉ ra

Hướng dẫn:

Ta có

Vậy hàm số liên tục tại x = 1

Bài 4: Xét tính liên tục của hàm số sau tại điểm chỉ ra

Hướng dẫn:

Vậy hàm số không liên tục tại điểm x = -1

Bài 5: Chọn giá trị f(0) để các hàm số sau liên tục tại điểm x = 0

Hướng dẫn:

Bài 6: Xét tính liên tục của các hàm số sau tại điểm đã chỉ ra

Hướng dẫn:

Ta có:

Vậy hàm số gián đoạn tại x = -1

Bài 7: Xét tính liên tục của các hàm số sau tại điểm đã chỉ ra

Hướng dẫn:

Ta có

Vậy hàm số liên tục tại x = 1

B. Bài tập vận dụng

Bài 1: Cho hàm số

Kết luận nào sau đây không đúng?

A. Hàm số liên tục tại x =-1

B. Hàm số liên tục tại x = 1

C. Hàm số liên tục tại x = -3

D. Hàm số liên tục tại x = 3

Bài 2: Cho hàm số

Kết luận nào sau đây là đúng?

A. Hàm số f(x) liên tục tại điểm x = -2

B. Hàm số f(x) liên tục tại điểm x = 0

C. Hàm số f(x) liên tục tại điểm x = 0,5

D. Hàm số f(x) liên tục tại điểm x = 2

Bài 3: Cho với x ≠ 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu để hàm số f(x) liên tục tại x = 0?

Hiển thị đáp án

Đáp án: C

Bài 4: Cho hàm số . Hàm số f(x) liên tục tại:

A. Mọi điểm thuộc R

B. Mọi điểm trừ x = 0

C. Mọi điểm trừ x = 1

D. Mọi điểm trừ x = 0 và x = 1

Hiển thị đáp án

Đáp án: A

với x < 1, x≠0 thì liên tục trên khoảng đó. Do đó f(x) liên tục tại mọi điểm. Đáp án A

Bài 5: Cho

Phải bổ sung thêm giá trị f(0) giá trị bằng bao nhiêu để hàm số f(x) liên tục trên R?

A. 0 B. 1 C. √2 D. 2

Hiển thị đáp án

Đáp án: D

Bài 6: Cho

Phải bổ sung thêm giá trị f(0)bằng bao nhiêu thì hàm f(x) liên tục trên R?

A. 5/7 B. 1/7 C. 0 D. -5/7

Bài 7: Cho hàm số

Kết luận nào sau đây là sai:

A. Hàm số liên tục tại x = -2

B. Hàm số liên tục tại x = 2

C. Hàm số liên tục tại x = -4

D. Hàm số liên tục tại x = 4

Bài 8: Cho

Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục tại x = 0?

A. 0 B. 1/2 C. 1/√2 D. 1/(2√2)

Bài 9: Cho hàm số

A. 11 B. 4 C. -1 D. -13

Bài 10: Cho hàm số . Kết luận nào sau đây là đúng?

A. Hàm số f(x) liên tục tại điểm x = -3

B. Hàm số f(x) liên tục tại điểm x = 0

C. Hàm số f(x) liên tục tại điểm x = 2

D. Hàm số f(x) liên tục tại điểm x = 3

Bài 11: Cho hàm số . Kết luận nào sau đây là đúng?

Kết luận nào sau đây không đúng?

A. Hàm số liên tục tại x = -2

B. Hàm số liên tục tại x = 2

C. Hàm số liên tục tại x = -1

D. Hàm số liên tục tại x = 1

Bài 12: Cho . Kết luận nào sau đây là đúng?

Phải bổ sung giá trị f(0) bằng bao nhiêu để hàm số đã cho liên tục trên R?

A. -4/7 B. 0 C. 1/7 D. 4/7

Bài 13: Cho hàm số . Chọn câu đúng trong các câu sau:

(I) f(x) liên tục tại x = 2

(II) f(x) gián đoạn tại x = 2

(III) f(x) liên tục trên đoạn [-2;2]

A. Chỉ (I) và (III) B. Chỉ (I) C. Chỉ (II) D. Chỉ (II) và (III)

Bài 14: Cho hàm số . Tìm khẳng định đúng trong các khẳng định sau:

(I) f(x) gián đoạn tại x = 1

(II) f(x) liên tục tại x = 1

A. Chỉ (I) B. Chỉ (II) C. Chỉ (I) và (III) D. Chỉ (II) và (III)

Hiển thị đáp án

Đáp án: C

Bài 15: Cho hàm số . Tìm khẳng định đúng trong các khẳng định sau:

(II) f(x) liên tục tại x = -2

(III) f(x) gián đoạn tại x = -2

A. Chỉ (I) và (III) B. Chỉ (I) và (II) C. Chỉ (I) D. Chỉ (III)

Hiển thị đáp án

Đáp án: B

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k4: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Bạn đang xem bài viết Giáo Án Môn Giải Tích 12 Tiết 1, 2, 3: Tính Đơn Điệu Của Hàm Số trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!