Xem Nhiều 3/2023 #️ Lý Thuyết Mạch Và Bài Tập Có Lời Giải # Top 5 Trend | Caffebenevietnam.com

Xem Nhiều 3/2023 # Lý Thuyết Mạch Và Bài Tập Có Lời Giải # Top 5 Trend

Cập nhật thông tin chi tiết về Lý Thuyết Mạch Và Bài Tập Có Lời Giải mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.

11 Chương 1 Mạch điện-thông số mạch Các định luật cơ bản của mạch điện Tóm tắt lý thuyết Một số thuật ngữ và định nghĩa Các nguồn trong mạch điện gọi là các tác động, các điện áp và dòng điện ở các nhánh gọi là các phản ứng của mạch. Điện áp và dòng điện gọi các đại lượng điện (không gọi công suất là đại lượng điện). Các thông số mạch thụ động bao gồm điện trở, điện cảm và điện dung. Điện trở có thể ký hiệu là R hoặc r. Điện dung và điện cảm phải ký hiệu là các chữ in hoa tương ứng L và C. Giá trị tức thời của điện áp và dòng điện ký hiệu tương ứng là chữ u, i thường (không viết hoa) hoặc có viết thêm biến thời gian như u(t), i(t). Giá thị hiệu dụng ký hiệu tương ứng là U và I, giá trị biên độ ký hiệu là Um và Im. Tương ứng sẽ có ký hiệu trong miền phức là m .. m .. I,U;I,U Quan hệ dòng – áp trên các thông số mạch: Trên điện trở R: Hình 1.1a. Định luật Ôm u=i. R hay u(t)=i(t).R (1.1) Công suất tức thời p hay p(t)=u2R= R i 2 ≥0 (1.2) Năng lượng tiêu hao ở dạng nhiệt năng trong khỏang thời gian t1÷t2: WT= ∫2 1 t t dt)t(p (1.3) H×nh 1.1 R L Ci i i u u u a) b) c) Trên điện cảm L: Hình 1.1b Định luật Ôm: u= dt diL hay ∫ += t t LoIudtL i 0 1 (1.4) Trong đó IL0 [hay IL(t0) hay iL0] là giá trị của dòng điện qua L tại thời điểm ban đầu t=t0. Năng lượng tích luỹ ở dạng từ trường tại thời điểm bất kỳ là: 12 WM= 2 2iL (1.5) Công suất tức thời: p= dt diL.i dt dWu.i M == (1.6) Trên điện dung C: Hình 1.1.c Định luật Ôm i= ∫ += t CoUidtCuhaydtduC 0 1 (1.7) Trong đó UC0 [hay UC(t0) hay uC0] là giá trị của điện áp trên C tại thời điểm ban đầu t=t0. Năng lượng tích luỹ ở dạng điện trường tại thời điểm bất kỳ: WE= 2 2uC (1.8) Công suất tức thời: p= dt duC.u dt dWi.u E == (1.9) Lưu ý: Các công thức (1.1), (1.4) và (1.7) ứng với trường hợp điện áp và dòng điện ký hiệu cùng chiều như trên hình 1.1. Nếu chiều của dòng điện và điện áp ngược chiều nhau thì trong các công thức trên sẽ có thêm dấu “-” vào một trong hai vế của phương trình. Thông số nguồn: Nguồn điện áp hay nguồn suất điện động (sđđ) lý tưởng, nguồn điện áp thực tế (không lý tưởng) ký hiệu tương ứng ở hình 1.2a, b. Nguồn dòng điện lý tưởng, nguồn dòng điện thực tế (không lý tưởng) ký hiệu tương ứng ở hình 12c, d. H×nh 1.2 a) b) c) e hay u e hay u R0 R0 d) e) E R0 R0 i hay i0 i hay i0 0I 0 0 R EI = 00 IRE = Khi phân tích mạch điện có thể biến đổi tương đương giữa 2 loại nguồn có tổn hao như ở hình 1.2e. Phép biến đổi rất đơn giản: thực hiện theo định luật Ôm. Định luật Kieckhop 1: Định luật cho nút thứ k trong mạch được viết: )’.( i ihay).(i krvk k k 1011010 ∑∑∑ == 13 Trong (1.10) ik là tất cả các dòng điện nối với nút thứ k, dòng hướng vào nút mang dấu “+”, dòng rời khỏi nút mang dấu “-“. Trong (1.10)’ iVk là tất cả các dòng điện hướng vào nút thứ k, ir k là tất cả các dòng rời khỏi nút k, chúng đều có dấu “+”. Số phương trình viết theo định luật Kieckhop1 cho mạch có n nút là N=n-1 (1.11) Định luật Kieckhop I1: Định luật cho vòng thứ k trong mạch được viết: )’.(euhay).(u kkk 1211210 ∑∑∑ == Trong (1.12) uk là điện áp của tất cả các đoạn mạch thuộc vòng thứ k, cùng chiều mạch vòng lấy với dấu “+”, ngược chiều mạch vòng lấy với dấu “-“. Trong (1.12)’ uk là tất cả điện áp nhánh, ek là tất các các sđđ nhánh thuộc vòng k; cùng chiều mạch vòng lấy với dấu “+”, ngược chiều mạch vòng lấy với dấu “-“. Số phương trình viết theo định luật Kieckhop 2 cho mạch điện có n nút và m nhánh là: N=m-(n-1)=m-n+1 (1.13) Nguyên lý xếp chồng: Với một mạch có nhiều nguồn cùng tác động đồng thời như trên hình 1.3, để tính phản ứng ở nhánh thứ k nào đó, ví dụ iK thì sẽ sử dụng nguyên lý này như sau: Đầu tiên cho nguồn e1 tác động, các nguồn còn lại đều dừng tác động (bằng 0), tính được ik1 (chỉ số 1 chỉ lần tính thứ nhất). Tiếp theo cho e2 tác động, các nguồn còn lại đều dừng tác động, tính được ik2…Lần cuối cùng cho nguồn thứ N tác động, các nguồn còn lại đều dừng tác động, tính được ikN thì dòng phải tìm ik=ik1+ik2+…+ikN Nguyên lý tương hỗ: có thể ứng dụng tính để tính trong trường hợp mạch chỉ có một tác động duy nhất. Định lý nguồn tương đương: Cho phép rút gọn mạch để tính toán ở mọi chế độ. Cách thực hiện mô tả trên hình 1.4. Đoạn mạch a-b tuyến tính có nguồn, được thay thế bằng: – Nguồn điện áp có trị số bằng điện áp hở mạch tính được giữa 2 điểm a-b mắc nối tiếp với điện trở tương đương “nhìn” từ a-b khi cho các nguồn tác động bằng 0. (hình 1.4b) – Nguồn dòng điện có trị số bằng dòng điện ngắn mạch tính được khi chập 2 điểm a-b, mắc song song với điện trở tương đương “nhìn”từ a-b khi cho các nguồn tác động bằng 0. (hình 1.4c) H×nh 1.3 1 ie N e 2 k i Nh¸ nh k M ¹ ch ®iÖn tuyÕn tÝnh . . . 14 Hệ phương trình trạng thái. – Toán tử nhánh: Trong một nhánh thứ k trong mạch có mặt cả 3 thông số Rk, Lk, Ck mắc nối tiếp sẽ có: ∫++=++= dtiC 1 dt di LiRuuuu k k k kkkCkLkRkk (1.14) (1.14)-ký hiệu cho gọn là uk=Lk ik. Trong đó: ℒk= ∫++ dtC1dtdLR kkk (1.15) Lk – gọi là toán tử nhánh hình thức, tức là “nhân hình thức” Lk với ik để được uk. – Công thức biến đổi nút. Một nhánh thứ k nằm giữa hai nút a-b có điện thế tương ứng là ϕa và ϕb (dòng điện có chiều từ a sang b) với 3 thông số Rk, Lk, Ck mắc nối tiếp và có thêm nguồn s. đ. đ. là ek thì có thể viết quan hệ: kk k k kkkbak edtiC 1 dt diLiRu m∫++=ϕ−ϕ= hay kbak k k kkk edtiC 1 dt diLiR ±ϕ−ϕ=++ ∫ . (1.16) Trong công thức cuối ek lấy với dấu “+” nó cùng chiều dòng ik, dấu “-” ngược chiều ik. Phép giải phương trình vi phân cuối để tìm ik ta ký hiệu một cách hình thức là ik=Lk -1(ϕa-ϕb ± ek). Như vậy có thể tìm được dòng nhánh ik bất kỳ theo điện thế nút. Công thức này gọi là công thức bíên đổi nút; Lk-1-gọi là toán tử nhánh đảo. -Công thức bíến đổi vòng: Người ta quy ước dòng mạch vòng là một dòng điện hình thức chạy trong một vòng kín. Nếu một nhánh có nhiều dòng mạch vòng đi qua thì dòng nhánh đó là tổng đại số của tất cả các dòng mạch vòng đi qua nó, dòng nào cùng chiều dòng nhánh thì được lấy với dấu “+”, ngược chiều – dấu “-“, tức ∑ = = m j Vjk Ii 1 . Công thức cuối gọi là công thức biến đổi vòng. -Hệ phương trình (trạng thái) dòng nhánh: Mạch có n nút và m nhánh sẽ phải viết (n-1) phương trình theo định luật Kieckhop 1 dạng { 0 1 1 =∑ = nóti¹T j ji ; và (m-n+1) phương trình theo định luật Kieckhop 2 dạng ∑∑ == = 11 i i j j eijL . -Hệ phương trình (trạng thái) dòng mạch vòng: có dạng tổng quát 15 ∑ ∑ ∑ =++++ =++++ =++++ chúng tôi …………………………………………………………….. chúng tôi chúng tôi NvNvvv vNvvv vNvvv NNN3N2N1 2N232221 1N131211 LLLL LLLL LLLL 321 2321 1321 (1.17) Trong đó:- N=m-n+1-số vòng độc lập với các dòng mạch vòng tương ứng iVk – kkL – tổng các toán tử nhánh thuộc mạch vòng thứ k, dấu “+”. – lkL với k≠1- Tổng các toán tử nhánh chung của vòng thứ k và vòng thứ l, dấu có thể “+” hoặc “-” tuỳ theo hai dòng vòng ik và il qua nhánh này cùng chiều hay ngược chiều. -∑ ek -tổng đại số các sđđ thuộc vòng thứ k, dấu có thể “+” hoặc “-” tuỳ theo nguồn cùng chiều hay ngược chiều dòng mạch vòng. -Hệ phương trình (trạng thái) điện thế nút: có dạng tổng quát ∑ ∑ ∑ =ϕ+−ϕ−ϕ−ϕ =ϕ−−ϕ−ϕ+ϕ =ϕ−−ϕ−ϕ−ϕ J…. …………………………………………………………….. J…. J…. NNNNNNN NN NN 1-1-1-1- 1-1-1-1- 1-1-1-1- LLLL- LLLL- LLLL 432211 22323222121 11313212111 (1.18) Trong đó: – N=(n-1) – số nút ứng các điện thế nút ϕ1, ϕ2,…ϕN – -1L kk – tổng các toán tử nhánh đảo của các nhánh nối với nút thứ k thứ k, luôn mang dấu “+”. – -1L lk với k≠1 – toán tử nhánh đảo của nhánh nối trực tiếp giữa nút thứ k và nút thứ 1, luôn có dấu “-“. – ∑ Jk -tổng các nguồn dòng và nguồn dòng tương đương nối với nút thứ k. Mạch thuần trở: Khi trong mạch chỉ có điện trở thì uk=RkiK, ik= )e(g kbak ±ϕ−ϕ -Hệ phương trình dòng mạch vòng: có dạng tổng quát 16 ∑ ∑ ∑ =+++ =+++ =+++ eiR…………RiRiR ………………………………………………………………….. eiR…………RiRiR eiR…………RiRiR NVNNN3N2v2N1V1N 2VNN2232v221V21 1VNN1132v121V11 (1.19) ∑=+++ eiR…………RiRiR NVNNN3N2v2N1V1N Trong đó: – N=(m-n+1) – số vòng độc lập có các dòng mạch vòng tương ứng iVk – Rkk- tổng các điện trở thuộc mạch vòng thứ k, dấu “+”. – Rkl với k≠1 – tổng các điện trở nhánh chung của vòng thứ k và vòng thứ 1, dấu có thể “+” hoặc “-” tuỳ theo hai dòng vòng ik và il qua nhánh này cùng chiều hay ngược chiều. -∑ ek – tổng đại số các sđđ thuộc vòng thứ k, dấu có thể “+” hoặc “-” tuỳ theo nguồn cùng chiều hay ngược chiều dòng mạch vòng. -Hệ phương trình điện thế nút: có dạng tổng quát: ∑ ∑ ∑ =ϕ+−ϕ−ϕ−ϕ− =ϕ−−ϕ−ϕ+ϕ− =ϕ−−ϕ−ϕ−ϕ chúng tôi …………………………………………………………. chúng tôi chúng tôi NNNNNNN NN NN 332211 22323222121 11313212111 (1.20) Trong đó: – N=(n-1) – số nút ứng các điện thế nút ϕ1, ϕ2,…ϕN – gkk – tổng các toán tử nhảnh đảo của các nhánh nối với nút thứ k thứ luôn mang dấu “+”. – gkl với k≠1 – toán tử nhảnh đảo của nhánh nối giữa 2 nút thứ k và nút thứ l, luôn có dấu “-“. -∑ Jk -tổng các nguồn dòng và nguồn dòng tương đương nối với nút thứ k. Chú ý: – Không lập phương trình cho vòng có chứa nguồn dòng. – Không lập phương trình cho nút có nguồn điện áp lý tưởng nối với nó. Biến đổi mạch loại bỏ nguuồn áp và nguồn dòng lý tưởng: Có thể loại bỏ nguồn điện áp lý tưởng trong mạch nếu ta tịnh tiến nguồn này vào các nhánh nối với cực dương của nguồn và chập 2 cực của nguồn. (Hình 1.5a→b). 17 E0 E0 E0 E0 a) b) H×nh 1.5 I0 Ra Rb Ra Rb .I0 Ra.I0 Rb a) b) H×nh 1.6 ……………………………………………………………………………………………………… Có thể loại bỏ nguồn dòng trong mạch bằng cách: -Chọn 1 vòng duy nhất đi qua nguồn dòng. -Thay thế nguồn dòng bằng cách thêm vào các nhánh nằm trong vòng đã chọn các sđđ, có trị số bằng tích nguồn dòng với giá trị của điện trở nhánh tương ứng, có chiều ngược với chiều vòng. (Hình 1.6 a→b) Bài tập 1.1. Một nguồn pin có sđđ E=1,5V, nội trở r0=3Ω mắc với điện trở ngoài R=7Ω. a) Xác định sụt áp trên nội trở nguồn và điện áp giữa 2cực của nguồn. b) Các đại lượng trên sẽ là bao nhiêu nếu điện trở ngoài là 17Ω. 1.2. Ba nguồn điện áp một chiều với E1=12V, E2=18V, E3=10V có các nội trở tương ứng là r01=4Ω, r02=3Ω và r03=1Ω mắc như ở hình 1.7 (mắc có lỗi). a) Hãy xác định điện áp giữa từng cặp cực của các nguồn. b) Hãy xác định điện áp giữa từng cặp cực của các nguồn khi nguồn thứ 2 được mắc đảo chiều và mạch ngoài mắc điện trở R=12Ω. 1.3. Điện áp trên điện trở R trong các hình 1.8 xác định thế nào: a) ở hình 1.8a) với e1=10V, e2=20V, R=10Ω b) ở hình 1.8b) e=10V, I0=2A, R=10Ω 1.4. Mạch điện hình 1.9 có E1=24V, E2=12V, R1=30Ω, R2=20Ω. Hãy xác định trị số của von kế lý tưởng trong mạch nếu bỏ qua các nội trở nguồn. 1.5. Một nguồn sđđ khi bị ngắn mạch tiêu thụ công suất 400mW. Tìm công suất cực đại mà nguồn này có thể cung cấp cho mạch ngoài. e e2e1 Io H×nh1.8 a) b) H×nh 1.9 R1 + _ + _ R2 E2E1 V R R 18 1.6. Cho các đồ thị hình 1.10 là các điện áp khác nhau đặt lên điện trở R=5Ω. Hãy tìm: -Biểu thức tức thời của dòng điện và biểu diễn nó bằng đồ thị. -Biểu thức của công suất tức thời và biểu diễn nó bằng đồ thị. -Tính năng lượng tiêu tán trên điện trở trong khoảng thời gian (0÷1)s 1.7. Cho điện áp là 1 xung có quy luật trên đồ thị hình 1.11. 1. Đem điện áp này đặt lên điện trở R=1Ω. a) Tìm biểu thức và vẽ đồ thị của dòng điện qua điện trở. b) Tìm năng lượng toả ra trên điện trở trong khoảng (0÷4)s 2. Đem điện áp này đặt lên điện cảm L=1H. a) Tìm biểu thức và vẽ đồ thị của dòng điện qua điện cảm L. b) Tìm quy luật biến thiên của năng lượng từ trường tích luỹ trong điện cảm L. c) Vẽ đường cong của tốc độ biến thiên của năng lượng từ trường. 2. Đem điện áp này đặt lên điện dung C=1F. a) Tìm biểu thức và vẽ đồ thị của dòng điện qua điện dung C. b) Tìm quy luật biến thiên của năng lượng điện trường tích luỹ trong C. c) Vẽ đường cong của tốc độ biến thiên của năng lượng điện trường. 1.8. Cho mạch điện hình 1.12 với R=100Ω, L=0,25H, nguồn điện áp lý tưởng e(t)=10sin 400t[V]. Tìm iR(t) và iL(t) và vẽ đồ thị thời gian của chúng. 1.9. Mạch điện hình 1.13a có R=2Ω, L=1H, C=0,5F. Nguồn sđđ lý tưởng tác động lên mạch có dạng đồ thị hình 1.13b. Biết iL(0)=0, uC(0)=0. Hãy tìm và vẽ đồ thị của iR(t), iL(t), iC(t), i(t). Tính trị số của chúng tại các thời điểm t=0,5s; 0,9s; 1s và 1,2s. u(t) t [s] [V] 0 1 2 5 a) t [s] [V] 0 1 2 5 b) t [s] [V] 0 1 2 5 c) 3 u(t) u(t) H×nh 1.10 t [s] [V] 0 1 2 1 3 u(t) 4 -1 H×nh 1.11 t e(t) e(t) R L H×nh 1.12 1 [V] 2 e(t) R L H×nh 1.13 b) iii LRC C [s] R iLi a) i 19 1.10. Mạch điện hình 1.14a chịu tác động của nguồn dòng i(t) có đồ thị hình 1.14b. Biết R=2Ω, L=1H. a) Tìm biểu thức uL(t), uR(t), u(t) và vẽ đồ thị của chúng. b) Xác định giá trị Umax. c) Tìm biểu thức của công suất tức thời p(t) của mạch và tính p(t) tại các thời điểm t1=0,25s; t2=0,75s 1.11. Mạch điện hình 1.15 chịu tác động của nguồn dòng i(t) hình 1.14b. Biết R=10Ω, C=0,5F. a) Tìm biểu thức uC(t), uR(t), u(t) và vẽ đồ thị của chúng. b) Xác định giá trị Umax. c) Tìm biểu thức tức thời của công suất p(t) của mạch và tính p(t) tại các thời điểm t1=0,25s; t2=0,75s 1.12. Tác động lên mạch hình 1.12 là nguồn sđđ có dạng hình 1.16. Biết R=1Ω, L=1H, iL(0)=0. Hãy xác định: a) iR(t), iL(t), i(t) và vẽ đồ thị thời gian của chúng. b) Imax. c) Biểu thức công suất tức thời của mạch. 1.13. Cũng với mạch hình 1.12, nhưng nguồn tác động là nguồn sđđ lý tưởng e(t)= ⎩⎨ ⎧ ≤ < − tkhie tkhi t 02 00 2 . Biết rằng iL(0)=0, thì iL(0,5s)=1A, i (0,5s)=1,01A. Xác định: a) Trị số của R, L b) Biểu thức iR(t), iL(t), i(t) và vẽ đồ thị thời gian của chúng. 1.14. Tác động lên mạch RC mắc nối tiếp là một xung dòng điện có dạng hình 1.17a. Biết uC(0)=0, tại thời điểm t1=1s điện áp trên hai cực của nguồn là u(1s)=10V, tại thời điểm t2=2s điện áp trên hai cực của nguồn là u(2s)=14 V. Hãy xác định: u (t) u (t) u(t) R C H×nh 1.15 i(t) 2 t[s] u(t)[V] 1 -1 H×nh 1.16 t[s] 2 2 a) 0 t[s] 3 2 b) 0 H×nh 1.17 i(t) [A] i(t) [A] 20 a) Trị số của R và C. b) Với các trị số R, C vừa xác định ở a), tìm biểu thức của u(t) và xác định u(1s) và u(2s) nếu nguồn là xung dòng điện tuyến tính hình 1.17b. 1.15. Cho mạch điện hình 1.18a a) Lập phương trình vi phân đặc trưng cho mạch với biến số là i(t) hoặc uL(t). b) Biết R=0,5Ω; L=1H, C=1F, iL(0)=0, uC(0)=0, điện áp uL(t) có đồ thị hình 1.18b. Xác định uR(t), uC(t), u(t) và i(t) trong khoảng (0÷2)s 1.16. Thành lập phương trình vi phân cho mạch điện hình 1.19 với các biến số khác nhau: u, iL và iC. 1.17. Trong mạch điện hình 1.20 hãy biểu diễn điện áp u(t) qua dòng i4(t) và các thông số của mạch. 1.18. Trong mạch điện hình 1.21 hãy biểu diễn điện áp u(t) qua điện áp u4(t) và các thông số của mạch. 1.19. Mạch điện hình 1.22 có: nguồn một chiều E=10V, C1=C2=C3=1F, C4=C5=C6=3F. Hãy xác định năng lượng tích luỹ ở mỗi điện dung. 1.20. Mạch điện hình 1.23 có R=R1=R2=2Ω ; C1=2F, C2=1 F, L=1H. Chứng minh rằng: 3 2 3 2 2 2 2 2 2 2 2 2 2 2 21 41010 2522 dt id dt id dt di ii)c dt id dt di iu)b dt di ii)a MN +++= ++=+= 1.21. Với các nhánh, vòng, nút đã chọn ở mạch điện hình 1.24 hãy lập hệ phương vi phân cho mạch với biến là: u (t) i(t) L C H×nh 1.18 e(t) Ru (t) u (t) t[s] 4 2 u (t) [V] b) 0 L H×nh 1.23 C C C CC CE 1 32 4 65 RC C 1 L 1 2 2 i i i i 1 2 34 M N H×nh 1.22 iRR 21 a) Các dòng điện nhánh b) Các dòng điện mạch vòng c) Các điện thế nút. 1.22. Với các nhánh, vòng, nút đã chọn ở mạch điện hình 1.24 hãy lập hệ phương trình trạng thái thông qua toán tử nhánh theo 2 phương pháp: a) Dòng điện mạch vòng. b) Điện thế nút. 1.23. Cho mạch điện hình 1.25 với các nguồn một chiều E=70V, I0=125mA, các điện trở R1=0,2KΩ, R2=R3=R4=0,8KΩ. Tìm dòng điện qua R3 bằng 3 cách: a) Bằng cách biến đổi các đoạn mạch đóng khung (bằng đường đứt nét) về các nguồn suất điện động tương đương. b) Bằng cách sử dụng định lý máy phát điện đẳng trị. c) Bằng cách sử dụng nguyên lý xếp chồng. 1.24. Dùng nguyên lý xếp chồng tìm các dòng nhánh có chiều như đã xác định trên hình 1.26, biết E1=20V, E2=15V, R2=25Ω, R3=50Ω, R4=120Ω, R5=25Ω. 1.25. Mạch điện hình 1.27 có I0=20mA, E0=50V, E1=120V, E2=24 V, R1=120Ω, R2=50Ω, R3=100Ω, R4=270Ω. Tìm Uab bằng sử dụng nguyên lý xếp chồng. 1.26. Tìm dòng qua R5 bằng sử dụng định lý nguồn tương đương (máy phát điện đẳng trị) trong mạch điện hình 1.28 biết R1=R3=100Ω ; R2=125Ω; R4=200Ω; R5=80Ω ;E =100V. 1.27. Cho mạch điện trong BT 1.26. Tìm dòng qua R5 bằng sử dụng nguyên lý tương hỗ. 1.28. Tìm các dòng điện nhánh trong mạch hình 1.29 bằng phương pháp điện thế H×nh 1.24 1 C C C 5 4 4 4 22 5 1 1 3ϕ ϕ ϕ R R R R e eVßng1 Vßng2 Vßng3 Vßng4 1 2 3 L L L 0 0i E E R R R R 1 2 3 5 4 2 i i i i i 4 5 0 3 2 H×nh 1.26 R E R R R 4 2 3 1 2 E EI a 0 1 0 H×nh 1.27 b i1 i 0 3 H×nh 1.25 I R 3R R R 1 42E 22 nút biết R1=25Ω; R2=R5=80Ω; R3=R6=100Ω; R4=40Ω; R7=20Ω; E1=150V; E0=60V; E7=80V. 1.29. Tìm các dòng điện nhánh trong mạch hình 1.30 bằng phương pháp dòng điện mạch vòng biết R1=0,1KΩ; R2=R5=0,2KΩ; R3=R6=0,125KΩ; R4=0,25KΩ; R7=0,1KΩ; E1=150V; E7=50V; I0=150mA. 1.30. Cho mạch điện hình 1.31 với E=100V, R1=29Ω; R2=R5=40Ω; R3=R4=120Ω; R6=R7=60Ω; R8=25 Ω. Tính công suất tiêu tán trên điện trở R8. 1.31. Cho mạch điện hình 1.32 với R1=20Ω; R2=R5=40Ω; R3=R4=25Ω; R6=10Ω; E1=50V; E6=25V, I0=1,25A. Tính dòng điện qua nhánh R3 bằng cách rút gọn mạch chỉ còn lại một vòng có chứa R3. 1.32. Cho mạch điện hình 1.33 với R2=R5=40Ω; R3=R4=120Ω; R6=R7=60Ω; R8=25Ω. Tính điện trở tương đương ở đầu vào của mạch. 1.33. Mạch điện hình 1.34 có R1=100Ω; R2=120Ω; R3=125Ω; R4=80Ω; E1=50V; E2=100V. Tính các dòng điện nhánh trong mạch. 1.34. Cho mạch điện hình 1.35 biết R1=50Ω, R2=R3=20Ω, R4=25 Ω, R5=10Ω; các nguồn một chiều e1=10V, e2=12V, e5=20V, e0=3V. Tìm các dòng điện i2, i3 và i4 bằng cả hai phương pháp: dòng mạch vòng và điện thế nút. 1.35. Cho mạch điện hình 1.36. biết các nguồn một chiều e1=12V; e2=5V; e5=3V; I0=4mA; R1=0,5kΩ, R2=0,4kΩ; R3=1,25kΩ; R4=1kΩ; R5=0,25kΩ; Tìm các dòng điện i2, i3 và i5 bằng cả hai phương pháp: dòng mạch vòng và điện thế nút. 3 4 H×nh 1.28 R R R1 2E R R5 1 H×nh 1.29 R 3R R R2E E R R 4 0 7 51 R6 E7 1 H×nh 1.30 R 3R R R2E I R R 4 0 7 51 R6 E7 5 6 H×nh 1.31 R R R2 3 E R R8 1 H×nh 1.32 R3 R R2 E I R 4 0 5 1 R6 E6 H×nh 1.33 1 7R 4R R 5 6 R R R2 3R R8t® 7R 4R R 23 1.36. Xác định chỉ số của von kế lý tưởng trong hình 1.37 biết E=24V, r=3Ω, R1=11Ω, R2=14Ω, R3=16Ω, R4=9Ω. 1.37. Xác định chỉ số của Ampe kế lý tưởng trong hình 1.38 biết nguồn lý tưởng E=60V, R1=40Ω, R2=30Ω, R3=20Ω, R4=10Ω. 1.38. Giải bài tập 1.37 nếu nguồn sđđ có nội trở là 5Ω. 1.39. Xác định chỉ số của Mili-Ampe kế lý tưởng trong hình 1.39 biết R1=40KΩ, R2=14,2KΩ, R3=10KΩ, R4=10KΩ, nguồn dòng I=10mA. 1.40. Mạch điện hình 1.40 gọi là bộ suy giảm (suy hao) trong đó mỗi khâu là một bộ phân áp. Cho tải có trị số R0=600Ω. a) Chọn các giá trị điện trở trong từng khâu sao cho điện trở đầu vào của từng khâu cũng là R0. b) Với mạch có 3 khâu, hãy chứng minh rằng có thể thay đổi độ suy hao a=20log(Uvào/Ura) [dB] trong khoảng 0÷100dB

Lý Thuyết Và Bài Tập Tứ Giác (Có Lời Giải)

Trong bài viết này, các em sẽ được cung cấp hai phần riêng biệt là lý thuyết và bài tập. Lý thuyết là các định nghĩa và tính chất về tứ giác mà các em đã được học trên lớp, bổ sung thêm một vài kiến thức nâng cao để củng cố. Phần bài tập là các bài tập sách giáo khoa kèm theo hướng dẫn giải chi tiết giúp các em ôn luyện lại.

LÝ THUYẾT VÀ BÀI TẬP TỨ GIÁC A. Lý thuyết

1. Định nghĩa

Tứ giác ABCD là hình gồm bốn đoạn thẳng AB, BC, CD, DA trong đó bất kì hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.

Tứ giác ABCD trên gọi là tứ giác lồi.

Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tứ giác.

2. Tính chất

a) Tính chất đường chéo

Người ta chứng minh được rằng:

Trong một tứ giác lồi, hai đường chéo cắt nhau tại một điểm thuộc miền trong của tứ giác. Ngược lại, nếu một tứ giác có hai đường chéo cắt nhau tại một điểm thuộc miền trong của nó thì tứ giác ấy là tứ giác lồi.

b) Tính chất góc

Chứng minh: Phương pháp chứng minh phản chứng:

“Để chứng minh mệnh đề A là đúng, ta giả thiết rằng a là sai. Từ giả thiết A sai ta rút ra được kết luận vô lí (trái với giả thiết hoặc trái với các định lí, tiên đề hoặc trái với các kết luận đúng mà ta có).” Như vậy A đúng. B. Bài tập

Bài 1. Tìm x ở hình 5, hình 6:

Lời giải:

(Áp dụng: tổng 4 góc trong một tứ giác bằng 360 o)

– Ở hình 5:

Vì (angle K = 180^circ – 60^circ = 120^circ )(kề bù với góc 60 o)

(angle M = 180^circ – 105^circ = 75^circ )(kề bù với góc 105 o)

– Ở hình 6:

b) 2x + 3x + 4x + x = 360 o

Bài 2: Góc kề bù với một góc của tứ giác gọi là góc ngoài của tứ giác.

a) Tính các góc ngoài của tứ giác ở hình 7a.

b) Tính tổng các góc ngoài của tứ giác ở hình 7b ( tại mỗi đỉnh của tứ giác chỉ chọn một góc ngoài):

(angle {A_1} + angle {B_1} + angle {C_1} + angle {D_1})

c) Có nhận xét gì về tổng các góc ngoài của tứ giác?

Lời giải:

a) Ở hình 7a: Góc trong còn lại:

(angle D = 360^circ – (75^circ + 90^circ + 120^circ ) = 75^circ )

Ta tính được các góc ngoài tại các đỉnh A, B, C, D lần lượt là 105 o, 90 o, 60 o, 105 o

b) Hình 7b:

Tổng các góc trong:

(angle A + angle B + angle C + angle D = 360^circ )

Nên tổng các góc ngoài:

(angle {A_1} + angle {B_1} + angle {C_1} + angle {D_1})

( = (180^circ – angle A) + (180^circ – angle B) + (180^circ – angle C) + (180^circ – angle D))

(begin{array}{l} = 180^circ .4 – (angle A + angle B + angle C + angle D)\ = 720^circ – 360^circ = 360^circ end{array})

c) Nhận xét: Tổng các góc ngoài của tứ giác bằng 360 o.

Bài 3: Ta gọi tứ giác ABCD trên hình 8 có AB = AD, CB = CD là hình “cái diều”.

Lời giải:

a) Ta có:

Vậy AC là đường trung trực của BD

b) Xét ΔABC và ΔADC có:

AB = AD (gt)

BC = DC (gt)

AC cạnh chung

Suy ra: (angle B = angle D)

Ta có: (angle B + angle D = 360^circ – (100^circ + 60^circ ) = 200^circ )

Do đó: (angle B = angle D = 100^circ )

Bài 4. Dựa vào cách vẽ các tam giác đã học, hãy vẽ lại các tứ giác ở hình 9, hình 10 vào vở.

Lời giải:

– Cách vẽ hình 9: Vẽ tam giác ABC trước rồi vẽ tam giác ACD (hoặc ngược lại).

+ Vẽ đoạn thẳng AC = 3cm.

+ Trên cùng một nửa mặt phẳng bờ AC, vẽ cung tròn tâm A bán kính 1,5cm với cung tròn tâm C bán kính 2cm.

+ Hai cung tròn trên cắt nhau tại B.

+ Vẽ các đoạn thẳng AB, AC ta được tam giác ABC.

Tương tự ta vẽ được tam giác ACD. Tứ giác ABCD là tứ giác cần vẽ.

– Cách vẽ hình 10: Vẽ tam giác MQP trước rồi vẽ tam giác MNP. Vẽ tam giác MQP biết hai cạnh và góc xen giữa.

– Vẽ (angle xQy = 70^circ )

+ Trên tia Qx lấy điểm M sao cho QM = 2cm.

+ Trên tia Qy lấy điểm P sao cho QP = 4cm.

+ Vẽ đoạn thẳng MP, ta được tam giác MPQ.

Vẽ tam giác MNP biết ba cạnh, với cạnh MP đã vẽ. Tương tự cách vẽ hình 10, điểm N là giao điểm của hai cung tròn tâm M, P bán kính lần lượt là 1,5cm; 3cm.. Tứ giác MNPQ là tứ giác cần vẽ.

(*) Cách vẽ hình 10:

Bài 5. Đố. Đố em tìm thấy vị trí của “kho báu” trên hình 11, biết rằng kho báu nằm tại giao điểm các đường chéo của tứ giác ABCD, trong đó các đỉnh của tứ giác có tọa độ như sau: A(3; 2), B(2; 7), C(6; 8), D(8; 5).

Đố.

Lời giải:

Các bước làm như sau:

Đánh dấu các số thứ tự (như trục tọa độ) và kí hiệu các điểm như trên hình. Các bước làm như sau:

– Xác định các điểm A, B, C, D trên hình vẽ với A(3; 2); B(2; 7); C(6; 8); D(8; 5).

– Vẽ tứ giác ABCD

– Vẽ hai đường chéo AC và BD. Gọi K là giao điểm của hai đường chéo đó.

– Xác định tọa độ của điểm K: K(5; 6)

Vậy vị trí kho báu có tọa độ K(5; 6) trên hình vẽ.

Chương1. Lý Thuyết Và Bài Tập Este Có Lời Giải Chi Tiết

2) Danh pháp Tên Este = Tên gốc hiđrocacbon của rượu + Tên axit ( trong đó đuôi oic đổi thành at)3) Đồng phân– Đồng phân Axit – Đồng phân este– Đồng tạp chức– Đồng phân mạch vòngLưu ý: CnH

2nO2 có thể có các đồng phân sau:– Đồng phân cấu tạo:+ Đồng phân este no đơn chức+ Đồng phân axit no đơn chức+ Đồng phân rượu không no có một nối đôi hai chức+ Đồng phân ete không no có một nối đôi hai chức+ Đồng phân mạch vòng (rượu hoặc ete)+ Đồng phân các hợp chất tạp chức: Chứa 1 chức rượu 1 chức anđehit Chứa 1 chức rượu 1 chức xeton Chứa 1 chức ete 1 chức anđehit Chứa 1 chức ete 1 chức xeton Một rượu không no và một ete no Một ete không no và một rượu no– Đồng phân cis – tran (Đồng phân rượu không no có một nối đôi hai chức – Đồng phân ete không no có một nối đôi hai chức – Một rượu không no và một ete no – Một ete không no và một rượu no)– Số đồng phân este no đơn chức =2n-2 (1< n < 5) – Công thức tính số triglixerit tạo bởi glixerol với n axit carboxylic béo =n2(n+1)*1/24) T/c vật lý – Các este là chất lỏng hoặc chất rắn trong điều kiện thường, – Các este hầu như không tan trong nước.– Có nhiệt độ sôi thấp hơn hẳn so với các axit hoặc các ancol có cùng khối lượng mol phân tử hoặc có cùng số nguyên tử cacbon. do giữa các phân tử este không tạo được liên kết hiđro với nhau và liên kết hiđro giữa các phân tử este với nước rất kém.Thí dụ:CH3CH2CH2COOH(M = 88)

=

– Este no đơn chức khi cháy thu được 2 2CO H On n=d) Pư cháy

độ và áp suất). đốt cháy hoàntoàn 1 gam X thì thể tích CO2 thu được vượt quá 0,7 lít (ở đktc). CTCT của X A. O=CH-CH2

(đktc) được 6,38 gam CO2. Mặt khác X T/d với dd NaOH được một muối và hai ancol là đồng đẳng kế tiếp. CTPT của hai este trong X A. C2H4O2

2,5n =

m= 1,77Vậy: X là CH3COOCH3 và Y là CH3COOC2H5 → đáp án CCâu 11: Este X no, đơn chức, mạch hở, không có Pư tráng bạc. Đốt cháy 0,1 mol X cho sản phẩm cháy hấp thụ hoàn toàn vào dd nước vôi trong có chứa 0,22 mol Ca(OH)2 thì vẫn thu được kết tủa. Thuỷ phân X bằng dd NaOH thu được 2 chất hữu cơ có số nguyên tử cacbon trong phân tử bằng nhau. Phần trăm khối lượng của oxi trong X là: A. 43,24% B. 53,33% C. 37,21% D. 36,26% Hướng Dẫn Cn → nCO20,1 0,1n CO2 + Ca(OH)2

– Pư cháy

đặc, đun nóng. Khối lượng của este thu được là ( biết hiệu suất các phản ứng este đều 75%)A. 10,89 gam B. 11,4345 gam C. 14,52 gam D. 11,616 gamHướng Dẫn

101 Bài Tập Có Lời Giải Chi Tiết Cơ Học Lý Thuyết

CHÍNH THỨC RA MẮT SIÊU PHẨM…CƠ HỌC LÝ THUYẾT 1 (Tĩnh học và động học) Cơ học lý thuyết là môn học cực kỳ quan trọng đối với tất cả học viên, sinh viên, người đã tốt nghiệp các ngành xây dựng, cơ khí đi làm…. Đặc biệt trong số đó là kiến thức môn Cơ học lý thuyết còn là cơ sở nền tảng để học tập nghiên cứu các môn tiếp theo như Sức bền vật liệu, Nguyên lý máy, Chi tiết máy, Thủy lực, Cơ học kết cấu…

Ảnh thật của cuốn sách “101 bài tập có lời giải chi tiết Cơ học lý thuyết 1”

Qua quá trình làm việc thực tế chúng tôi nhận thấy rằng, việc học tập môn Cơ học lý thuyết trong các nhà trường hiện nay là không dễ dàng đối với các bạn sinh viên. Số lượng các bạn trượt mà phải thi lại, học lại môn này lúc nào cũng nhiều, đưa CƠ HỌC LÝ THUYẾT luôn nằm trong top những môn có số lượng học viên sinh viên thi lại học lại nhiều nhất. Điều đó không chỉ gây khó khăn trong quá trình học tập tiếp theo của các bạn mà còn làm mất thời gian, mất tiền bạc. Một điều quan trọng nữa là khi ra trường rất nhiều bạn gặp khó khăn trong quá trình làm việc do thiếu kiến thức nền về cơ học lý thuyết. Không nắm chắc kiến thức như viết phương trình cân bằng tính phản lực liên kết hoặc là tính toán chuyển động của các vật thể thật sự làm cho các bạn khó khăn trong công việc, từ đó bỏ lỡ nhiều cơ hội trong sự nghiệp.

Nguyên nhân của tình trạng trên thì có nhiều, tuy nhiên có một nguyên nhân rất quan trọng gây ảnh hưởng lớn tới việc học tập Cơ học lý thuyết của các bạn đó là sự khó khăn trong quá trình tìm kiếm, mua các tài liệu có lời giải chi tiết. Rất nhiều tài liệu không có lời giải chi tiết hoặc chỉ có kết quả. Khi các bạn sử dụng tài liệu đó để ôn luyện sau khi giải xong bài tập sẽ không biết mình làm đúng hay sai, hoặc có những lúc không thể nào làm được ra kết quả giống trong sách. Điều đó còn làm theo các bạn bị chán nản khi học tập, sau đó chỉ muốn gấp sách và đi ngủ hoặc xem phim.

Biết được khó khăn của các bạn để như vậy và để giúp cho các bạn có điều kiện tốt nhất trong khi ôn luyện và học Cơ học lý thuyết và dẹp ngay cái thắc mắc cố hữu về việc mình làm 1 bìa đúng hay sai, thời gian qua chúng tôi đã tập trung thời gian, công sức để thực hiện viết quyển sách “101 bài tập có lời giải chi tiết Cơ học lý thuyết 1” (Tĩnh học và động học). Trong quyển sách, chúng tôi đã GIẢI SẴN, CHI TIẾT TOÀN BỘ 101 bài tập CÓ PHÂN TÍCH CHI TIẾT TỪNG BÀI. Đối với cuốn sách này chúng tôi chỉ xuất bản SÁCH IN.

Cuốn sách 150 trang được in thành 2 phiên bản A4 và A5, đảm bảo giấy đẹp, trắng, hình ảnh và chữ viết sắc nét.

Liên hệ đặt mua:

SĐT 0985 150 395 hoặc facebook: Phùng Văn Minh:https://www.facebook.com/MinhMozart

SĐT 0963 088 263 hoặc facebook: https://www.facebook.com/taductamck

Email: taductamck@gmail.com, minhpv.mta@gmail.com

Fanpage: Tâm Minh Community

Bạn đang xem bài viết Lý Thuyết Mạch Và Bài Tập Có Lời Giải trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!