Xem Nhiều 5/2022 # Môt Số Lưu Ý Khi Giải Pt Lượng Giác # Top Trend

Xem 13,563

Cập nhật thông tin chi tiết về Môt Số Lưu Ý Khi Giải Pt Lượng Giác mới nhất ngày 21/05/2022 trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Cho đến thời điểm hiện tại, bài viết này đã đạt được 13,563 lượt xem.

--- Bài mới hơn ---

  • Đồ Thị Hàm Số Y= Ax + B (A ≠ 0)
  • Giải Toán 10 Bài 2. Hàm Số Y = Ax + B
  • Cđ Pt Đt Y = Ax + B Chuyen De Viet Phuong Trinh Duong Thang Yax B Doc
  • Trên Tập Số Phức, Phương Trình: (Z^4+4=0) Có Bao Nhiêu Nghiệm?
  • Giải Phương Trình 6 Ẩn
  • Trong các kí thì chúng ta thường bắt gặp các phương trình lượng giác và những bài phương trình lượng giác này đã gây không ít khó khăn đối với nhiều em học học sinh, có lẽ lí do mà các em học sinh thường lo sợ khi giải các phương trình lượng giác là có nhiều công thức biến đổi lượng giác nên không biết sử dụng công thức nào để biến đổi phương trình đã cho. Trong chuyên đề này tôi xin trao đổi một chút kinh nghiệm nho nhỏ với các em học sinh đang học lớp 11,12 và những em đang ngày đêm ôn tập để hướng tới kì thi ĐH năm tới.

    Trước hết thì các bạn cần nắm được nh ữ ng phương trình lượng giác thường gặp. Trong những phương trình này tôi xin bàn với các bạn một chút về phương trình đẳng cấp đối với sin và cos.

    Với lí do: về dạng này SGK chỉ trình bày cho chúng ta phương trình đẳng cấp bậc hai mà trong các kì thi ta vẫn thấy xuất hiện những phương trình đẳng cấp bậc ba hay cao hơn. Minh chứng là đề thi khối B – 2008

    “Giải phương trình : ( ĐH Khối B – 2008 ).”

    Trước hết ta nhớ lại khái niệm biểu thức gọi là đẳng cấp bậc k nếu .

    Từ đây ta có thể định nghĩa được phương trình đẳng cấp bậc k đối với phương trình chứa sin và cos là phương trình có dạng trong đó:

    Tuy nhiên ta xét phương trình : mới nhìn ta thấy đây không phải là phương trình đẳng cấp, những các bạn lưu ý là nên ta có thể viết lại phương trình đã cho như sau: , dễ thấy phương trình này là phương trình đẳng cấp bậc 3. Do vậy với phương trình lượng giác thì ta có thể định nghĩa lại khái niệm phương trình đẳng cấp như sau:

    “Là phương trình có dạng trong đó luỹ thừa của sinx và cosx cùng chẵn hoặc cùng lẻ.”

    Cách giải: Chia hai vế phương trình cho (k là số mũ cao nhất) ta được phương trình một hàm số là .

    Ví dụ: Giải các phương trình sau

    1) Giải bài thi ĐH Khối B – 2008 nêu trên

    2)

    Những phương trình trên xin dành cho các bạn tự giải (vì đã có phương pháp giải).

    Bây giờ tôi xin đi vào cách phân tích để tìm lời giải cho loại phương trình mà chúng ta không ưa gì mấy mà ta thường gọi là phương trình lượng giác không mẫu mực. Không riêng gì phương trình lượng giác không mẫu mực mà đối với mọi phương trình đại số hay phương trình mũ, logarit.. để giải những phương trình này ta phải tìm cách biến đổi phương trình đã có cách giải và một trong những phương pháp ta thường dùng là biến đổi về phương trình tích và đưa về phương trình chỉ chứa một hàm số lượng giác.

    Giải phương trình : (Trích đề thi ĐH Khối A – 2008 )

    Với bài toán này có lẽ khó khăn mà chúng ta gặp phải là đó là sự xuất hiện hai cung và cung . Các bạn lưu ý là ta luốn tính được giá trị đúng các giá trị lượng giác của các cung có dạng trong đó nên điều đầu tiên ta nghĩ tới là sử dụng công thức cộng để phá bỏ hai cung đó

    Ta có:

    Nên phương trình đã cho

    * Để phá bỏ hai cung mà gây khó khăn cho chúng ta ngoài cách đã nêu ở trên ta có thể làm theo cách khác như sau:

    .

    .

    * Ta thấy sau khi phá bỏ hai cung và cung thì trong phương trình chỉ còn lại một cung duy nhất nên ta dẽ biến đổi hơn. Điều này cũng hoàn toàn tự nhiên thôi phải không các bạn? Khi giải các bài toán toán học hay các bài toán trong cuộc sống đặc biệt là bài toán so sánh thì điều chúng ta cần làm là đưa về cùng một đơn vị hay là cùng một dạng. Chẳng hạn tôi xin nêu ví dụ đơn giản nhưng vô cùng thú vị mà tôi thường hỏi các em học sinh là 5 quả cam trừ 3 quả cam còn mấy quả ? và học sinh chỉ cười và trả lời ngay bằng hai quả. Thế tôi hỏi tiếp 5 quả cam trừ 3 quả táo bằng bao nhiêu? Lúc này trên khuôn mặt các em không còn những nụ cười nữa mà thay vào đó là một sự tò mò và cuối cùng thì các em trả lời là không trừ được, dĩ nhiên câu hỏi tiếp theo là vì sao? Các em trả lời là vì không cùng một loại!

    Chắc các em hiểu tôi muốn nói điều gì rồi chứ ?

    Vậy nguyên tắc thứ nhất tôi xin đưa ra cho các bạn là:

    Ví dụ 2: Giải phương trình : ( ĐH Khối D – 2006 ).

    Lời giải:

    Vận dụng nguyên tắc trên ta sẽ chuyển hai cung và về cung

    Áp dụng công thức nhân đôi và nhân ba ta có:

    Đặt .

    Ta có:

    Từ đây các bạn tìm được

    Chú ý : * Trong SGK không đưa ra công thức nhân ba tuy nhiên các em cũng nên biết công thức này nếu trong lúc khó khăn có thể mang ra sử dụng vì chứng minh nó không mấy khó khăn

    * Cách giải trên không phải là cách giải duy nhất và cũng không phải là cách giải hay nhất nhưng cách giải đó theo tôi nó tự nhiên và các bạn dẽ tìm ra lời giải nhất. Cách giải ngắn gọn và đẹp nhất đối với phương trình trên là ta biến đổi về phương trình tích như sau

    PT Leftrightarrow (cos3x-cosx)-(1-cos2x)=0 Leftrightarrow-2sin2x.sinx-2sin^2x=0 Chú ý Ví dụ 5 Biến đổi tích thành tổng và ngược lại Ví dụ 7 Ví dụ 8 Ví dụ 9 Ví dụ 10 [/B]: Giải phương trình ( ĐH Khối D – 2003 ).

    Phương trình

    Trên là một số nguyên tắc chung thường được sự dụng trong các phép biến đổi phương trình lượng giác. Mục đích của các phép biến đổi đó là nhằm :

    1. Đưa phương trình ban đầu về phương trình lượng giác thường gặp (Thường là đưa về phương trình đa thức đối với một hàm số lượng giác).

    Ví dụ 1: Giải phương trình : ( ĐH Công Đoàn – 2000).

    Phương trình . Đây là phương trình đẳng cấp bậc ba nên ta chia hai vế của phương trình cho (do ), ta được phương trình :

    thỏa điều kiện .

    Nhận xét: Để giải phương trình này ngay từ đầu ta có thể chia hai về của phương trình cho hoặc sử dụng công thức và chuyển phương trình ban đầu về phương trình chỉ chứa hàm tan như trên.

    ( Ví dụ 2: Giải phương trình : ĐH Khối B – 2003 ).

    Phương trình

    (do )

    .

    Chú ý : Ta cần lưu ý đến công thức: và .

    ( Ví dụ 3: Giải phương trình : HVBCVT TPHCM – 2001 ).

    Nên phương trình

    Chú ý : Ta cần lưu ý đến công thức

    .

    .

    Ví dụ 4: Giải phương trình: ( ĐH Khối D – 2005 ).

    Nên phương trình .

    .

    : Tức là ta biến đổi phương trình 2. Đưa phương trình về phương trình dạng tích về dạng

    . Khi đó việc giải phương trình ban đầu được quy về giải hai phương trình : .

    Trong mục đích này, ta cần làm xuất hiện nhân tử chung.

    * Các biểu thức ; ; ; nên chúng có thừa số chung là .

    * Các biểu thức có thừa số chung là .

    * có thừa số chung . Tương tự có thừa số chung .

    Giải phương trình: Ví dụ 1: ( ĐH Khối B – 2005 ).

    Phương trình

    .

    .

    Ngoài cách biến đổi trên, ta có thể biến đổi cách khác như sau

    Phương trình

    Mặc dù hai cách biến đổi trên khác nhau nhưng chúng đều dựa trên nguyên tắc “ . đưa về một cung”.

    Giải phương trình: Ví dụ 2: ( Dự bị Khối D – 2003 ).

    Phương trình

    .

    Phương trình

    .

    Giải:

    Phương trình

    ( Lưu ý : ).

    Nhận xét: Khi sử dụng công thức nhân đôi, ta cần lưu ý là có ba công thức để thay nên tuy từng phương trình mà chúng ta chọn công thức phù hợp.

    --- Bài cũ hơn ---

  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đánh Giá Cực Hay
  • Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp Sử Dụng Biểu Thức Liên Hợp Cực Hay
  • Phương Pháp Liên Hợp Giải Phương Trình Vô Tỷ
  • Giải Pt Vô Tỉ Bằng Pp Liên Hợp
  • Giải Phương Trình Vô Tỉ Bằng Phương Pháp Đặt Ẩn Phụ
  • Bạn đang xem bài viết Môt Số Lưu Ý Khi Giải Pt Lượng Giác trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!

  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100