Cập nhật thông tin chi tiết về Phương Pháp Giải Các Phương Trình Chứa Ẩn Dưới Dấu Giá Trị Tuyệt Đối mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.
Phương pháp giải các phương trình chứa ẩn dưới dấu giá trị tuyệt đối
I. Lý thuyết
1. Định nghĩa:
f(x) \ -f(x) \ end{matrix}begin{matrix} khi \ khi \ end{matrix} right.begin{matrix} f(x)ge 0 \ f(x)<0 \ end{matrix}]
2. Dấu nhị thức bậc nhất: f(x)=ax+b
3. Dấu tam thức bậc 2: $mathbf{f}left( mathbf{x} right)=text{ }mathbf{a}{{mathbf{x}}^{mathbf{2}}}+mathbf{bx}+mathbf{c}$
a.f(x)<0;forall xin left( {{x}_{1}};{{x}_{2}} right) \ end{matrix} right.$
Với x1; x2 là nghiệm của f(x)=0 và x1<x2.
II. Một số dạng bài tập
Phương pháp:
A=0 \ B=0 \ end{matrix} right.$
Ví dụ 1.
Giải
Giải
$begin{align} & Leftrightarrow left{ begin{matrix} {{x}^{2}}+x-2=0 \ {{x}^{2}}-1=0 \ end{matrix} right. \ & Leftrightarrow left{ begin{matrix} left[ begin{matrix} x=1 \ x=-2 \ end{matrix} right. \ left[ begin{matrix} x=1 \ x=-1 \ end{matrix} right. \ end{matrix} right. \ & Leftrightarrow x=1 \ end{align}$
Phương pháp giải:
$PTRightarrow {{A}^{2}}={{B}^{2}}Leftrightarrow left[ begin{matrix} A=B \ A=-B \ end{matrix} right.$
Giải
$PTRightarrow {{left( 2x+1 right)}^{2}}={{left( x+2 right)}^{2}}Leftrightarrow left[ begin{matrix} 2x+1=x+2 \ 2x+1=-left( x+2 right) \ end{matrix}Leftrightarrow right.left[ begin{matrix} x=1text{ } \ x=-1 \ end{matrix} right.$
Phương pháp giải:
Cách 1: $PTLeftrightarrow left{ begin{matrix} Bge 0 \ {{A}^{2}}={{B}^{2}} \ end{matrix} right.Leftrightarrow left{ begin{matrix} Bge 0 \ left[ begin{matrix} A=B \ A=-B \ end{matrix} right. \ end{matrix} right.$
Cách 2: $PTLeftrightarrow left[ begin{matrix} left{ begin{matrix} Age 0 \ A=B \ end{matrix} right. \ left{ begin{matrix} A<0 \ -A=B \ end{matrix} right. \ end{matrix} right.$
Cách 3: $PTRightarrow {{A}^{2}}={{B}^{2}}Leftrightarrow left[ begin{matrix} A=B \ A=-B \ end{matrix} right.$
đây là phương trình hệ quả, giải phương trình tìm nghiệm thử lại phương trình ban đầu rồi kết luận nghiệm.
Ví dụ 1:
Giải:
Cách 1:
$begin{array}{l} PT Leftrightarrow left{ {begin{array}{*{20}{c}} {x + 2 ge 0}\ {{{left( {2x + 1} right)}^2} = {{left( {x + 2} right)}^2}} end{array}} right.\ Leftrightarrow left{ {begin{array}{*{20}{c}} {x ge – 2}\ {left[ {begin{array}{*{20}{c}} {2x + 1 = x + 2}\ {2x + 1 = – left( {x + 2} right)} end{array}} right.} end{array}} right.\ Leftrightarrow left{ {begin{array}{*{20}{c}} {x ge – 2}\ {left[ {begin{array}{*{20}{c}} {x = 1{rm{ }}}\ {x = – 1} end{array}} right.} end{array}} right.\ Leftrightarrow x = pm 1 end{array}$
Cách 2:
$begin{align} & PTLeftrightarrow left[ begin{matrix} left{ begin{matrix} 2x+1ge 0 \ 2x+1=x+2 \ end{matrix} right. \ left{ begin{matrix} 2x+1<0 \ -(2x+1)=x+2 \ end{matrix} right. \ end{matrix} right. \ & Leftrightarrow left[ begin{matrix} left{ begin{matrix} xge -frac{1}{2} \ x=1(nhan) \ end{matrix} right. \ left{ begin{matrix} x<-frac{1}{2} \ x=-1(nhan) \ end{matrix} right. \ end{matrix} right. \ & Leftrightarrow x=pm 1 \ end{align}$
Cách 3:
$PTRightarrow {{left( 2x+1 right)}^{2}}={{left( x+2 right)}^{2}}Leftrightarrow left[ begin{matrix} 2x+1=x+2 \ 2x+1=-left( x+2 right) \ end{matrix}Leftrightarrow right.left[ begin{matrix} x=1text{ } \ x=-1 \ end{matrix} right.$
Thử nghiệm vào phương trình đầu ta được $x = pm 1$ là nghiệm
Ví dụ 2:
Giải:
Trường hợp 1: $2-5xge 0Leftrightarrow xle frac{2}{5}$
Phương trình có dạng: $2-5x=x+1Leftrightarrow 6x=1Leftrightarrow x=frac{1}{6}$ .
Kết hợp điều kiện: $x=frac{1}{6}$ là nghiệm (1)
Trường hợp 2: $2-5x<0Leftrightarrow
Phương trình có dạng: $5x-2=x+1Leftrightarrow 4x=3Leftrightarrow x=frac{3}{4}$
Kết hợp điều kiện: $x=frac{3}{4}$ là nghiệm (2)
Từ (1) và (2) suy ra Phương trình có nghiệm : $x=frac{1}{6};x=frac{3}{4}$.
Phương pháp 1.
Khử dấu trị tuyệt đối bằng định nghĩa. Giải phương trình trên từng khoảng.
Phương pháp 2.
Ví dụ 1:
Giải
Cách 1. Khử trị tuyệt đối bằng định nghĩa.
Trường hợp 1: $x-3ge 0Leftrightarrow xge 3$
Phương trình có dạng: ${{x}^{2}}-x-2=0Leftrightarrow left[ begin{matrix} x=-1 \ x=2 \ end{matrix} right.$ Kết hợp điều kiện: $x=phi $ (1).
Trường hợp 2: $x-3<0Leftrightarrow x<3$
Phương trình có dạng: ${x^2} + x – 8 = 0 Leftrightarrow left[ {begin{array}{*{20}{c}} {x = frac{{ – 1 – sqrt {33} }}{2}{rm{;}}}\ {x = frac{{ – 1 + sqrt {33} }}{2}{rm{;}}} end{array}} right.$
Kết hợp điều kiện: $x=frac{-1-sqrt{33}}{2};x=frac{-1+sqrt{33}}{2}$ (2)
Từ (1) và (2) suy ra bất phương trình có nghiệm: $x=frac{-1pm sqrt{33}}{2}$.
Cách 2. Biến đổi tương đương.
$begin{array}{l} Leftrightarrow left{ {begin{array}{*{20}{c}} {{x^2} – 5 ge 0}\ {left[ {begin{array}{*{20}{c}} {x – 3 = {x^2} – 5}\ {x – 3 = – ({x^2} – 5)} end{array}} right.} end{array}} right.\ Leftrightarrow left{ {begin{array}{*{20}{c}} {{x^2} – 5 ge 0}\ {left[ {begin{array}{*{20}{c}} {{x^2} – x – 2 = 0}\ {{x^2} + x – 8 = 0} end{array}} right.} end{array}} right.\ Leftrightarrow left{ {begin{array}{*{20}{c}} {{x^2} – 5 ge 0(*)}\ {left[ {begin{array}{*{20}{c}} {x = – 1}\ begin{array}{l} x = 2\ x = frac{{ – 1 pm sqrt {33} }}{2} end{array} end{array}} right.} end{array}} right.\ Leftrightarrow x = x = frac{{ – 1 pm sqrt {33} }}{2} end{array}$
Lưu ý: Khi tìm được nghiệm của các phương trình, sử dụng máy tính kiểm tra điều kiện (*). Nghiệm nào thỏa mãn thì nhận. Không nhất thiết phải giải (*).
Phương pháp Bảng:
Áp dụng định nghĩa khử giá trị tuyệt đối bằng xét dấu biểu thức bên trong dấu giá trị tuyệt đối. Giải phương trình ứng với từng khoảng xác định.
Ví dụ 1:
Giải bất
Giải
Trước tiên ta lưu ý:
Bước 1. Lập bảng khử trị tuyệt đối vế trái.
Bước 2. Từ bảng khử trị tuyệt đối ta có các trường hợp sau:
• Với $xin left( -infty ;1 right)$ : Phương trình $(*)Leftrightarrow left{ begin{matrix} xle 1 \ 4-2x=x+1 \ end{matrix} right.Leftrightarrow left{ begin{matrix} xle 1 \ 3x=3 \ end{matrix} right.Leftrightarrow left{ begin{matrix} xle 1 \ x=1 \ end{matrix} right.Leftrightarrow x=1$ (1)
Với $1<x<3$ :
Phương trình $(*) Leftrightarrow left{ {begin{array}{*{20}{c}} {1
• Với $xge 3$ : Phương trình $(*)Leftrightarrow left{ begin{matrix} xge 3 \ 2x-4=x+1 \ end{matrix} right.Leftrightarrow left{ begin{matrix} xge 3 \ x=5 \ end{matrix} right.Leftrightarrow x=5$ (3)
Ví dụ 2:
Giải
Bước 1: Lập bảng phá trị tuyệt đối vế trái
Bước 2: Dựa vào bảng trên ta có các trường hợp sau:
* Trường hợp 1: Với $x<frac{1}{4}$ Phương trình $(*)Leftrightarrow left{ begin{matrix} x<frac{1}{4} \ 1-4x=x+2 \ end{matrix} right.Leftrightarrow left{ begin{matrix} x<frac{1}{4} \ 5x=-1 \ end{matrix} right.Leftrightarrow left{ begin{matrix} x<frac{1}{4} \ x=-frac{1}{5} \ end{matrix} right.Leftrightarrow x=-frac{1}{5}$ (1) * Trường hợp 2: Với $frac{1}{4}le x<1$ Phương trình $(*)Leftrightarrow left{ begin{matrix} frac{1}{4}le x<1 \ 4x-1=x+2 \ end{matrix} right.Leftrightarrow left{ begin{matrix} frac{1}{4}le x<1 \ 3x=3 \ end{matrix} right.Leftrightarrow left{ begin{matrix} frac{1}{4}le x<1 \ x=1 \ end{matrix} right.Leftrightarrow x=phi $ (2) * Trường hợp 3: Với $xge 1$ Phương trình $(*)Leftrightarrow left{ begin{matrix} xge 1 \ 2x+1=x+2 \ end{matrix} right.Leftrightarrow left{ begin{matrix} xge 1 \ x=1 \ end{matrix}Leftrightarrow right.x=1$ (3) Từ (1), (2) và (3) suy ra phương trình có nghiệm: $x=-frac{1}{5};x=1$.
Lưu ý: Nếu các biểu thức trong dấu trị tuyệt đối là bậc 2. Ta lập bảng sử dụng dấu tam thức bậc 2.
Bài tập thực hành:
Giải phương trình sau:
Download tài liệu: PDF-Tại đây Worrd-Tại đây
———————-
Phương pháp giải phương trình có ẩn dưới dấu căn bậc hai.
———————–
Phương Pháp Giải Bất Phương Trình Chứa Ẩn Dưới Dấu Giá Trị Tuyệt Đối
Phương pháp giải bất phương trình chứa ẩn dưới dấu GIÁ TRỊ TUYỆT ĐỐI
I. Lý thuyết và các kiến thức bổ sung
1. Định nghĩa:
f(x) \ -f(x) \ end{matrix}begin{matrix} khi \ khi \ end{matrix} right.begin{matrix} f(x)ge 0 \ f(x)
2. Dấu nhị thức bậc nhất: f(x)=ax+b
3. Dấu tam thức bậc 2: $mathbf{f}left( mathbf{x} right)=text{ }mathbf{a}{{mathbf{x}}^{mathbf{2}}}+mathbf{bx}+mathbf{c}$
a.f(x)<0;forall xin left( {{x}_{1}};{{x}_{2}} right) \ end{matrix} right.$
Với x1;x2 là nghiệm của f(x)=0 và x1<x2.Ta có bảng xét dấu sau:
Bảng xét dấu
II. Dạng cơ bản và phương pháp giải
1. Dạng cơ bản thường gặp
2. Phương pháp giải
Phương pháp 1. Khử căn bằng định nghĩa.
{begin{array}{*{20}{c}} end{array}}\ {begin{array}{*{20}{c}} { – f(x)}&{khi}&{f(x)
Phương pháp 2. Phương pháp lập bảng.
Sử dụng kết hợp bảng xét dấu của nhị thức bậc nhất, dấu tam thức bậc hai để khử trị tuyệt đối.
Phương pháp 3. Biến đổi tương đương.
{{{left[ {f(x)} right]}^2}
III. Ví dụ minh họa
Phương pháp 1: Khử trị tuyệt đối bằng định nghĩa.
Ví dụ 1:
Giải:
Trường hợp 1: $2-5xge 0Leftrightarrow xle frac{2}{5}$
Bất phương trình có dạng: $2-5xge x+1Leftrightarrow 6xle 1Leftrightarrow xle frac{1}{6}$ .
Kết hợp điều kiện: $xin left( -infty ;frac{1}{6} right]$ (1)
Trường hợp 2: $2-5x<0Leftrightarrow
Bất phương trình có dạng: $5x-2ge x+1Leftrightarrow 4xge 3Leftrightarrow xge frac{3}{4}$
Kết hợp điều kiện: $xin left[ frac{3}{4};+infty right)$ (2)
Từ (1) và (2) suy ra bất phương trình có nghiệm : $xin left( -infty ;frac{1}{6} right]cup left[ frac{3}{4};+infty right)$.
Ví dụ 2:
Giải
• Trường hợp 1: $x-3ge 0Leftrightarrow xge 3$ Bất phương trình có dạng: ${{x}^{2}}-x-2ge 0Leftrightarrow left[ begin{matrix} xle -1 \ xge 2 \ end{matrix} right.$ Kết hợp điều kiện: $xge 3$ (1). • Trường hợp 2: $x-3
Phương pháp 2: Khử trị tuyệt đối bằng bảng
Ví dụ 1:
Giải
Trước tiên ta lưu ý:
Bước 1: Lập bảng khử trị tuyệt đối vế trái.
Bước 2: Từ bảng khử trị tuyệt đối ta có các trường hợp sau:
• Với $xin left( -infty ;1 right)$ : Bất phương trình $Leftrightarrow left{ begin{matrix} x
• Với $1le x
• Với $xge 3$ : Bất phương trình $Leftrightarrow left{ begin{matrix} xge 3 \ 2x-4ge x+1 \ end{matrix} right.Leftrightarrow left{ begin{matrix} xge 3 \ xge 5 \ end{matrix} right.Leftrightarrow xge 5$ (3)
Từ (1), (2) và (3) suy ra bất phương trình có nghiệm: $xin left( -infty ;1 right]cup left[ 5;+infty right)$.
Ví dụ 2:
Giải
Bước 1: Lập bảng phá trị tuyệt đối vế trái
Bước 2: Dựa vào bảng trên ta có các trường hợp sau:
* Trường hợp 1: Với $x
* Trường hợp 2: Với $frac{1}{4}le x
* Trường hợp 3: Với $xge 1$ Bất phương trình [Leftrightarrow left{ begin{matrix} xge 1 \ 2x+1ge x+2 \ end{matrix} right.Leftrightarrow left{ begin{matrix} xge 1 \ xge 1 \ end{matrix}Leftrightarrow right.xge 1] (3)
Từ (1), (2) và (3) suy ra bất phương trình có nghiệm: $xin left( -infty ;-frac{1}{5} right]cup left[ 1;+infty right)$.
Phương pháp 3: Sử dụng phép biến đổi tương đương
Ví dụ 1:
Giải
x1 \ end{matrix} right.$ .
Lưu ý:
$begin{array}{l} Leftrightarrow left[ {begin{array}{*{20}{c}} {x 1} end{array}} right. end{array}$
Ví dụ 2:
Giải
BPT$begin{array}{l} Leftrightarrow left[ {begin{array}{*{20}{c}} {x + 1 gg \ f
Ví dụ 3:
Giải
$begin{array}{l} Leftrightarrow left{ {begin{array}{*{20}{c}} {x + 2 ge 0}\ {3x – 1 le x + 2}\ {3x – 1 ge – x – 2} end{array}} right.\ Leftrightarrow left{ {begin{array}{*{20}{c}} {x ge – 2}\ {2x le 3}\ {4x ge – 1} end{array}} right.\ Leftrightarrow left{ {begin{array}{*{20}{c}} {x ge – 2}\ {x le frac{3}{2}}\ {x ge – frac{1}{4}} end{array}} right.\ Leftrightarrow – frac{1}{4} le x le frac{3}{2} end{array}$
Tổng quát: {{{left[ {f(x)} right]}^2}
Bài luyện tập
Giải các bất phương trình sau:
—————————————
Download tài liệu:
PDF-Tại đây
Word-Tại đây:
———————————-
———————————
Phương Trình Chứa Dấu Giá Trị Tuyệt Đối
Hãy chỉ ra một nghiệm của bất phương trình trong ví dụ của câu hỏi 2 ?
Hướng dẫn giải
Ví dụ: 2x + 4 < 0
⇔ 2x < -4 ⇔ x < -2
Ví dụ -3 là một nghiệm của bất phương trình này.
Giải các bất phương trình :
c) (left(x-3right)^2< x^2-3)
d) (left(x-3right)left(x+3right)< left(x+2right)^2+3)
Hướng dẫn giải
Vậy nghiệm của bất phương trình: (x< -dfrac{1}{2})
b)3x + 4 < 2 ⇔3x < 2 – 4 ⇔ 3x < -2 (Leftrightarrow x< -dfrac{2}{3})
Vậy nghiệm của bất phương trình: (x) (< -dfrac{2}{3})
⇔-6x < -12
(Leftrightarrow)-4x < 16
Giải các phương trình :
Hướng dẫn giải
Vậy phương trình vô nghiệm.
Phát biểu quy tắc chuyển vế để biến đổi bất phương trình. Quy tắc này dựa trên tính chất nào của thứ tự trên tập số ?
Hướng dẫn giải
Quy tắc chuyển vế: Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta phải đổi dấu của hạng tử đó.
Quy tắc này dựa trên tính chất liên hệ giữa thứ tự và phép cộng trên tập số (sgk trang 36 Toán 8 Tập 2):
Khi cộng cùng một số vào cả hai vế của một bất đẳng thức ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
Phát biểu quy tắc nhân để biến đổi bất phương trình. Quy tắc này dựa trên tính chất nào của thứ tự trên tập số ?
Hướng dẫn giải
Quy tắc nhân: Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:
– Giữ nguyên chiều bất phương trình nếu số đó dương;
– Đổi chiều bất phương trình nếu số đó âm.
Quy tắc này dựa trên tính chất liên hệ giữa thứ tự và phép nhân trên tập số (sgk trang 36 Toán 8 Tập 2):
– Khi nhân cả hai vế của bất đẳng thức với cùng một số dương ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
– Khi nhân cả hai vế của bất đẳng thức với cùng một số âm ta được bất đẳng thức mới ngược chiều với bất đẳng thức đã cho.
Hướng dẫn giải
– Bất đẳng thức chứa dấu <: -3 < (-2) + 1
– Bất đẳng thức chứa dấu ≤: 5 + (-2) ≤ -3
– Bất đẳng thức chứa dấu ≥: 3 + 2 ≥ 4
Giải các bấ phương trình và biểu diễn tập nghiệp trên trục số :
Hướng dẫn giải
Giải các phương trình :
Hướng dẫn giải
Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức :
Hướng dẫn giải
(Bài dưới được trình bày dựa theo cách trình bày ở Ví dụ 1 trang 50 sgk Toán 8 Tập 2. Bạn có thể rút gọn nếu bạn thích.)
Vậy A = 3x + 2 + 5x = 8x + 2
Vậy A = 3x + 2 – 5x = -2x + 2
Vậy B = -4x – 2x + 12 = -6x + 12
Vậy B = 4x – 2x + 12 = 2x + 12
Vậy C = x – 4 – 2x + 12 = -x + 8
d) D = 3x + 2 + x + 5 khi x + 5 ≥ 0
hoặc D = 3x + 2 – (x + 5) khi x + 5 < 0
Vậy D = 4x + 7 khi x ≥ -5
hoặc D = 2x – 3 khi x < -5
Đố :
Trong một cuộc thi đố vui, Ban tổ chức quy định mỗi người dự thi phải trả lời 10 câu hỏi ở vòng sơ tuyển. Mỗi câu hỏi nàu có sẵn đáp án, nhưng trong đó chỉ có 1 đáp án đúng. Người dự thi chọn đáp áp đúng sẽ được 5 điểm, chọn đáp án sai sẽ bị trừ đi 1 điểm. Ở vòng sơ tuyển, Ban tổ chức tặng cho mỗi người dự thi 10 điểm và quy định người nào có tổng điểm từ 40 điểm trở lên mới được dự thi ở vòng tiếp theo. Hỏi người dự thi phải trả lời chính xác bao nhiêu câu hỏi ở vòng sơ tuyển thì mới được dự thi tiếp ở vòng sau ?
Hướng dẫn giải
Gọi x là số câu trả lời đúng
Số câu trả lời sai: 10 – x
Sau khi trả lời 10 câu thì người dự thi sẽ có: 5x – (10 – x) + 10
Để được dự thi tiếp vòng sau thì
5x – (10 – x ) +10 ≥ 40
⇔ 5x – 10 + x + 10 ≥ 40
⇔6x ≥ 40
⇔ x ≥(dfrac{20}{3}) Vì x là số nguyên dương nhỏ hơn hay bằng 10 nên 203≤x≤10203≤x≤10
Vậy người dự thi phải trả lời chính xác ít nhất 7 câu hỏi thì mới được dự thi tiếp ở vòng sau.
Giải các bất phương trình :
a) (dfrac{2-x}{4}< 5)
b) (3ledfrac{2x+3}{5})
d) (dfrac{2x+3}{-4}gedfrac{4-x}{-3})
Hướng dẫn giải
Giải các phương trình :
Hướng dẫn giải
Tìm (x) sao cho :
a) Giá trị của biểu thức (5-2x) là số dương
b) Giá trị của biểu thức (x+3) nhỏ hơn giá trị của biểu thức (4x-5)
c) Giá trị của biểu thức (2x+1) không nhỏ hơn giá trị của biểu thức (x+3)
d) Giá trị của biểu thức (x^2+1) không lớn hơn giá trị của biểu thức (left(x-2right)^2)
Hướng dẫn giải
Bất phương trình bậc nhất một ẩn có dạng như thế nào ? Cho ví dụ ?
Hướng dẫn giải
Kiểm tra xem – 2 là nghiệm của bất phương trình nào trong các bất phương trình sau :
Hướng dẫn giải
(Bài này mình sẽ trình bày theo cách khác, không tính cụ thể VT, VP mà thay trực tiếp giá trị vào bất phương trình.)
Lần lượt thay x = -2 vào từng bất phương trình:
Vậy x = -2 là nghiệm của bất phương trình này.
Vậy x = -2 không là nghiệm của bất phương trình này.
Vậy x = -2 là nghiệm của bất phương trình này.
Vậy x = -2 là nghiệm của bất phương trình này.
Vậy x = -2 không là nghiệm của bất phương trình này.
Vậy x = – 2 không là nghiệm của bất phương trình này.
Phương Trình Lượng Giác Chứa Căn Và Phương Trình Lượng Giác Chứa Giá Trị Tuyệt Đối
PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA CĂN VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA GIÁ TRỊ TUYỆT ĐỐI A) PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA CĂN Cách giải : Áp dụng các công thức A 0 B A B 0 A B A ≥ ≥⎧ ⎧= ⇔ ⇔⎨ ⎨ B= =⎩ ⎩ 2 B 0 A B A B ≥⎧= ⇔ ⎨ =⎩ Ghi chú : Do theo phương trình chỉnh lý đã bỏ phần bất phương trình lượng giác nên ta xử lý điều kiện B bằng phương pháp thử lại và chúng tôi bỏ 0≥ các bài toán quá phức tạp. Bài 138 : Giải phương trình ( )5cos x cos2x 2sin x 0 *− + = ( )* 5cos x cos2x 2sin x⇔ − = − 2 sin x 0 5cos x cos2x 4sin x ≤⎧⇔ ⎨ − =⎩ ( ) (2 2 sin x 0 5cos x 2cos x 1 4 1 cos x ≤⎧⎪⇔ ⎨ − − = −⎪⎩ ) = 2 sin x 0 2cos x 5cos x 3 0 ≤⎧⇔ ⎨ + −⎩ ( ) sin x 0 1cos x cos x 3 loại 2 ≤⎧⎪⇔ ⎨ = ∨ = −⎪⎩ ≤⎧⎪⇔ π⎨ = ± + π ∈⎪⎩ π⇔ = − + π ∈ sin x 0 x k2 , k 3 x k2 , k 3 Bài 139 : Giải phương trình 3 3 3 3sin x cos x sin x cot gx cos xtgx 2sin2x+ + + = Điều kiện : cos x 0 sin 2x 0 sin x 0 sin 2x 0 sin 2x 0 sin2x 0 Lúc đó : ( ) 3 3 2 2* sin x cos x sin x cos x cos xsin x 2sin2x⇔ + + + = ( ) ( )2 2sin x sin x cos x cos x cos x sin x 2sin2x⇔ + + + = ( ) ( )2 2sin x cos x sin x cos x 2sin 2x⇔ + + = ( )2 sin x cos x 0 sin x cos x 2sin2x + ≥⎧⎪⇔ ⎨ + =⎪⎩ ( ) sin x 02 sin x 0 44 sin2x 1 nhận do sin2x 01 sin2x 2sin2x ( ) ⎧ π ⎧ π⎛ ⎞ ⎛ ⎞+ ≥ + ≥⎜ ⎟ ⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠ ⎝ ⎠⇔ ⇔⎨ ⎨π π π⎪ ⎪= + π ∈ = + π ∨ = + π ∈⎪ ⎪⎩ ⎩ sin x 0 sin x 0 4 4 5x k , k x m2 x m2 loại , m 4 4 4 π⇔ = + π ∈ x m2 ,m 4 Bài 140 : Giải phương trình ( )π⎛ ⎞+ = ⎜ ⎟⎝ ⎠ 21 8sin chúng tôi 2x 2sin 3x * 4 + Ta có : (*) 2 2 sin 3x 0 4 1 8sin2x cos 2x 4sin 3x 4 ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π⎛ ⎞⎪ + = ⎜ ⎟⎪ ⎝ ⎠⎩ + ( ) ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π⎡ ⎤⎪ + + = − +⎢ ⎥⎪ ⎣ ⎦⎩ sin 3x 0 4 1 4 sin 2x 1 cos 4x 2 1 cos( 6x ) 2 ( ) ( sin 3x 0 4 1 4sin2x 2 sin6x sin2x 2 1 sin6x ⎧ π⎛ ⎞+ ≥⎪ ⎜ ⎟⇔ ⎝ ⎠⎨⎪ + + − = +⎩ ) ⎧ π ⎧ π⎛ ⎞ ⎛ ⎞+ ≥ + ≥⎜ ⎟ ⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠ ⎝ ⎠⇔ ⇔⎨ ⎨ π π⎪ ⎪= = + π ∨ = + π ∈⎪ ⎪⎩ ⎩ sin 3x 0 sin 3x 0 4 4 1 5sin 2x x k x k , k 2 12 12 So lại với điều kiện sin 3x 0 4 π⎛ ⎞+ ≥⎜ ⎟⎝ ⎠ Khi x k thì 12 π• = + π sin 3x sin 3k cosk 4 2 π π⎛ ⎞ ⎛ ⎞+ = + π =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ π ( ) ( ) ( ) ( ) ⎡= ⎢−⎢⎣ 1 , nếu k chẵn nhận 1, nếu k lẻ loại π• = + π5Khi x k thì 12 π π π⎛ ⎞ ⎛ ⎞ ⎛+ = + π = − + π⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝ 3sin 3x sin 3k sin k 4 2 2 ⎞⎟⎠ ( ) ( ) −⎡= ⎢⎢⎣ 1,nếu k chẵn loại 1, nếu k lẻ nhận Do đó ( ) ( )π π⇔ = + π ∨ = + + π ∈ 5* x m2 x 2m 1 ,m 12 12 Bài 141 : Giải phương trình ( )1 sin2x 1 sin2x 4cos x * sin x − + + = Lúc đó : ( )* 1 sin2x 1 sin2x 2sin2x⇔ − + + = ( hiển nhiên sinx = 0 không là nghiệm , vì sinx =0 thì VT = 2, VP = 0 ) 2 22 2 1 sin 2x 4sin 2x sin2x 0 ⎧⎪ + − =⇔ ⎨ ≥⎪⎩ 2 21 sin 2x 2sin 2x 1 sin2x 0 ⎧⎪ − =⇔ ⎨ ≥⎪⎩ − 2 4 2 2 1 sin 2x 4sin 2x 4sin 2x 1 1sin 2x 2 sin2x 0 ⎧ − = −⎪⎪⇔ ≥⎨⎪ ≥⎪⎩ + ( )2 2sin 2x 4sin 2x 3 0 1sin 2x 2 ⎧ − =⎪⇔ ⎨ ≥⎪⎩ ⎧ −= ∨ =⎪⎪⇔ ⎨⎪ ≥⎪⎩ 3 3sin 2x sin 2x 2 2 2sin 2x 2 3sin2x 2 ⇔ = π π⇔ = + π ∨ = + π ∈ 22x k2 2x k2 , k 3 3 π π⇔ = + π ∨ = + π ∈ x k x k , k 6 3 Chú ý : Có thể đưa về phương trình chứa giá trị tuyệt đối ( ) ≠⎧⎪⇔ ⎨ − + + =⎪⎩ ⇔ − + + = sin x 0 * cos x sin x cos x sin x 2sin 2x cos x sin x cos x sin x 2sin 2x Bài 142 : Giải phương trình ( )+ + + =sin x 3 cos x sin x 3 cos x 2 * Đặt sin 3t sin x 3 cos x sin x cos x cos 3 π = + = + π 1t sin x 2sin x 3 3cos 3 π π⎛ ⎞ ⎛ ⎞⇔ = + = +⎜ ⎟ ⎜ ⎟π ⎝ ⎠ ⎝ ⎠ ( ) + =* thành t t 2 ⇔ = − − ≥ ≤⎧ ⎧⇔ ⇔⎨ ⎨= − + − + =⎩ ⎩ ≤⎧⇔ ⇔ =⎨ = ∨ =⎩ 2 2 t 2 t 2 t 0 t 2 t 4 4t t t 5t 4 0 t 2 t 1 t 1 t 4 Do đó ( ) * π π π π π⎛ ⎞⇔ + = ⇔ + = + π + = + π ∈⎜ ⎟⎝ ⎠ 1 5sin x x k2 hay x k2 , k 3 2 3 6 3 6 π π⇔ = − + π ∨ = + π ∈ x k2 x k2 , k 6 2 Bài 143 : Giải phương trình ( ) ( ) ( )+ + = +3 tgx 1 sin x 2 cos x 5 sin x 3cos x * Chia hai vế của (*) cho cos x 0≠ ta được ( ) ( ) ( )* 3 tgx 1 tgx 2 5 tgx 3⇔ + + = + Đặt u tgx 1 với u= + ≥ 0 x Thì 2u 1 tg− = (*) thành ( ) ( )2 23u u 1 5 u 2+ = + 3 23u 5u 3u 10 0⇔ − + − = ( ) ( )2u 2 3u u 5 0⇔ − + + = ( )2u 2 3u u 5 0 vô nghiệm⇔ = ∨ + + = Do đó ( ) ⇔* tgx 1 2+ = tgx 1 4⇔ + = tgx 3 tg với 2 2 π π⎛ ⎞⇔ = = α − < α <⎜ ⎟⎝ ⎠ ,x k kα π⇔ = + ∈ Bài 144 : Giải phương trình ( ) ( )11 cos x cos x cos2x sin4x *2− + = ( ) ( )* 1 cos x cos x cos2x sin 2x cos2x⇔ − + = ≥⎧⇔ − +⎨ =⎩ cos x 0 hay 1 cos x cos x sin 2x cos 2x 0 = ⎧ ≥≥⎧ ⎪⎪⇔ ≥⎨ ⎨π= + π ∈⎪ ⎪⎩ + − =⎩ 2 cos x 0cos x 0 hay sin 2x 0 2x k , k 2 1 2 (1 cos x)cosx sin 2x ⎧ ≥≥⎧ ⎪⎪⇔ ≥⎨ ⎨π π= + ∈⎪ ⎪⎩ + − = ≥ ≥⎩ 2 cos x 0cos x 0 hay sin 2x 0 x k , k 4 2 1 2 (1 cos x)cosx sin 2x ( VT 1 VP ) ≥⎧≥ ⎪⎧ ≥⎪ ⎪⇔ ⎨ ⎨π π= ± + π = ± + π ∈ =⎪ ⎪⎩ ⎪ − =⎩ 2 cos x 0 cos x 0 sin 2x 0 hay5x h hay x h , h sin 2x 1 4 4 (1 cos x ) cos x 0 π⇔ = ± + π ∈ = =⎧ ⎧⎨ ⎨= ⇒ = = ⇒ = ⇒ =⎩ ⎩ x h , h 4 sin 2x 1 sin 2x 1 hay hay cos x 0 ( sin 2x 0 ) cos x 1 ( sin x 0 sin 2x 0 ) π⇔ = ± + π ∈ x h , h 4 Bài 145 : Giải phương trình ( ) ( ) ( )3 3sin x 1 cot gx cos x 1 tgx 2 sin x cos x *+ + + = ( ) 3 3sin x cos x cos x sin x* sin x cos x 2 sin x cos sin x cos x + +⎛ ⎞ ⎛ ⎞⇔ + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ x ( ) ( )2 2sin x cos x sin x cos x 2 sin x cos x⇔ + + = sin x cos x 0 1 sin2x 2sin2x + ≥⎧⇔ ⎨ + =⎩ ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪+ ≥⎧ ⎪ ⎝ ⎠⇔ ⇔⎨ ⎨= π⎩ ⎪ = + π ∈⎪⎩ sin x 0sin x cos x 0 4 sin 2x 1 x k , k 4 ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π π⎪ + = + π ∈⎪⎩ sin x 0 4 x k , k 4 2 ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π π π π⎪ + = + π + = + π ∈⎪⎩ sin x 0 4 3x h2 hay x h2 , h 4 2 4 2 π⇔ = + π ∈ x h2 , h 4 Bài 146 : Giải phương trình ( )cos2x 1 sin2x 2 sin x cos x *+ + = + Điều kiện cos2x 0và sin x 0 4 π⎛ ⎞≥ +⎜ ⎟⎝ ⎠ ≥ Lúc đó : ( ) ( )22 2* cos x sin x cos x sin x 2 cos x sin x⇔ − + + = + ( ) ( )2 22 2cos x sin x cos x sin x 2 cos2x cos x sin x⇔ − + + + + ( )4 sin x cos x= + ( ) ( ) ( )cos x cos x sin x sin x cos x cos2x 2 sin x cos x⇔ + + + = + sin x cos x 0 cos x cos2x 2 + =⎡⇔ ⎢ + =⎣ ( ) tgx 1 cos2x 2 cos x * * = −⎡⇔ ⎢ = −⎢⎣ 2 tgx 1 cos2x 4 4cos x cos x = −⎡⇔ ⎢ = − +⎣ 2tgx 1 cos x 4cosx 5 0⇔ = − ∨ + − = ( )tgx 1 cos x 1 cos x 5 loại⇔ = − ∨ = ∨ = − π⇔ = − + π ∨ = π ∈ x k x k2 , k 4 Thử lại : ( )π π⎛ ⎞• = − + π = − =⎜ ⎟⎝ ⎠x k thì cos2x cos 0 nhận4 2 Và ( )sin x sin k 0 nhận 4 π⎛ ⎞+ = π =⎜ ⎟⎝ ⎠ ( )• = π =x k2 thì cos 2x 1 nhận và ( )cos x cos 0 nhận 4 4 Do đó (*) π⇔ = − + π ∨ = π ∈ x k x k2 , k 4 Chú ý : Tại (**) có thể dùng phương trình lượng giác không mực ( ) cos x cos2x 2* * sin x cos x 0 ⎧ + =⎪⇔ ⎨ + ≥⎪⎩ 2 cos x 1 cos2x 2cos x 1 1 sin x cos x 0 =⎧⎪⇔ = −⎨⎪ + ≥⎩ = π ∈ =⎧⇔ ⇔ =⎨ + ≥⎩ cos x 1 x 2k , k sin x cos x 0 Cách khác ( ) ( )22 2* cos x sin x cos x sin x 2 cos x sin x⇔ − + + = + ( )⇔ + − + + = +2(cos x sin x).(cos x sin x ) cos x sin x 2 cos x sin x ( ) cos x sin x 0 cos x sin x 0 hay cos x sin x cos x sin x 2 cos x sin x 0 tgx 1 hay 2cos x 2 cos 2x 4 cos x sin x 0 tgx 1 hay cos x cos 2x 2 =⎧π⇔ = − + π ∈ ⎨ =⎩ cos x 1 x k , k hay cos 2x 14 π⇔ = − + πx k hay = π ∈ 4 x 2k , k BÀI TẬP 1. Giải phương trình : a/ 1 sin x cosx 0+ + = b/ 2 2 4xcos cos x 3 0 1 tg x − =− c/ sin x 3 cos x 2 cos2x 3 sin 2x+ = + + d/ 2sin x 2sin x 2 2sin x 1− + = − e/ = −− 3tgx2 3sin x 3 2 sin x 1 f/ 2 4sin 2x cos 2x 1 0 sin cos x + − = g/ + − + =28 cos 4x cos 2x 1 cos 3x 1 0 h/ 2sin x sin x sin x cosx 1+ + + = k/ 25 3sin x 4 cos x 1 2cos x− − = − l/ 2cos2x cos x 1 tgx= + 2. Cho phương trình : ( )1 sin x 1 sin x mcos x 1+ + − = a/ Giải phương trình khi m = 2 b/ Giải và biện luận theo m phương trình (1) 3. Cho f(x) = 3cos62x + sin42x + cos4x – m a/ Giải phương trình f(x) = 0 khi m = 0 b/ Cho ( ) 2 2g x 2cos 2x 3cos 2x 1= + . Tìm tất cả các giá trị m để phương trình f(x) = g(x) có nghiệm. ( )ĐS : 1 m 0≤ ≤ 4. Tìm m để phương trình sau có nghiệm 1 2cosx 1 2sin x m+ + + = ( )ĐS : 1 3 m 2 1 2+ ≤ ≤ + B) PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA CÁC TRỊ TUYỆT ĐỐI Cách giải : 1/ Mở giá trị tuyệt đối bằng định nghĩa 2/ Áp dụng A B A• = ⇔ = ±B ≥≥ ≥⎧⎧ ⎧• = ⇔ ⇔ ⇔ ∨⎨ ⎨ ⎨ ⎨ <⎧= ± ==⎩ ⎩⎩ 2 2 B 0B 0 A 0 A 0 A B = −⎩A B A BA B A B Bài 147 : Giải phương trình ( )cos3x 1 3 sin3x *= − ( ) 2 2 1 3 sin3x 0 * cos 3x 1 2 3 sin3x 3sin 3x ⎧ − ≥⎪⇔ ⎨ = − +⎪⎩ ⎧ ≤⎪⇔ ⎨⎪ − = − +⎩ 2 2 1sin 3x 3 1 sin 3x 1 2 3 sin 3x 3sin 3x ⎧ ≤⎪⇔ ⎨⎪ − =⎩ 2 1sin 3x 3 4 sin 3x 2 3 sin 3x 0 ⎧ ≤⎪⎪⇔ ⎨⎪ = ∨ =⎪⎩ 1sin 3x 3 3sin 3x 0 sin 3x 2 ⇔ = π⇔ = ∈ sin 3x 0 kx , k 3 Bài 148 : Giải phương trình ( )3sin x 2 cos x 2 0 *+ − = ( )* 2 cos x 2 3sin⇔ = − x 2 2 2 3sin x 0 4cos x 4 12sin x 9sin x − ≥⎧⇔ ⎨ = − +⎩ ( ) ⎧ ≤⎪⇔ ⎨⎪ − = − +⎩ 2 2 2sin x 3 4 1 sin x 4 12sin x 9sin x ⎧ ≤⎪⇔ ⎨⎪ − =⎩ 2 2sin x 3 13sin x 12sin x 0 ⎧ ≤⎪⎪⇔ ⎨⎪ = ∨ =⎪⎩ 2sin x 3 12sin x 0 sin x 13 ⇔ = ⇔ = π ∈ sin x 0 x k , k Bài 149 : Giải phương trình ( )sin x cos x sin x cos x 1 *+ + = Đặt t sin x cos x 2 sin x 4 π⎛ ⎞= + = +⎜ ⎟⎝ ⎠ Với điều kiện : 0 t 2≤ ≤ Thì 2t 1 2sin xcos= + x Do đó (*) thành : 2t 1 t 1 2 − + = ( ) 2t 2t 3 0 t 1 t 3 loại ⇔ + − = ⇔ = ∨ = − Vậy ( ) ⇔* 21 1 2sin xcos= + x ⇔ = π⇔ = ∈ sin 2x 0 kx , k 2 Bài 150 : Giải phương trình ( )sin x cos x 2sin 2x 1 *− + = Đặt ( )t sin x cos x điều kiện 0 t 2= − ≤ ≤ Thì 2t 1 sin2= − x ( ) ( )2* thành: t 2 1 t 1+ − = ( ) 22t t 1 0 1t 1 t loại dođiều kiện 2 ⇔ − − = ⇔ = ∨ = − khi t = 1 thì 21 1 sin2= − x ⇔ = π⇔ = ∈ sin 2x 0 kx , k 2 Bài 151 : Giải phuơng trình ( )4 4sin x cos x sin x cos x *− = + ( ) ( ) ( )2 2 2 2* sin x cos x sin x cos x sin x cos x⇔ + − = + cos2x sin x cos x⇔ − = + 2 cos2x 0 cos 2x 1 2 sin x cos x − ≥⎧⎪⇔ ⎨ = +⎪⎩ 2 cos2x 0 1 sin 2x 1 sin2x ≤⎧⎪⇔ ⎨ − = +⎪⎩ 2 cos2x 0 sin2x sin 2x ≤⎧⎪⇔ ⎨ = −⎪⎩ cos2x 0 sin2x 0 ≤⎧⇔ ⎨ =⎩ 2 cos2x 0 cos2x 1 cos 2x 1 ≤⎧⇔ ⇔⎨ =⎩ = − π⇔ = + π ∈ x k , k 2 Bài 152 : Giải phương trình ( )23 sin2x 2cos x 2 2 2cos2x *− = + Ta có : ( ) ( )2 2* 2 3 sin x cos x 2cos x 2 2 2 2cos x 1⇔ − = + − 3 1cos x sin x cos x cos x 2 2 ⎛ ⎞⇔ −⎜ ⎟⎜ ⎟⎝ ⎠ = cos chúng tôi x cos x 6 π⎛ ⎞⇔ − =⎜ ⎟⎝ ⎠ cos x 0 cos x 0 cos x 0 sin x 1 sin x 1 6 6 > <⎧ ⎧⎪ ⎪⇔ = ∨ ∨π π⎨ ⎨⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎩ = − > <⎧ ⎧⎪ ⎪⇔ = ∨ ∨π π π π⎨ ⎨− = + π ∈ − = − + π ∈⎪ ⎪⎩ ⎩ cos x 0 cos x 0 cos x 0 x k2 , k x k2 , k 6 2 6 2 > <⎧ ⎧π ⎪ ⎪⇔ = + π ∈ ∨ ∨π π⎨ ⎨= + π ∈ = − + π ∈⎪ ⎪⎩ ⎩ cos x 0 cos x 0 x k , k 22 x k2 , k x k2 , k 3 3 π⇔ = + π ∈ x k , k 2 Bài 153 : Tìm các nghiệm trên ( )0,2π của phương trình : ( )sin3x sin x sin2x cos2x * 1 cos2x − = +− Ta có : ( ) 2cos2xsin x* 2 co 42 sin x s 2x π⎛ ⎞⇔ = ⎜ ⎟⎝ ⎠− Điều kiện : sin x 0 x k≠ ⇔ ≠ π ( )* 2 cos2x 2 cos 2x 4 π⎛ ⎞⇔ = ⎜ ⎟⎝ ⎠− ( ) π⎛ ⎞⇔ = ± − + π ∈⎜ ⎟⎝ ⎠ π⇔ = + π ∈ π π⇔ = + ∈ π π∈ π = = 2x 2x k2 , k 4 4x k2 , k 4 kx , k 16 2 9Do x 0, nên x hay x 16 16 Khi ( )x ,2∈ π π thì sinx < 0 nên : ( ) ( ) ( ) π⎛ ⎞⇔ − = −⎜ ⎟⎝ ⎠ π⎛ ⎞⇔ π − = −⎜ ⎟⎝ ⎠ π⇔ − = ± π − + π ∈ π⇔ = + π ∈ π π⇔ = + ∈ * cos 2x cos 2x 4 cos 2x cos 2x 4 2x 2x k2 , k 4 54x k2 , k 4 5 kx , k 16 2 Do ( )x ,2∈ π π π π= ∨ = •21 29nên x x 16 16 Bài 154 Cho phương trình : 6 6sin x cos x a sin 2x (*)+ = Tìm a sao cho phương trình có nghiệm. Ta có : ( ) ( ) ( ) + = + − + = + − = − 6 6 2 2 4 2 2 4 22 2 2 2 2 sin x cos x sin x cos x sin x sin x cos x cos x sin x cos x 3sin x cos x 31 sin 2x 4 Đặt t = sin 2x điều kiện 0 t 1≤ ≤ thì (*) thành : ( )− =231 t at * * 4 1 3 t a t 4 ⇔ − = (do t = 0 thì (**) vô nghiệm) Xét ( ]= − =1 3y t trên D t 4 0,1 thì 2 1 3y ‘ 0 t 4 = − − < Do đó : (*) có nghiệm 1a 4 ⇔ ≥ • Bài 155 Cho phương trình ( )= +2cos 2x m cos x 1 tgx * Tìm m để phương trình có nghiệm trên 0, 3 π⎡ ⎤⎢ ⎥⎣ ⎦ Đặt t = tgx thì Vậy : (*) thành: ( )21 t m 1 t * *− = + (chia 2 vế cho ) 2cos 0≠ Khi 0 x 3 π≤ ≤ thì t 0, 3⎡ ⎤∈ ⎣ ⎦ Vậy (**) ( ) ( ) ( )2 1 t 1 t1 tm 1 1 t 1 t − +−⇔ = = = − ++ + t 1 t Xét ( )y 1 t 1 t trên 0, 3⎡ ⎤= − + ⎣ ⎦ Ta có ( ) ( ) ( )− − + + −= − + + =+ + − − ⎡ ⎤⇔ = < ∀ ∈ ⎣ ⎦+ 1 t 2 1 t 1 t y ‘ 1 t 2 1 t 2 1 t 3t 1y ‘ 0 t 0, 3 2 1 t Do đó : (*) có nghiệm trên 0, 3 π⎡ ⎤⎢ ⎥⎣ ⎦ ( )1 3 1 3 m 1⇔ − + ≤ ≤ • BÀI TẬP 1. Giải các phương trình 2 2 a/ sin x cox 1 4sin2x b/ 4sin x 3 cos x 3 1c/ tgx cot gx cos x 1 1 1 1 3cosd/ 2 2 sin x 1 cos x 1 cos x sin x 1e/ cot gx tgx sin x f/ 2cos x sin x 1 1 cos x 1 cos xg/ 4sin x cos x 1 cos2x 1h/ 2 cos x sin x 2 m/ cos2x 1 − = − + = = + ⎛ ⎞++ − = − ⎜ ⎟− + ⎝ ⎠ = + − = + + − = − ⎛ ⎞= −⎜ ⎟⎝ ⎠ + + x 3 3 2 sin x cos xsin2x 2 n/ cos x sin3x 0 1r/ cot gx tgx sin x s/ cos x 2sin2x cos3x 1 2sin x cos2x tg x 1o/ tgx 1 tgx 1 tgx 1 p/ sin x cos x sin x cos x 2 += + = = + + − = + − = + +− − − + + = 2. sin x cos x a sin 2x 1+ + = Tìm tham số a dương sao cho phương trình có nghiệm 3. Cho phương trình: sin x cos x 4sin 2x m− + = a/ Giải phương trình khi m = 0 b/ Tìm m để phương trình có nghiệm (ĐS 652 4 m 16 − ≤ ≤ ) Th.S Phạm Hồng Danh (TT luyện thi ĐH Vĩnh Viễn)
Bạn đang xem bài viết Phương Pháp Giải Các Phương Trình Chứa Ẩn Dưới Dấu Giá Trị Tuyệt Đối trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!