Xem Nhiều 3/2023 #️ Phép Tính Vi Tích Phân Hàm Một Biến # Top 5 Trend | Caffebenevietnam.com

Xem Nhiều 3/2023 # Phép Tính Vi Tích Phân Hàm Một Biến # Top 5 Trend

Cập nhật thông tin chi tiết về Phép Tính Vi Tích Phân Hàm Một Biến mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.

Mọi vật xung quanh ta đều biến đổi theo thời gian. Chúng ta có thể nhận thấy điều đó qua sự chuyển động cơ học của các vật thể: ô tô, máy bay; sự thay đổi của các đại lượng vật lý: nhiệt độ, tốc độ, gia tốc; sự biến động kinh tế trong một xã hội: Giá cổ phiếu, lãi suất tiết kiệm,…. Tất cả các loại hình đó được gán một tên chung là đại lượng hay hàm số, nó phụ thuộc vào đối số nào đó, chẳng hạn là thời gian. Xem xét hàm số tức là quan tâm đến giá trị, tính chất và biến thiên của nó. Việc đó đặt ra như một nhu cầu khách quan của con người và xã hội.

Phép tính vi phân của hàm một biến số gắn liền với phép tính đạo hàm của hàm số. Khái niệm đạo hàm là một trong những tư tưởng quan trọng nhất của giải tích. Trong chương 2, chúng ta đã đặt vấn đề xem xét hàm số, nhưng vấn đề cốt lõi của hàm số là tốc độ biến thiên của nó chưa được xét đến. Nhờ vào khái niệm đạo hàm người ta có thể khảo sát toàn diện một đại lượng biến thiên. Khái niệm đạo hàm gắn liền với các đại lượng vật lý: vận tốc tại thời điểm t của một vật chuyển động, nhiệt dung của vật thể ở nhiệt độ to, cường độ dòng điện,v.v…; gắn liền với các hiện tượng hoá học: tốc độ phản ứng hoá học ở thời điểm t; gắn liền với các bài toán kinh tế xã hội: vấn đề tăng trưởng kinh tế, phương án tối ưu trong giao thông, trong sản xuất kinh doanh, v.v….

Chương III và chương IV trình bày phép tính tích phân, đây là phép tính cơ bản thứ hai của toán cao cấp. Hơn nữa, nó còn là phép tính ngược của phép tính vi phân. Chính vì thế để tính tích phân nhanh chóng, chính xác cần thông thạo phép tính đạo hàm của hàm số.

Bài toán tính giá trị gần đúng của một hàm số tại điểm x1 gần với điểm x0 mà giá trị f(x0) đã biết rất hay gặp trong thực tế: bài toán lập biểu đồ, bài toán nội suy,…. Việc tính toán trở nên đơn giản nhờ các phép tính cơ bản +, -, ., / và luỹ thừa khi đã khai triển hàm số thành chuỗi Taylor. Việc biểu diễn một tín hiệu phức tạp thành các tín hiệu đơn giản hoặc các sóng phức tạp thành các sóng đơn giản chính là nhờ vào việc khai triển một hàm số thành chuỗi Fourier. Để có được cơ sở giải thích cho các bài toán dạng trên cần nắm vững các nội dung của lý thuyết chuỗi.

Hàm Số Khả Vi Và Vi Phân Toàn Phần

Ta đã biết rằng khái niệm đạo hàm riêng cho chúng ta biết được tốc độ thay đổi của hàm số khi cho 1 trong các biến số thay đổi giá trị. Bây gờ, chúng ta sẽ nghiên cứu sự thay đổi của hàm số 2 biến khi cho cả hai biến số thay đổi.

Xét hàm số và là điểm thuộc miền xác định D. Ta cho x, y thay đổi 1 lượng tương ứng sao cho . Khi đó, giá trị của hàm số sẽ thay đổi một lượng:

Hàm số f(x;y) được gọi là khả vi tại điểm nếu số gia toàn phần có thể biểu diễn được dưới dạng:

(1)

trong đó A, B là những số không phụ thuộc Δx, Δy; còn α, β → 0 khi Δx, Δy → 0

Khi đó, đại lượng A.Δx +B.Δy được gọi là vi phân toàn phần của hàm số f(x;y) tại ứng với các số gia Δx, Δy và được ký hiệu

Xét hàm số . Ta có:

Hay:

Do đó:

Cho nên hàm số khả vi tại và

1. Xét ,

Cho thì . Khi đó, áp dụng bất đẳng thức B.C.S và giới hạn kẹp ta có:

Do đó, ε là VCB khi ρ → 0.

Vì vậy, biểu thức (1) có thể viết dưới dạng:

, 0(ρ) là vô cùng bé bậc cao hơn ρ.

2. Ta không thể dùng định nghĩa để xét sự khả vi của hàm số như ở ví dụ 1 được. Tổng quát, chỉ có thể áp dụng định nghĩa để xét sự khả vi cho những hàm số dạng đa thức, còn các hàm số khác thì không thể dùng định nghĩa để khảo sát sự khả vi tại 1 điểm. Vì vậy, ta cần phải tìm một công cụ khác để giải quyết vấn đề này.

3. Hàm số được gọi là khả vi trên miền D nếu nó khả vi tại mọi điểm thuộc D.

2. Định lý 1: (Điều kiện cần để hàm số khả vi)

Nếu hàm số khả vi tại thì nó liên tục tại điểm đó.

Vì hàm số khả vi, nên từ công thức (1) ta có:

Vậy:

Do đó, hàm số liên tục tại .♦

1. Nếu hàm số f(x;y) không liên tục tại thì sẽ không khả vi tại điểm đó.

2. Hàm số khả vi trên miền D thì liên tục trong miền đó.

Nếu f(x;y) khả vi tại thì nó có các đạo hàm riêng tại và chúng tương ứng bằng A và B trong biểu thức 1 của định nghĩa hàm số khả vi.

Thật vậy, từ công thức (1) ta cho , ta được:

trong đó α →0 khi Δx → 0.

Do đó:

Vậy

Hoàn toàn tương tự ta có:

1. Như vậy, nếu hàm số f(x,y) khả vi tại thì vi phân toàn phần của hàm số tại được xác định bởi:

2. Khác với hàm số 1 biến (nếu hàm số có đạo hàm thì sẽ khả vi), nếu hàm số hai biến số f(x,y) có các đạo hàm riêng tại $latex(x_0;y_0) thì chưa chắc nó đã khả vi tại điểm đó. Ta xét hàm số sau:

Theo định nghĩa đạo hàm riêng, ta có:

Tương tự ta có: nhưng hàm số G(x;y) không liên tục tại (0; 0) ( xem phần giới hạn hàm nhiều biến) nên không khả vi tại (0;0)

4. Định lý 3 (Điều kiện đủ để hàm số khả vi)

Cho hàm số f(x;y) có các đạo hàm riêng trong một miền D chứa điểm . Nếu các đạo hàm riêng ấy liên tục tại M thì hàm số khả vi tại điểm đó.

1. Cho hàm:

Tính và . Hàm có khả vi tại (0;0) hay không?

Giải

Để tính các đạo hàm riêng tại (0;0) ta phải dùng định nghĩa mà không thể thế giá trị (0;0) vào biểu thức đạo hàm

Ta có:

tương tự: = =

Mặc dù, hàm số có 2 đạo hàm riêng tại (0;0) nhưng không khả vi tại điểm đó vì hàm số đã cho không liên tục tại (0;0). Thật vậy: xét điểm (x;y) tiến về điểm (0;0) theo đường thẳng y = kx ta có.

Vậy giá trị giới hạn phụ thuộc vào hệ số k nện giới hạn không tồn tại.

Do đó:

Nên hàm số không liên tục tại (0;0) và do đó nó không khả vi tại (0;0)

2. Tìm vi phân của hàm số:

Hàm số luôn xác định và liên tục với mọi nên khả vi tại mọi điểm . Khi đó ta có:

Đôi lời

Tính Chất Khả Vi Được Suy Ra Từ Tính Khả Tích

Khi học về dãy hàm hay tích phân phụ thuộc tham số ta quan tâm đến:

– tính liên tục,

– tính khả tích,

– tích khả vi

Ta bắt đầu với dãy hàm là các hàm khả vi. Trước hết ta quan sát một số ví dụ để thấy nếu dãy hàm hội tụ đều đến hàm trong thì hàm giới hạn chưa chắc khả vi.

VD 1: Xuất phát từ hàm không khả vi

Ta làm nhiễu đồ thị của hàm này một chút bằng cách

Không khó tính toán

nên dãy là

– dãy gồm các hàm khả vi trên

– hội tụ đều, trên đến hàm không khả vi

Trong ví dụ này chỉ có một điểm không khả vi. Liệu giới hạn đều của dãy hàm khả vi vẫn có thể khả vi đâu đó không?

VD2: Hàm Weierstrass

– không khả vi tại bất kỳ điểm nào trong

– là giới hạn đều của dãy các đa thức lượng giác

là các hàm khả vi vô hạn.

Một cách tổng quát, Weierstrass đã chỉ ra:

Với bất kỳ hàm liên tục đều có dãy các đa thức hội tụ đều đến trên

https://en.wikipedia.org/wiki/Stone%E2%80%93Weierstrass_theorem

Khi S. N. Bernstein còn chỉ ra cụ thể dãy các đa thức Bernstein

với là đơn thức Bernstein.

Chi tiết các bạn tham khảo

https://en.wikipedia.org/wiki/Bernstein_polynomial

Cũng trường hợp này, ta thác triển chẵn, chu kỳ được hàm chẵn, tuần hoàn chu kỳ Khi đó L. Fejer chỉ ra dãy các đa thức

với hệ số Fourier

Vậy điều kiện gì đảm bảo hàm giới hạn khả vi?

Một trong các điều kiện cần:

– dãy các đạo hàm hội tụ đều trong ,

– bản thân dãy hàm đã cho chỉ cần hội tụ tại một điểm

Do tính khả vi có tính chất địa phương nên ta có thể tinh chỉnh một chút: cố định

– bản thân dãy hàm hội tụ tại ,

– có đủ nhỏ để và dãy đạo hàm hội tụ đều đến hàm trong

Khi đó hội tụ đến trong . Hơn nữa khả vi trên và

trong

Ta sẽ sử dụng kết quả về tính khả tích của dãy hàm khả tích hội tụ đều để chứng minh kết quả trên. Muốn vậy ta cần tăng giả thiết, cụ thể liên tục trên Khi đó dãy nguyên hàm

hội tụ trên đến Lại có

và dãy hội tụ, ký hiệu giới hạn này Khi đó dãy hội tụ trong đến Từ đây ta có điều phải chứng minh.

Giả thiết về tính liên tục là đòi hỏi khá mạnh. Trong sách Giáo trình Giải tích tập 2 của các thầy Trần Đức Long, Nguyễn Đình Sang, Hoàng Quốc Toàn không cần đến giả thiết này. Có khá nhiều ví dụ về hàm khả vi, có đạo hàm không khả tích Riemann. Ví dụ là hàm khả vi trong có đạo hàm

là hàm không bị chặn trong nên không khả tích trong đó.

Ví dụ về hàm khả vi, có đạo hàm bị chặn và không khả tích Riemann, được Volterra lần đầu tiên đưa ra. Ví dụ này được xây dựng khá phức tạp. Các bạn tham khảo

https://en.wikipedia.org/wiki/Volterra%27s_function

Ví dụ đơn giản hơn được C. Goffman đưa ra. Ví dụ này có nhiều nét giống ví dụ của E. L. Grinberg về Định lý Sard. Các bạn tham khảo

Trường hợp có đạo hàm là hàm khả tích Riemann trên thì nó có tập các điểm gián đoạn có độ đo không. Khi đó

khả vi hầu khắp nơi và hầu khắp nơi. Hơn nữa

trên

Một cách tổng quát, nếu một hàm liên tục tuyệt đối địa phương thì

– nó khả vi hầu khắp nơi, có đạo hàm khả tích Lebesgue địa phương trong ,

– và

Các bạn thử dùng kết quả này để đưa ra các kết quả về tính khả vi của hàm giới hạn nhờ các Định lý hội tụ trội Lebesgue hay hội tụ đơn điệu B. Levi.

Ta chuyển sang tích phân phụ thuộc tham số cận hữu hạn

với

+ khả tích trên theo với mỗi cố định,

+ có đạo hàm riêng theo với mỗi cố định.

Câu hỏi:

+ có khả vi trong không?

+ Nếu có thì liệu

có đúng không?

VD3: Xét hàm xác định bởi

không khả vi tại

VD4: Xét Xét hàm xác định bởi

có đạo hàm

nên

Vậy điều kiện gì để không xảy ra những điều như các ví dụ trên?

Trong Giáo trình Giải tích tập 2 đòi hỏi thêm

là hàm liên tục trên

Cũng giống dãy hàm, tính khả vi mang tính địa phương nên tinh chỉnh: cố định

Giả sử có để và

là hàm liên tục trên

Khi đó khả vi trong và

Để chứng minh ta dùng tính khả tích của , cụ thể

.

Ngoài ra, chú ý tính liên tục của

ta có

là nguyên hàm của

.

Như vậy ta có điều phải chứng minh.

Tuy nhiên điều kiện liên tục của đạo hàm riêng thực sự mạnh. Ta chỉ cần đạo hàm riêng bị chặn là đủ. Các bạn tham khảo

http://math.stackexchange.com/questions/11654/passing-the-derivative-inside-the-integral

Trong Giáo trình Giải tích tập 2 đưa ra việc sử dụng tính khả vi của tích phân phụ thuộc tham số để chứng minh tính khả tích. Ở đó ta cần tính liên tục của trên Sau khi học tích phân bội ta sẽ thấy điều kiện liên tục mạnh so với tính khả tích. Thực sự ta chỉ cần tính khả tích để chứng minh tính khả tích. Kết quả mạnh về điều này các bạn tham khảo

https://en.wikipedia.org/wiki/Fubini%27s_theorem

Tích Phân Hàm Phân Thức Luyện Thi Đại Học

Published on

Tích phân hàm phân thức luyện thi đại học

1. TT Gia Sư Đức Trí – http://giasuductri.edu.vn TÍCH PHÂN HÀM PHÂN THỨC, LƯỢNG GIÁC VÀ MŨ – LOGARIT DƯỚI “CON MẮT” CỦA TÍCH PHÂN HÀM NHỊ THỨCI. Trước khi tìm hiểu về chuyên đề này chúng ta tìm hiểu qua tích phân hàm nhị thức Có dạng x m (a  bx n ) p dx với a, b  R  , m, n, p  Q, n, p  0 Tùy thuộc vào tính chất và mối quan hệ qua lại giữa lũy thừa của m, n, p mà ta có các cách đặt khác nhau. m 1 m 1Cụ thể xét bộ ba số p; ; p n nTH 1: Nếu p  Z thì ta đặt x  t q với q là mẫu số chung nhỏ nhất của phân số tối giản của m và n m 1 s pTH 2: Nếu  Z , p  , r , s  Z  ,  r , s   1 ta đặt t   a  bx n  hoặc t  a  bx n n rĐặc biệt r- Nếu p   Z ta chỉ được đặt t  a  bx n s r- Nếu p   Z và p  2,3,… ta có thể sử dụng tích phân từng phần, khi p  2 TPTP một lần, khi p  3 sTPTP hai lần, … m 1 s a  bx nTH 3: Nếu  p  Z , p  , r , s  Z  thì ta đặt  tr n r xnBài tập giải mẫu:TH 1: Nếu p  Z thì ta đặt x  t q với q là mẫu số chung nhỏ nhất của phân số tối giản của m và n 4 dxBài 1: Tính tích phân sau I   1  x 1 x Giải: 4 1 4 1 dx  1Ta có I     x 1  x 2  dx 1 x 1 x 1    1Nhận xét: m  1, n  , p  1  Z  q  2 2Cách 1: x  t2Đặt x t dx  2tdt 1

2. TT Gia Sư Đức Trí – http://giasuductri.edu.vn  x  4 t  2Đổi cận   x  1 t  1 2 2 2 t dt 1 1  2 4Khi đó I  2 2 dt  2   2     2  ln t  ln 1  t   2 ln 1  1 t 1  t  t 1 t 1 t 1 t  1 3Cách 2:  x   t  1 2 Đặt 1  x  t   dx  2  t  1 dt   x  4 t  3Đổi cận   x  1 t  2 2  t  1 dt 3 dt 3  1 1 3 4Khi đó I  2 2  2  2    dt  2  ln t  1  ln t   2ln 2  2  t  1 t t  1 t 2 t 1 t  2 3 m 1 s pTH 2: Nếu  Z , p  , r , s  Z  ,  r , s   1 ta đặt t   a  bx n  hoặc t  a  bx n n rĐặc biệt r- Nếu p   Z ta chỉ được đặt t  a  bx n s r- Nếu p   Z và p  2,3,… ta có thể sử dụng tích phân từng phần, khi p  2 TPTP một lần, khi p  3 sTPTP hai lần, … 1Bài 2: (ĐHDB – A 2003 – ĐHNT – 1996) Tính tích phân sau I   x 3 1  x 2 dx 0Giải: 1 1Phân tích I   x 3 1  x 2 dx   x 2 1  x 2 .xdx 0 0 1 m 1Nhận xét: m  3, n  2, p    2 2 nCách 1:  x2  1  t 2Đặt t  1  x 2    xdx  tdt x  1 t  0Đổi cận    x  0 t  1 0 1 1 1 1 1  2Khi đó I    t 1  t 2  2  dt   t 1  t  dt   t 2 2 2 t 4  dt   t 3  t 5   3 5  0 15 1 0 0Cách 2: 2

3. TT Gia Sư Đức Trí – http://giasuductri.edu.vn x2  1  t  2Đặt t  1  x   dt  xdx    2  x 1  t0Đổi cận    x  0 t  1 1 0 1 1 1 1 1 3 3 3 1 2 1 2 1  2  12 2 2 2  2Khi đó I    t 1  t  dt   t 1  t  dt    t  t dt   t  t   2 21 20 2 0  23 3  15 0Cách 4:Đặt x  cos t  dx   sin tdt   2 2Khi đó I   sin 2 t cos 3 tdt   sin 2 t 1  sin 2 t  cos tdt 0 0Cách 4.1.Đặt sin t  u  cos tdt  duKhi đó 1 1  u 3 u5  1 2I   u 2 (1  u 2 )du    u 2  u 4  du      0 0  3 5  0 15Cách 4.2.    2 2  sin 3 t sin 5 t  2 2 I   sin t 1  sin t d  sin t    2   2 4  sin t  sin t d  sin t      2 . 0 0  3 5  0 15Cách 4.3.     12 1 2 1  cos 4t 12 12I   sin 2 2t costdt   cos tdt   cos tdt    cos 4t cos tdt 40 40 2 80 80Cách 5: 1 1 1 1  I    x2 1  x 2 d 1  x 2   1  x2  1 1  x 2 d 1  x 2 20 20      1 3 1 1 1 1 20    1  x2   d 1  x   1  x2 20 2 2    d 1  x  2 2 dtCách 3: Đặt t  x 2   xdx 2 7 x 3 dxBài 3: Tính tích phân I   3 0 x2  1Giải :  x2  t 3  1  3 2Cách 1: Đặt t  x  1   3 2  xdx  t dt  2 3

4. TT Gia Sư Đức Trí – http://giasuductri.edu.vn x  7  t  2Đổi cận   x  0  t  1 3  t  1 .t dt 3 7 2 3 2 2 x 2 .xdx 3  t 5 t 2  2 93Khi đó I        t  t  dt      4 0 3 x2  1 2 1 t 21 2  5 2  1 10Cách 2: x2  t  1 Đặt t  x 2  1   dt  xdx   2 x  7  t  8Đổi cận   x  0  t  1 1  t  1 dt 1  3  3  8 8 2 1 5 2 13 3 3 3  8Khi đó I   1    t  t  dt   t  t  21 3 2 1  25 2 1 t 2 x3 xCách 3: Phân tích x 3  x  x 2  1  x   x  x 2  1 3  3 2 3 2 x 1 x 1Cách 4: Sử dụng tích phân từng phần u  x 2 du  2 xdx   1 d  x  1   2Đặt  x 3 3  dv  dx   v   x 2  1 2  3 2 x 1 2 3 x2  1  4 4 dxBài 4: (ĐHAN – 1999) Tính tích phân I  x 7 x2  9Giải:Phân tích 4 4 1 dx  x x  9  dx 1 2I x  2 7 x2  9 7 1 m 1Nhận xét: m  1, n  2, p     0 2 n  x2  t 2  9Đặt t  x 2  9    xdx  tdt x  4  t  5Đổi cận   x  7  t  4 4 5 5 xdx tdt dt 1 t 3 5 1 7Khi đó I  x   2  ln  ln 7 2 x2  9 4 t (t 2  9) 4 t  9 6 t  3 4 6 4Cách 2: 4

6. TT Gia Sư Đức Trí – http://giasuductri.edu.vnCách 2: x  t  1Đặt t  x  1   dx  dt  x  2 t  3Đổi cận    x  0 t  1Khi đó 3 3  t 4 t 3  3 34I    t  1 t dt    t 3  t 2  dt      2 1 1  4 3 1 3Cách 3: Sử dụng phương pháp phân tích 2Ta có x  x  1  x  x 2  2 x  1  x 3  2 x 2  x 2  x 4 2 x 3 x 2  2 34Khi đó I    x3  2 x 2  x  dx       0  4 3 2 0 3Cách 4: Sử dụng phương pháp đưa vào vi phân 2 2 3 2Ta có x  x  1   x  1  1  x  1   x  1   x  1   4 3 2 3 2 2 2 3 2 2  x  1  x  1 34Khi đó I    x  1 dx    x  1 dx    x  1 d  x  1    x  1 d  x  1    0 0 0 0 4 3 3 m 1 s a  bx nTH 3: Nếu  p  Z , p  , r , s  Z  thì ta đặt  tr n r xn 2 dxBài 7: Tính tích phân sau I   1 x 4 1  x2Giải: 1 m 1 x2  1 2Nhận xét: m  2; n  2; p    p  2  Z nên đặt t 2 n x2  2 1 x  t2 1 1  x2 Đặt 2  t2   tdt x  xdx   2    t 2  1  5  x  2 t Đổi cận   2 x  1 t  2 Ta có 5 3 2I 2 dx 2  dx  2 t 2  1 tdt 2  t3     t  1 dt    t  2 7 5 8 2  t . 2 5 1 x4 1  x2 1 x6 1 1 2 t 2  1 5 3  24 2 x2 2 6

7. TT Gia Sư Đức Trí – http://giasuductri.edu.vn 1Bài 8: Tính tích phân sau: I   1 x  x  3 3 dx . 1 x4 3HD: 1 1 1 1  1 3 1Ta có I    2  1 . 3 dx   x 3  1  x 2  3 dx 1 x  x 1 3 3 1 m 1Nhận xét: m  3, n  2, p    1 Z 3 n 1 dt dxĐặt t  2  1    3 ….  I  6 bạn đọc tự giải x 2 x 3 dxBài 9: Tính tích phân sau I   3 (1  x 2 )3 2Giải : 3 m 1Ta có m  0; n  2; p    p  1  Z 2 n  1 2 2 x 1 2 t2 1  x Đặt 2 t  x  xdx  tdt   (t 2  1) 2 x  3  2 3  t Đổi cận  3  3 x  t  3  2  3 3 3 3 xdx tdt dt 1 1Khi đó I       2  2 3  1 .t 2 .t 2 3 t t 2 2 3 (1  x ) 1  x 2 2 2 3 (t  1) . 2 3 2 x4. 2 . 3 2 (t  1) 2 3 3 x xBài tập tự giải: 2 dxBài 1: (ĐHSP II HN – A 2000) Tính tích phân I   1 x x3  1HD: 3×2 dx dtĐặt t  x3  1  dt  dx   2 2 x3  1 x x3  1 t 1 4 dx 1 7Bài 2: (ĐHAN – A 1999) Tính tích phân I  x  ln 7 x2  1 6 4 7

8. TT Gia Sư Đức Trí – http://giasuductri.edu.vn 2 dx Bài 3: (ĐHBKHN – 1995) Tính tích phân I    2 x x2  1 12 3Cách 1: x dx xdx dt   dtĐặt t  x 2  1  dt  dx    2 và t  tanu ,   u  , 2  du . x2  1 x x2  1 x2 x2  1 t 1 2 2 t 1 1   dxCách 2: Đặt t  , t   0;    dt cos t  2 x x2  1 1  π 1C1: Đặt x  với t   0;  hoặc x  cos t  2 sin tC2: Đặt x 2  1  tC3: Đặt x 2  1  t 1C4: Đặt x  tC5: Phân tích 1    x 2  1  x 2    1 x3Bài 4: Tính tích phân I   dx  0 1 x2  1C1: Đặt x  tan tC2: Phân tích x 3  x  x 2  1  x u  x 2 C3: Đặt  x dv  dx  x2  1C4: Đặt x  tC5: Phân tích x 3 dx  x 2 xdx   x 2  1  1 d  x 2  1   7 x3 141Bài 5: (ĐHTM – 1997) Tính tích phân I   dx  0 3 1 x 2 20 2 x4Bài 6: (CĐKT KT I – 2004) Tính tích phân I   dx 0 x5  1 3 14 3Bài 7: (CĐ Hàng hải – 2007) Tính tích phân I   x 3 x 2  1 dx  1 5 9 468Bài 8: (CĐ Sư Phạm Tiền Giang – 2006) Tính tích phân I   x. 3 1  x dx   1 7 1 2 2 1Bài 9: (CĐ Nông Lâm – 2006) Tính tích phân I   x x 2  1dx  0 3 3 848Bài 10: (CĐ Tài Chính Kế Toán IV – 2005) Tính tích phân I   x 3  1.x5 dx  0 105 8

9. TT Gia Sư Đức Trí – http://giasuductri.edu.vn 1 6 3 8Bài 11: (CĐ Khối A, B – 2005) Tính tích phân I   x3 . x 2  3dx  0 5 1 8Bài 12: (CĐ GTVT – 2005) Tính tích phân I   x5 1  x 2 dx  0 105 1 x 1Bài 13: (ĐH Hải Phòng – 2006) Tính tích phân I   2 dx  ln 2 0 1 x 2 1 2Bài 14: Tính tích phân I   x 2 2  x 3 dx  0 9 3 32 2  Bài 15: (CĐ Dệt may thời trang chúng tôi – 2007) Tính tích phân 3 dx 3 I  x x  1  1 2 2  1 3 12 2 3 dx 2 3Bài 16: Tính tích phân I     3 x2 x 2  1 3 2 2b. Tích phân hàm phân thức, lượng giác, mũ – loga dưới “con mắt” của tích phân hàm nhị phân thức  pMở rộng I   u m  x   a  bu n  x   d u  x   với với a, b  R  , m, n, p  Q, n, p  0     Và cụ thể hóa trường hợp 2 như sau m 1 s pNếu  Z , p  , r , s  Z  ,  r , s   1 ta đặt t   a  bu n  x   hoặc t  a  bu n  x    n r rĐặc biệt : Nếu p   Z ta chỉ được đặt t  a  bu n  x  sTa xét các thí dụ sau đây ln 5 e2 xThí dụ 1. (ĐH DB – B 2003) Tính tích phân sau I   dx ln 2 ex  1Lời giải. ln 5 ln 5 1 e2 x Ta có I  e 1 ln 2 x ln 2 dx    e x 1  e x  2 de x thì đây chính là tích phân nhị thức với 1 m 1m  n  1, p     2  Z và u  x   e x 2 n x 2 e  t 2  1  xĐặt e  1  t   x e dx  2tdt   x  ln 5 t  2Đổi cận    x  ln 2 t  1  2 t 2  1 tdt  2 2 2 2 20Khi đó I  2  t 3 1   2  t 2  1 dt  t 3  2t   1 3 1 1 9

10. TT Gia Sư Đức Trí – http://giasuductri.edu.vn Cách khác: Đặt e x  1  t e 1  3ln x .ln x Thí dụ 2. (ĐH – B 2004 ) Tính tích phân sau I   dx 1 x Lời giải. e e 1 1  3ln x .ln x Ta có I   dx   ln x 1  3ln x  3 d  ln x  thì đây chính là tích phân nhị thức với 1 x 1 1 m 1 m  n  1, p    2  Z và u  x   ln x 2 n  t2 1  ln x   3 Đặt 1  3ln x  t 2    dx  2 tdt x 3   x  e t  2 Đổi cận   x  1 t  1 2 2 2 t2 1 2 2 2  t 5 t 3  2 116 Khi đó I   t dt   (t 4 t 2 )dt      31 3 91 9  5 3  1 135 Cách khác: t  1  3ln x e ln x. 3 2  ln 2 x Thí dụ 3. (PVBCTT – 1999) Tính tích phân sau I   dx 1 x Lời giải. e e 1 ln x. 3 2  ln 2 x Ta có I   dx   ln x 1  ln 2 x  3 d  ln x  thì đây chính là tích phân nhị thức với 1 x 1 1 m 1 m  1, n  2, p    1  Z và u  x   ln x 3 n 3 2 ln x Đặt t 3  2  ln 2 x  t dt  dx 2 x  x  e t  3 3  Đổi cận   x  1 t  3 2  3 3 3 3 3 3 3 3 3 t4 3 3 3 232 2 Khi đó I   t.t dt   t dt  . 2 32 2 4 3 2  8 3 3  23 2  Cách khác: Đặt 2  ln 2 x  t e ln x Thí dụ 4. (ĐH – B 2010) Tính tích phân sau I   2 dx 1 x  2  ln x  Lời giải. 10

11. TT Gia Sư Đức Trí – http://giasuductri.edu.vn e 2 ln x 2Ta có I   2 dx   ln x  2  ln x  d  ln x  thì đây chính là tích phân nhị thức với 1 x  2  ln x  1 m 1m  1, n  1,   2  Z , p  2  Z và u  x   ln x n ln x  t  2 Đặt t  2  ln x   dx  x  dt  3 t  2 1 2 3   2 3 3 1Khi đó I   2 dt     2 dt   ln t    ln  2 t 2t t   t2 2 3 ln 3 e x dxThí dụ 5. (ĐHDB – 2002) Tính tích phân sau I   3 0 e x  1Lời giải. ln 3 ln 3 1 e x dx   e  xTa có I    1 3 de x thì đây chính là tích phân nhị thức với 3 0 e x 1  0 1 m 1m  0, n  1, p     1  Z và u  x   e x 2 nĐặt t  e  1  2tdt  e x dx  dx  2tdt 2 x 2 tdt 12Khi đó I  2  3  2.  2 1 2 t t 2 2 dxThí dụ 6. Tính tích phân sau I   1 x  x3 5Lời giải. 2 2 dx 1Ta có I   5 3   x 3 1  x 2   dx đây là tích phân nhị thức với m  3, n  2, p  1  Z 1 x  x 1 x2  t 1 Đặt t  x 2  1   dt   xdx 2  x  2 t 5Đổi cận   x  1 t 2 2 2 1 xTa có I   dx   dx 1 3 x x 1  2  1 x 4 x 2 1  1  1 1 5 5 dt 1 1 1 t 5 3 1 5Khi đó I   2   2    dt     ln  2   ln 2  ln t  t  1 2 2   t  1 t 1 t  2  t 1 t 1  8 2 2 2   11

12. TT Gia Sư Đức Trí – http://giasuductri.edu.vn x 2 dx Thí dụ 7. Tìm nguyên hàm: I   39 1  x  Lời giải. x 2 dx 39 m 1 Ta có I   39   x 2 1  x  dx đây là tích phân nhị thức với m  2, n  1, p  39  Z   3 Z 1  x  n Đặt t  1  x  x  1  t  dx   dt Khi đó 2 1  t  dt 1 1 1 1 1 2 1 1 1 I   39    39 dt  2  38 dt   37 dt  38  37   C với t  1  x t t t t 38 t 37 t 36 t 36  2 sin 2 chúng tôi x Thí dụ 8. (ĐH – B 2005) Tính tích phân sau I   dx 0 1  cos x Lời giải. Phân tích    2 sin 2 chúng tôi x 2 sin chúng tôi 2 x 2 1 I dx  2  dx  2  cos 2 x 1  cos x  d  cos x  thì đây chính là tích phân nhị thức 0 1  cos x 0 1  cos x 0 với m  2, n  1, p  1  Z và u  x   cos x dt   sin xdx Đặt t  1  cos x   cos x  t  1   x  t  1 Đổi cận  2  x  0 t  2  2 1  t  1 2  1  t2 2 Khi đó I  2  dt  2   t  2   dt  2   2t  ln t   2 ln 2  1 2 t 1 t 2 1  2 2 Thí dụ 9. (ĐHTS – 1999) Tính tích phân sau I   sin x cos x 1  cos x  dx 0 Lời giải.   2 2 2 2 Ta có I   sin x cos x 1  cos x  dx    cos x 1  cos x  d  cos x  thì đây chính là tích phân nhị thức với 0 0 m  1, n  1, p  2  Z và u  x   cos x sin xdx   dt Đặt t  1  cos x   cos x  t  1 12

13. TT Gia Sư Đức Trí – http://giasuductri.edu.vn   x  t  1Đổi cận  2  x  0 t  2  1 2  t 4 t 3  2 17Khi đó I     t  1 t 2 dt    t 3  t 2  dt      2 1  4 3  1 12Nhận xét: Nếu gặp tích phân là tổng (hiệu) của hai tích phân nhị thức mà có cùng cách đặt thì ta vẫn tính nhưtrong lý thuyết  2 sin 2 x  sin xThí dụ 10. (ĐH – A 2005) Tính tích phân sau I   dx 0 1  3cos xLời giải.    2 sin x  2 cos x  1 2  1 2  1Ta có I   dx    2 cos x 1  3cos x  d  cos x    1  3cos x  2 d  cos x  2 0 1  3cos x    0 0   I1 I2 m 1Nhận xét: Đây chính là tổng của hai nhị thức u  x   cos x với I1 ta có m  n  1   2  Z và với I 2 n m 1ta có m  0, n  1   1 Z . nVậy chung qui lại ta có thể  t2 1  cos x   3Đặt 1  3cos x  t 2    sin x dx   2dt  1  3cos x  3   x  t  1Đổi cận  2  x  0 t  2  2  4t 2 2   4 2  2 34Khi đó I      dt   t 3  t   1 9 9  27 9  1 27  2 sin 3 xThí dụ 11. (ĐHQG HCM – B 1997) Tính tích phân sau I   dx 0 1  cos xLời giải.    2 2 3 2 sin 3 x 3sin x  4sin x 1Ta có I   dx   dx     4cos 2 x  1 1  cos x  d  cos x  thì đây chính là tổng của 0 1  cos x 0 1  cos x 0 m 1hai tích phân nhị thức tích phân nhị thức với m  2, n  1, p  1  Z   3  Z và u  x   cos x nên ta n cos x  t  1đặt t  1  cos x    dt  sin xdx 13

14. TT Gia Sư Đức Trí – http://giasuductri.edu.vn   x  t  1Đổi cận  2  x  0 t  2  2 1 4  t  1  1  2 3  2Khi đó I    dt    4t   8  dt   2t 2  3ln t  8t   3ln 2  2 2 t 1 t  1Để kết thúc bài viết này mời các bạn tự giải các tích phân sau e3 ln 2 x 76Bài 1: (ĐHDB – D 2005) Tính tích phân sau I  x dx  1 ln x  1 15 ln 2 2x e 2 2Bài 2: (ĐHBK – 2000) Tính tích phân sau I   dx  0 x e 1 3 e ln x 42 2Bài 3: (ĐHHH – 98) Tính tích phân I =  x. dx  1 1  ln x 3 e 3  2 ln x 10 2  11Bài 4: (ĐHDB 2 – 2006) Tính tích phân sau I  x dx  1  2 ln x 1 3 e ln x 1Bài 5: (ĐHCT – 1999) Tính tích phân sau I   dx  (ln 2  1) 1 x  ln x  1 2 2 e log 3 x 2 4Bài 7: Tính tích phân sau I   dx  1 x 1  3ln x 2 27 ln 3 2 ln 8 ln 8Bài 8: (ĐHDB – 2004) Tính tích phân sau I   e x  1.e 2 x dx   e x  1.e x .e x dx ln 3 ln 3Bài 9: Tính tích phân sau I  ln 5 e x  1 e x dx  ln 2 ex  1  2 sin 4 x 3Bài 10: (HVNH TPHCM – D 2000) Tính tích phân sau I   2 dx  2  6 ln 0 1  cos x 4  2 3 15Bài 11: Tính tích phân sau I   sin 2 x 1  sin 2 x  dx  0 4  2 sin x cos 3 xBài 12: (ĐH BCVT – 1997) Tính tích phân sau I   dx 0 1  cos 2 x  6 sin 3 x  sin 3 3 x 1 1Bài 13: Tính tích phân I   dx    ln 2 0 1  cos 3 x 6 3 14

15. TT Gia Sư Đức Trí – http://giasuductri.edu.vn 3 dx 6Bài 14: (ĐHDB – B 2004) Tính tích phân sau I   xx 3  ln 0 2 3 x dx 1 1 3 1 3 1 1 1Bài 15: Tìm nguyên hàm I   10  6  7  8  C ( x  1) 6 ( x  1) 7 ( x  1) 8 ( x  1) 9 ( x  1)9 15

Bạn đang xem bài viết Phép Tính Vi Tích Phân Hàm Một Biến trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!