Xem Nhiều 3/2023 #️ Học Viện Công Nghệ Bưu Chính Viễn Thông: Giải Tích Hàm Nhiều Biến Số (Giải Tích 2) # Top 12 Trend | Caffebenevietnam.com

Xem Nhiều 3/2023 # Học Viện Công Nghệ Bưu Chính Viễn Thông: Giải Tích Hàm Nhiều Biến Số (Giải Tích 2) # Top 12 Trend

Cập nhật thông tin chi tiết về Học Viện Công Nghệ Bưu Chính Viễn Thông: Giải Tích Hàm Nhiều Biến Số (Giải Tích 2) mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.

Thông tin tài liệu

Title: Giải tích hàm nhiều biến số (Giải tích 2) Authors: Phạm, Ngọc Anh

Publisher: Học viện công nghệ Bưu chính Viễn thông URI: http://dlib.ptit.edu.vn/HVCNBCVT/1311 Appears in Collections:Khoa cơ bản

ABSTRACTS VIEWS

648

VIEWS & DOWNLOAD

12

Files in This Item:

Xin lỗi! Thư viện chưa thể cung cấp tài liệu bạn yêu cầu vì bạn không thuộc đối tượng phục vụ tài liệu số dạng toàn văn. Bạn có thể tham khảo bản in của tài liệu này tại Phòng đọc Thư viện (Tầng 1 – Nhà A3 hoặc gửi email yêu cầu về địa chỉ: ilc@ptit.edu.vn)

Học Viện Công Nghệ Bưu Chính Viễn Thông: Giải Tích Hàm Một Biến Số (Giải Tích 1)

Thông tin tài liệu

Title: Giải tích hàm một biến số (Giải tích 1) Authors: Phạm, Ngọc Anh

Publisher: Học viện công nghệ Bưu chính Viễn thông URI: http://dlib.ptit.edu.vn/HVCNBCVT/1307 Appears in Collections:Khoa cơ bản

ABSTRACTS VIEWS

122

VIEWS & DOWNLOAD

14

Files in This Item:

Xin lỗi! Thư viện chưa thể cung cấp tài liệu bạn yêu cầu vì bạn không thuộc đối tượng phục vụ tài liệu số dạng toàn văn. Bạn có thể tham khảo bản in của tài liệu này tại Phòng đọc Thư viện (Tầng 1 – Nhà A3 hoặc gửi email yêu cầu về địa chỉ: ilc@ptit.edu.vn)

Đạo Hàm Của Hàm Nhiều Biến Số

Hàm nhiều biến số có ứng dụng rất rộng rãi trong các bài toán học máy vì đa số các các thuộc tính của hiện tượng ta theo dõi không phải chỉ có 1 mà rất nhiều tham số. Các tham số này được liên kết với nhau một cách đặc biệt bởi các hàm số khác nhau để có thể đưa ra được các kết quả mong muốn. Nên việc tìm hiểu về hàm nhiều biến là rất cần thiết để có thể hiểu được các lý thuyết của học máy. $$ mathsf{D} subset mathbb{R}^n, f: mathsf{D} mapsto mathbb{R} $$ Hay: $$ (x_1, x_2, …, x_n) mapsto f(x_1, x_2, …, x_n) in mathbb{R} $$

Hay biểu diễn dưới dạng véc-tơ: $$ [x]_n in mathbb{R}^n mapsto f(x) in mathbb{R} $$

Ví dụ, cho $ x, y in mathbb{R} $ và khi đó ánh xạ $ z = f(x, y) = x^2 + y^2 $ gọi là hàm số của biến $ x, y $.

Khi làm việc với các bài toán học máy đầu ra của ta có thể không phải là một số mà là 1 tập các số nên ta thường xuyên phải làm việc với các hàm nhiều biến dạng mở rộng kiểu này. Tập các số đầu ra này ta có thể biểu diễn dưới dạng một véc-tơ, hay nói cách khác hàm nhiều biến của ta sẽ cho kết quả là một véc-tơ. Những hàm như vậy được gọi là hàm véc-tơ $ f: mathbb{R}^n mapsto mathbb{R}^m $. Ví dụ: $$ f(x, y) = begin{bmatrix} x^2 + sin(y) cr 2xy + y^2 end{bmatrix} $$

Để tiện giải thích và minh hoạ, trong bài này tôi sẽ đề cập tới trường hợp hàm của ta có 2 biến số. Tuy nhiên các tính chất, phép toán và phương pháp làm việc có thể mở rộng ra cho các hàm nhiều biến số hơn.

2. Đạo hàm riêng

Đạo hàm riêng theo 1 biến của một hàm số là đạo hàm theo biến đó với giả thuyết rằng các biến khác là hằng số. Cụ thể, cho hàm số $ f(x, y) $ và một điểm $ M(x_0, y_0) $ thuộc tập xác định của hàm, khi đó đạo hàm theo biến $ x $ tạo điểm $ M $ được gọi là đạo hàm riêng của $ f $ theo $ x $ tại $ M $. Lúc này $ y $ sẽ được cố định bằng giá trị $ y_0 $ và hàm của ta có thể coi là hàm 1 biến của biến $ x $.

Đạo hàm riêng của $ f $ theo $ x $ lúc này sẽ được kí hiệu là: $ f_x^{prime}(x_0, y_0) $ hoặc $displaystyle frac{partial{f(x_0, y_0)}}{partial{x}} $, còn đạo hàm theo biến $ y $ được biểu diễn tương tự: $ f_y^{prime}(x_0, y_0) $ hoặc $displaystyle frac{partial{f(x_0, y_0)}}{partial{y}} $.

Với tôi thì tôi thích biểu diễn dưới dạng $ f_x^{prime} $ vì dễ nhìn và không bị nhầm lẫn với phân số.

Ví dụ: $ f(x, y) = x^2y + sin(y) $ sẽ có đạo hàm $ f_x^{prime} = 2xy $ và $ f_y^{prime} = x^2 + cos(y) $.

Còn $displaystyle f(x, y) = begin{bmatrix} x^2 + sin(y) cr 2xy + y^2 end{bmatrix} $ có đạo hàm là $displaystyle f_x^{prime} = begin{bmatrix} 2x & 2y end{bmatrix} $ và $displaystyle f_y^{prime} = begin{bmatrix} cos(y) & 2x + 2y end{bmatrix} $

Một cách hình thức đạo hàm riêng tại điểm $ M(x_0, y_0) $ theo biến $ x $ được tính toán như sau:

$$ f_x^{prime}(x_0, y_0) = limlimits_{triangle_x rightarrow 0} frac{triangle_xf}{triangle_x} = limlimits_{triangle_x rightarrow 0} frac{f(x_0 + triangle_x, y_0) – f(x_0, y_0)}{triangle_x} $$

Theo biến $ y $:

$$ f_y^{prime}(x_0, y_0) = limlimits_{triangle_y rightarrow 0} frac{triangle_yf}{triangle_y} = limlimits_{triangle_y rightarrow 0} frac{f(x_0, y_0 + triangle_y) – f(x_0, y_0)}{triangle_y} $$ begin{cases} displaystyle{frac{partial{f}}{partial{x}}} = 2xy crcr displaystyle{frac{partial{f}}{partial{y}}} = x^2 + 2y end{cases} $$

và có đạo hàm cấp 2 là:

$ begin{cases} displaystyle{frac{partial^2f}{partial{x^2}} = frac{partial}{partial{x}}Bigg(frac{partial{f}}{partial{x}}Bigg)} = 2y crcr displaystyle{frac{partial^2f}{partial{y}partial{x}} = frac{partial}{partial{y}}Bigg(frac{partial{f}}{partial{x}}Bigg)} = 2x end{cases} $      $ begin{cases} displaystyle{frac{partial^2f}{partial{x}partial{y}} = frac{partial}{partial{x}}Bigg(frac{partial{f}}{partial{y}}Bigg)} = 2x crcr displaystyle{frac{partial^2f}{partial{y^2}} = frac{partial}{partial{y}}Bigg(frac{partial{f}}{partial{y}}Bigg)} = 2 end{cases} J = nabla{f} = begin{bmatrix} nabla{f_1} & cdots & nabla{f_n} end{bmatrix} = begin{bmatrix} displaystyle{frac{partial{f_1}}{partial{x_1}}} & cdots & displaystyle{frac{partial{f_n}}{partial{x_1}}} cr vdots & ddots & vdots cr displaystyle{frac{partial{f_1}}{partial{x_m}}} & cdots & displaystyle{frac{partial{f_n}}{partial{x_m}}} end{bmatrix} begin{cases} f_x^{prime} = f_u^{prime}u_x^{prime} + f_v^{prime}v_x^{prime} cr f_y^{prime} = f_u^{prime}u_y^{prime} + f_v^{prime}v_y^{prime} end{cases} $$

Nhìn hơi khó nhớ phải không? Giờ ta viết lại dưới dạng giống như phân số thì chắc là dễ nhớ hơn chút:

$$ begin{cases} displaystyle{frac{partial{f}}{partial{x}} = frac{partial{f}}{partial{u}}frac{partial{u}}{partial{x}} + frac{partial{f}}{partial{v}}frac{partial{v}}{partial{x}}} crcr displaystyle{frac{partial{f}}{partial{y}} = frac{partial{f}}{partial{u}}frac{partial{u}}{partial{y}} + frac{partial{f}}{partial{v}}frac{partial{v}}{partial{y}}} end{cases} begin{cases} displaystyle{frac{partial{f}}{partial{x}} = frac{partial{f}}{partial{u}}frac{partial{u}}{partial{x}} + frac{partial{f}}{partial{v}}frac{partial{v}}{partial{x}} + frac{partial{f}}{partial{w}}frac{partial{w}}{partial{x}}} crcr displaystyle{frac{partial{f}}{partial{y}} = frac{partial{f}}{partial{u}}frac{partial{u}}{partial{y}} + frac{partial{f}}{partial{v}}frac{partial{v}}{partial{y}} + frac{partial{f}}{partial{w}}frac{partial{w}}{partial{y}}} end{cases} $$

Với hàm ẩn của hàm véc-tơ thì đạo hàm cũng được tính tương tự như vậy, nhưng có chút khác biệt khi ta sử dụng phép toán của véc-tơ. Giả sử ta có hàm véc-tơ $ f(g, h) $ có đầu ra là véc-tơ $ overrightarrow{v}(x, y) = begin{bmatrix} g(x, y) cr h(x, y) end{bmatrix} $ thì đạo hàm riêng của $ f $ sẽ là:

$$ begin{cases} displaystyle{frac{partial{f}}{partial{x}} = frac{partial{f}}{partial{g}}frac{partial{g}}{partial{x}} + frac{partial{f}}{partial{h}}frac{partial{h}}{partial{x}}} crcr displaystyle{frac{partial{f}}{partial{y}} = frac{partial{f}}{partial{g}}frac{partial{g}}{partial{y}} + frac{partial{f}}{partial{h}}frac{partial{h}}{partial{y}}} end{cases} iff begin{cases} displaystyle{frac{partial{f}}{partial{x}}} = begin{bmatrix} displaystyle{frac{partial{f}}{partial{g}}} cr displaystyle{frac{partial{f}}{partial{h}}} end{bmatrix} odot begin{bmatrix} displaystyle{frac{partial{g}}{partial{x}}} cr displaystyle{frac{partial{h}}{partial{x}}} end{bmatrix} crcr displaystyle{frac{partial{f}}{partial{y}}} = begin{bmatrix} displaystyle{frac{partial{f}}{partial{g}}} cr displaystyle{frac{partial{f}}{partial{h}}} end{bmatrix} odot begin{bmatrix} displaystyle{frac{partial{g}}{partial{y}}} cr displaystyle{frac{partial{h}}{partial{y}}} end{bmatrix} end{cases} iff begin{cases} displaystyle{frac{partial{f}}{partial{x}}} = nabla{f} odot overrightarrow{v^{prime}_x} crcr displaystyle{frac{partial{f}}{partial{y}}} = nabla{f} odot overrightarrow{v^{prime}_y} end{cases} $$

Như vậy ta có thể thấy đạo hàm của hàm hợp véc-tơ có thể tính bằng tích của gradient hàm hợp với đạo hàm riêng véc-tơ đầu ra.

6. Đạo hàm của hàm ẩn

Hàm ẩn là một hàm mà ta chưa biết dạng của nó nhưng ta biết rằng nó có thể biểu diễn qua một biến khác trong hàm số. Hơi khó hiểu chút ha!

Cho $ f(x, y) = 0 $, lúc này ta nói $ y(x) $ là hàm ẩn khi tồn tại $ y = y_0 $ sao cho $ f(x, y_0) = 0 $ với mọi $ x $. Khi đó ta còn có thể coi $ f $ là hàm một biến theo $ x $.

Mặc dù chưa biết dạng của $ y(x) $ nhưng lúc này ta có thể tính được đạo hàm của nó như sau: $displaystyle y_x^{prime} = -frac{f_x^{prime}}{f_y^{prime}} $

Đương nhiên là khi đó $ f_y^{prime} not = 0 $ thì công thức mới xác định được. Ta có thể chứng minh đơn giản như sau:

$$ f(x, y) = 0 implies f(x, y)^{prime} = 0 iff f_x^{prime} + f_y^{prime}y_x^{prime} = 0 iff y_x^{prime} = -frac{f_x^{prime}}{f_y^{prime}} $$

Viết dưới dạng loằng ngoằng ta sẽ được:

$$ frac{dy}{dx} = -frac{displaystyle{frac{partial{f}}{partial{x}}}}{displaystyle{frac{partial{f}}{partial{y}}}} $$

Trường hợp tổng quá cũng sẽ được tính tương tự. Ví dụ: $ f(x, y, u) $ có hàm ẩn $ u(x, y) $ thì đạo hàm riêng của $ u $ sẽ được tính như sau:

$$ begin{cases} displaystyle{u_x^{prime} = -frac{f_x^{prime}}{f_u^{prime}}} crcr displaystyle{u_y^{prime} = -frac{f_y^{prime}}{f_u^{prime}}} end{cases} $$

Hàm Trơn Không Giải Tích

Xét hàm Hàm được gọi là trơn, còn gọi khả vi vô hạn, nếu nó có đạo hàm mọi cấp trên Hàm được gọi là hàm giải tích nếu nó trơn và chuỗi Taylor tại mọi điểm trên của nó đều hội tụ đến nó trong một lân cận của điểm đang xét.

Như ta đã biết hàm

là hàm trơn và không giải tích tại

Từ đây, không khó khăn lắm, ta có thể xây dựng được hàm trơn và không giải tích tại tối đa đếm được điểm. Liệu có hàm trơn nào mà nó không giải tích tại mọi nơi không?

Trước hết ta đến với điều kiện cần và đủ để một hàm trơn là hàm giải tích:

Cho trước hàm trơn . Khi đó điều kiện cần và đủ để giải tích là:

với bất kỳ điểm đều có các số dương (phụ thuộc ) sao cho

Việc kiểm tra hàm ở trên không thỏa mãn điều kiện này nói chung không đơn giản. Các bạn thử kiểm tra xem sao?

Ta sẽ dùng điều kiện trên để chỉ ra rằng tập các hàm giải tích là hợp đếm được của các tập không đâu trù mật trong không gian các hàm trơn với khoảng cách được định nghĩa bởi

với giảm về , còn tăng đến

Với khoảng cách này không gian các hàm trơn là không gian Khi đó nó là không gian metric đầy đủ.

Từ điều kiện trên ta có:

– nếu giải tích tại thì có để ,

– nếu giải tích tại thì nó giải tích quanh một lân cận của điểm .

Khi đó tập các hàm giải tích thuộc vào hợp đếm được

Có thể thấy rằng:

– tập là đóng trong ,

.

Như vậy là tập không đâu trù mật. Mà là không gian metric đầy đủ nên

.

Như vậy có hàm trơn mà không giải tích tại mọi điểm.

Cách chứng minh trên, theo James Dugundji là của H. Salzmann và K. Zeller.

Cách tiếp cận khác chỉ ra cụ thể các hàm trơn và không giải tích tại mọi điểm. Để tiếp tục, tôi đưa ra cách của Sung S. Kim and Kil H. Kwon. Cách này có sử dụng hàm như trên. Cụ thể xét hàm

Kim và Kwon chứng minh được hàm

là hàm trơn và không đâu giải tích.

Có thể thấy hàm :

– là hàm không âm, tuần hoàn chu kỳ 1,

– trơn và có đạo hàm mọi cấp tại các điểm nguyên đều bằng 0.

Để chứng minh tính không đâu giải tích ta chỉ cần chứng minh không giải tích tại các điểm dạng:

với lẻ.

Các bạn thử giải thích tại sao?

Với , có

nên là các hàm giải tích tại

Còn với có

Ngoài ra

.

Do đó

không giải tích tại .

Nói cách khác không giải tích tại

Vài nhận xét về ví dụ cụ thể trên:

– Hàm là hàm không âm nên nếu lấy nguyên hàm của nó ta được hàm trơn, đơn điệu tăng và không đâu giải tích.

– Chuỗi Taylor của hàm tại các điểm hội tụ tại mọi điểm trên đường thẳng thực, nói cách khác nó có bán kính hội tụ .

Về nhận xét thứ hai, có hai câu hỏi:

– Tại những điểm khác , chuỗi Taylor của không hội tụ đến hàm trong lân cận của nó. Nó có hội tụ không? Bán kính hội tụ của nó liệu có bằng vô cùng?

– Có ví dụ nào khác về hàm trơn không đâu giải tích mà chuỗi Taylor tại bất kỳ điểm nào cũng có bán kính ?

Ta trả lời câu hỏi thứ hai bằng ví dụ

.

Giống ví dụ trước ta chỉ xét tại các điểm

với lẻ.

Từ đây dùng công thức Hadamard-Cauchy ta có

Như vậy bán kính hội tụ của chuỗi Taylor tại mỗi điểm bằng

Ta cũng gặp câu hỏi tương tự câu hỏi đầu cho hàm ở trên. Các bạn thử chứng minh tại những điểm còn lại chuỗi Taylor của hàm cũng có bán kính hội tụ ?

Với hàm , tại những điểm còn lại có những điểm giống như trường hợp hàm . Điều này được dẫn từ kết quả:

– (R. Boas) Tập các điểm chuỗi Taylor tại đó của một hàm trơn không đâu giải tích có bán kính hội tụ là tập trù mật trong .

– (Z. Zahorski) Tập các điểm chuỗi Taylor tại đó của một hàm trơn hội tụ trong một lân cận của điểm đang xét và không hội tụ đến hàm trơn trong lân cận bất kỳ của điểm đang xét là tập thuộc phạm trù thứ nhất dạng nghĩa là hợp đếm được các tập đóng không đâu trù mật.

Share this:

Twitter

Facebook

Like this:

Số lượt thích

Đang tải…

Bạn đang xem bài viết Học Viện Công Nghệ Bưu Chính Viễn Thông: Giải Tích Hàm Nhiều Biến Số (Giải Tích 2) trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!