Cập nhật thông tin chi tiết về Phương Trình Lượng Giác Và Ứng Dụng (Nâng Cao) mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.
Phương trình lượng giác và ứng dụng (Nâng cao) chúng tôi Ths. Lê Văn Đoàn “Cần cù bù thông minh” chúng tôi - 1 - MỤC LỤC Trang Ths. Lê Văn Đoàn chúng tôi Phương trình lượng giác và ứng dụng (Nâng cao) - 2 - chúng tôi CÁC CÔNG THỨC LƯỢNG GIÁC NẮM VỮNG Công thức cơ bản ● 2 2sin x cos x 1+ = ● tan chúng tôi 1= ● sin x tan x cos x = ● cos x cotx sin x = ● os 2 2 1 1 tan x c x + = ● 2 2 1 1 cot x sin x + = Công thức cung nhân đôi – Công thức hạ bậc – Công thức cung nhân ba ● sin2x 2sin chúng tôi x= ● 2 2 2 2 cos x sin x cos2x 2cos x 1 1 2 sin x −= − = − ● os2 1 c 2xsin x 2 − = ● os os2 1 c 2x c x 2 + = ● 3sin 3x 3 sin x 4 sin x= − ● 3cos 3x 4 cos x 3cos x= − Công thức cộng cung ● ( )sin a b chúng tôi chúng tôi b± = ± ● ( )osc a b chúng tôi chúng tôi b± = ∓ ● ( ) tana tanb tan a b 1 tana.tanb + + = − ● ( ) tana tan b tan a b 1 tana.tanb − − = + ● π 1 tan x tan x 4 1 tan x + + = − ● π 1 tan x tan x 4 1 tan x − − = + Công thức biến đổi tổng thành tích ● a b a b cosa cosb 2cos .cos 2 2 + − + = ● a b a b cosa cosb 2sin .sin 2 2 + − − =− ● a b a b sina sin b 2sin .cos 2 2 + − + = ● a b a b sina sin b 2cos .sin 2 2 + − − = ● ( )sin a b tana tanb cosa.cosb + + = ● ( )sin a b tana tanb cosa.cosb − − = Công thức biến đổi tích thành tổng ● ( ) ( )cos a b cos a b cosa.cosb 2 + + − = ● ( ) ( )sin a b sin a b sin a.cosb 2 + + − = ● ( ) ( )cos a b cos a b sin chúng tôi b 2 − − + = Một số công thức thông dụng khác ● π π sinx cosx 2 sin x 2cos x 4 4 + = + = − ● π π sinx cosx 2 sin x 2cos x 4 4 − = − = + ● 4 4 2 1 cos4x cos x sin x 1 s 3 1 in 2x 2 4 + + = − = ● 6 6 2 3 cos4x cos x sin x 1 s 5 3 in 2x 4 8 + + = − = Phương trình lượng giác và ứng dụng (Nâng cao) chúng tôi Ths. Lê Văn Đoàn “Cần cù bù thông minh” chúng tôi - 3 - Một số lưu ý: Điều kiện có nghiệm của phương trình sin x cos x = α = α là: 1 1− ≤α ≤ . Khi giải phương trình có chứa các hàm số tan hoặc cot , có mẫu số hoặc căn bậc chẵn thì nhất thiết phải đặt điều kiện để phương trình xác định. Phương trình chứa tan x , điều kiện: ( ) cos x 0 x k k 2 π ≠ ⇔ ≠ + π ∈ ℤ . Phương trình chứa cotx , điều kiện: ( ) sin x 0 x k k≠ ⇔ ≠ π ∈ ℤ . Phương trình chứa cả tan x và cotx , điều kiện: ( ) x k. k 2 π ≠ ∈ ℤ . Khi tìm được nghiệm phải kiểm tra (so) với điều kiện. Ta thường dùng một trong các cách sau đây để kiểm tra điều kiện: Kiểm tra trực tiếp bằng cách thay giá trị của x vào biểu thức điều kiện. Nếu khi thế vào, giá trị ấy làm đẳng thức đúng thì nhận nghiệm, nếu sai thì loại nghiệm. Dùng đường tròn lượng giác, nghĩa là biểu diễn các ngọn cung của điều kiện và cung của nghiệm. Nếu các ngọn cung này trùng nhau thì ta loại nghiệm, nếu không trùng thì ta nhận nghiệm. Cách biểu diễn cung – góc lượng giác trên đường tròn: " Nếu cung hoặc góc lượng giác AM có số đo là k2 n π α + 0 0 k.360hay a n + với k ,n +∈ ∈ℤ ℕ thì có n điểm M trên đường tròn lượng giác cách đều nhau". Ví dụ 1: Nếu sđ AM k2 3 π = + π thì có một điểm M tại vị trí 3 π (ta chọn k 0= ). Ví dụ 2: Nếu sđ AM k 6 π = + π thì có 2 điểm M tại vị trí 6 π và 7 6 π (ta chọn k 0,k 1= = ). Ví dụ 3: Nếu sđ 2AM k. 4 3 π π = + thì có 3 điểm M tại các vị trí 11; 4 12 π π và 19 12 π , ( )k 0;1;2= . Ví dụ 4: Nếu sđ k2AM k. 4 2 4 4 π π π π = + = + thì có 4 điểm M tại các vị trí 4 π , 3 4 π , 5 4 π ; 7 4 π (ứng với các vị trí k 0,1,2,3= ). Ví dụ 5: Tổng hợp hai cung x k 6 π =− + π và x k 3 π = + π Biểu diễn cung x k 6 π = − + π trên đường tròn thì có 2 điểm tại các vị trí: 6 π − và 5 6 π Biểu diễn cung x k 3 π = + π trên đường tròn thì có Để giải được phương trình lượng giác cũng như các ứng dụng của nó, các bạn học sinh cần nắm vững tất cả những công thức lượng giác. Đó là hành trang, là công cụ cần thiết nhất để chinh phục thế giới mang tên: "Phương trình lượng giác" Ths. Lê Văn Đoàn chúng tôi Phương trình lượng giác và ứng dụng (Nâng cao) - 4 - chúng tôi 2 điểm tại các vị trí: 3 π và 4 3 π . Tổng hợp hai cung gồm 4 điểm như hình vẽ và cung tổng hợp là: x k 3 2 π π = + Đối với phương trình 2 2 1 1 cos x cos x 2 2 1 1 sin x sin x 2 2 = = ± ⇔ = = ± ta không nên giải trực tiếp vì khi đó có tới 4 nghiệm, khi kết hợp và so sánh với điều kiện rất phức tạp, ta nên hạ bậc là tối ưu nhất. Nghĩa là: 2 2 2 2 1 cos x 2cos x 1 0 cos2x 0 2 1 cos2x 02sin x 1 0 sin x 2 = − = = ⇔ ⇔ =− = = . Tương tự đối với phương trình 2 2 sin x 1 sin x 1 cos x 1cos x 1 = = ± ⇔ = ±= ta không nên giải như thế, mà nên biến đổi dựa vào công thức 2 2sin x cos x 1+ = . Lúc đó: 2 2 2 2 sin x 1 cos x 0 cos x 0 sin x 0cos x 1 sin x 0 = = = ⇔ ⇔ == = Sử dụng thành thạo câu thần chú: '' Cos đối – Sin bù – Phụ chéo '' Đây có thể xem là câu thần chú ''đơn giản, dễ nhớ'' trong lượng giác nhưng nó lại đóng vai trò là một trong những nhân tố cần thiết, hiệu quả nhất khi giải phương trình lượng giác. Cos đối, nghĩa là cos của hai góc đối nhau thì bằng nhau, tức là ( )cos cos−α = α , còn các cung góc lượng giác còn lại thì bằng '' – '' chính nó: ( ) ( ) ( ) sin sin , tan tan , cot tan−α =− α −α =− α −α =− α Sin bù, nghĩa là sin của hai góc bù nhau thì bằng nhau, tức là ( )sin sinπ−α = α , còn các cung góc lượng giác còn lại thì bằng '' – '' chính nó: ( ) ( ) ( ) cos cos , tan tan , cot tanπ−α =− α π−α = − α π−α = − α Phụ chéo, nghĩa là với hai góc phụ nhau (có tổng bằng 900) thì sin góc này bằng cos góc kia và ngược lại, tức là: sin cos , cos sin , tan cot , cot tan 2 2 2 2 π π π π −α = α −α = α −α = α −α = α Ta hãy thử đến với ví dụ nhỏ sau đây để thấy được hiệu quả của '' câu thần chú '' này: Giải phương trình lượng giác: sin u cos v= Rõ ràng, ở phần phương trình lượng giác cơ bản, ta chỉ biết cách giải sao cho phương trình sin u sin v= , vậy còn phương trình sin u cos v= thì sao ? Câu trả lời ở đây chính là phụ chéo, bởi: sin u cos v sin u sin v 2 π = ⇔ = − ( ) u v k2 u v k2 , k 2 2 π π = − + π ∨ = + + π ∈ ℤ . Qua ví dụ này, chắc hẳn nếu trong bài gặp những phương trình dạng như 2sin x cos x 3 π = − pi/3 5pi/6 4pi/3 –pi/6 O Phương trình lượng giác và ứng dụng (Nâng cao) chúng tôi Ths. Lê Văn Đoàn “Cần cù bù thông minh” chúng tôi - 5 - thì các bạn học sinh sẽ không còn cảm thấy lúng túng nữa. Một số cung góc hay dùng khác: ( ) ( ) sin x k2 sin x cos x k2 cos x + π = + π = và ( ) ( ) ( ) sin x k2 sin x k cos x k2 cos x + π + π =− ∈ + π + π =− ℤ . A – PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN Dạng: u v k2 sin u sin v u v k2 = + π= ⇔ = π− + π Đặc biệt: sin x 0 x k sin x 1 x k2 2 sin x 1 x k2 2 = ⇒ = π π = ⇒ = + π π = − ⇒ =− + π Dạng: u v k2 cosu cos v u v k2 = + π= ⇔ = − + π Đặc biệt: cos x 0 x k 2 cos x 1 x k2 cos x 1 x k2 π = ⇒ = + π = ⇒ = π = − ⇒ = π+ π Dạng: tanu tan v u v k Ðk : u,v k 2 = ⇔ = + π π ≠ + π Đặc biệt: tan x 0 x k tan x 1 x k 4 = ⇔ = π π = ± ⇔ = ± + π Dạng: cotu cotv u v k Ðk : u,v k = ⇔ = + π ≠ π Đặc biệt: cotx 0 x k 2 cotx 1 x k 4 π = ⇔ = + π π = ± ⇔ = ± + π BÀI TẬP ÁP DỤNG Bài 1. Giải phương trình: ( ) cos 3x 4 cos2x 3cos x 4 0 , x 0;14 − + − = ∗ ∀ ∈ Bài 2. Giải phương trình: ( )( ) ( ) 2cos x 1 2 sin x cos x sin2x sin x− + = − ∗ Bài 3. Giải phương trình: ( ) cos 3x cos2x cos x 1 0+ − − = ∗ Bài 4. Giải phương trình: ( ) sin x cos x 1 sin2x cos2x 0+ + + + = ∗ Bài 5. Giải phương trình: ( ) ( ) 2 sin x 1 cos2x sin2x 1 cos x+ + = + ∗ Bài 6. Giải phương trình: ( ) 1 1 7 4 sin x sin x 43 sin x 2 π + = − ∗ π − Bài 7. Giải phương trình: ( ) 4 4 7 sin x cos x cot x cot x 8 3 6 π π + = + − ∗ Ths. Lê Văn Đoàn chúng tôi Phương trình lượng giác và ứng dụng (Nâng cao) - 6 - chúng tôi Bài 8. Giải phương trình: ( ) 4 4 4sin 2x cos 2x cos 4x tan x tan x 4 4 + = ∗ π π − + Bài 9. Giải phương trình: ( ) 3 x 1 3x sin sin 1 10 2 2 10 2 π π − = + Bài 10. Giải phương trình: ( ) sin 3x sin2x sin x 1 4 4 π π − = + Bài 11. ( ) 38 cos x cos 3x 1 3 π + = Bài 12. Giải phương trình: ( ) 32 sin x 2 sin x 1 4 π + = Bài 13. Giải phương trình: ( ) 3sin x 2 sin x 1 4 π − = Bài 14. Giải phương trình: ( ) cos x cos2x cos 3x cos 4x 0+ + + = ∗ Bài 15. Giải phương trình: ( ) 2 2 2 3sin x sin 2x sin 3x 2 + + = ∗ . Bài 16. Giải phương trình: ( ) 2 2 2sin x sin 2x sin 3x 2+ + = ∗ . Bài 17. Giải phương trình: ( ) 2 2 2 2sin x sin 3x cos 2x cos 4x+ = + ∗ Bài 18. Giải phương trình: ( ) 2 2 2 2sin 3x cos 4x sin 5x cos 6x− = − ∗ Bài 19. Giải phương trình: ( )sin 2 2 5x 9x cos 3x sin7x 2 2cos 4 2 2 π + = + − ∗ Bài 20. Giải phương trình: ( ) 2 2 2sin x cos 2x cos 3x= + ∗ Bài 21. Giải phương trình: ( ) 22sin 2x sin 7x 1 sin x+ − = ∗ Bài 22. Giải phương trình: ( ) sin x sin2x sin 3x 1 cos x cos2x+ + = + + ∗ Bài 23. Giải phương trình: ( ) 3 3 3sin x cos 3x cos x sin 3x sin 4x+ = ∗ Bài 24. Giải phương trình: ( ) 2 3cos10x 2cos 4x 6cos 3x cos x cos x 8 cos x cos 3x+ + = + ∗ Bài 25. Giải phương trình: ( ) 3 3 24 sin x 3cos x 3sin x sin x cos x 0+ − − = ∗ Bài 26. Giải phương trình: ( )( ) ( ) 22sin x 1 3cos 4x 2sin x 4 4 cos x 3+ + − + = ∗ Bài 27. Giải phương trình: ( ) ( ) 6 6 8 8sin x cos x 2 sin x cos x+ = + ∗ Bài 28. Giải phương trình: ( ) ( ) 8 8 10 10 5sin x cos x 2 sin x cos x cos2x 4 + = + + ∗ Bài 29. Giải phương trình: ( ) ( ) 3 3 5 5sin x cos x 2 sin x cos x+ = + ∗ Bài 30. Giải phương trình: ( ) 4 2 2 43cos x 4 cos x sin x sin x 0− + = ∗ Bài 31. Giải phương trình: ( ) 3 3 2 3 2cos 3x cos x sin 3x sin x 8 − − = ∗ Phương trình lượng giác và ứng dụng (Nâng cao) chúng tôi Ths. Lê Văn Đoàn “Cần cù bù thông minh” chúng tôi - 7 - Bài 32. Giải phương trình: ( ) 1cos x cos2x cos 4x cos 8x 16 = ∗ Bài 33. Giải phương trình: ( ) 34 sin 3x cos2x 1 6sin x 8 sin x= + − ∗ Bài 34. Giải phương trình: ( ) 1cos x cos2x cos 3x cos 4x cos5x 2 + + + + =− ∗ Bài 35. Giải phương trình: ( ) sin2x 2cos x sin x 1 0 tan x 3 + − − = ∗ + Bài 36. Giải phương trình: ( ) 2 1 sin2x cos2x 2 sin x sin2x 1 cot x + + = ∗ + Bài 37. Giải phương trình: ( ) ( ) tan x cotx 2 sin2x cos2x+ = + ∗ Bài 38. Giải phương trình: ( ) 2tan x tan x tan 3x 2− = ∗ Bài 39. Giải phương trình: ( ) 2 2 2 11tan x cot x cot 2x 3 + + = ∗ Bài 40. Giải phương trình: ( ) 2 2 2 x x sin tan x cos 0 2 4 2 π − − = ∗ Bài 41. Giải phương trình: ( ) ( ) 2sin2x cotx tan2x 4 cos x+ = ∗ Bài 42. Giải phương trình: ( ) ( ) 2 2cot x tan x 16 1 cos 4x cos2x − = + ∗ Bài 43. Giải phương trình: ( ) 12 tan x cot2x 2 sin2x 2sin2x + = + ∗ Bài 44. Giải phương trình: ( ) ( ) ( ) 3 sin x tan x 2 1 cos x 0 tan x sin x + − + = ∗ − Bài 45. Giải phương trình: ( ) ( ) ( ) ( ) ( ) 2 2 2 2 1 cos x 1 cos x 1 tan x sin x 1 sin x tan x 24 1 sin x − + + − = + + ∗ − Bài 46. Giải phương trình: ( ) cos 3x tan5x sin7x= ∗ Bài 47. Giải phương trình: ( ) 1 1sin2x sin x 2cotx 2 sin x sin2x + − − = ∗ Bài 48. Giải phương trình: ( ) ( ) 4 4sin x cos x 1 tan x cot2x sin2x 2 + = + ∗ Bài 49. Giải phương trình: ( ) 2 2 2 2tan chúng tôi 2x.cot3x tan x cot 2x cot3x= − + ∗ Bài 50. Giải phương trình: ( ) x cotx sin x 1 tan x tan 4 2 + + = ∗ Ths. Lê Văn Đoàn chúng tôi Phương trình lượng giác và ứng dụng (Nâng cao) - 8 - chúng tôi HƯỚNG DẪN GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN Lời bình: Từ việc xuất hiện ba cung x,2x,3x , giúp ta liên tưởng đến việc đưa chúng về cùng một cung. Nhưng đưa về cung x hay cung 2x ? Các bạn có thể trả lời câu hỏi đó dựa vào quan niệm sau: " Trong phương trình lượng giác tồn tại ba cung x,2x,3x , ta nên đưa về cung trung gian 2x nếu trong biểu thức có chứa sin2x (hoặc cos2x). Còn không chứa sin2x (hoặc cos2x), nên đưa về cung x ". Bài giải tham khảo ( ) ( ) ( )3 2 3 24 cos x 3cos x 4 2cos x 1 3cos x 4 0 4 cos x 8 cos x 0∗ ⇔ − − − + − = ⇔ − = ( ) ( ) ( ) ( ) 2 cos x 0 N 4 cos x cos x 2 0 x k , k cos x 2 L 2 = π⇔ − = ⇔ ⇔ = + π ∈ = ℤ . 0,5 k 3,9 3 5 7 Do x 0;14 ,k 0 k 14 x ; ; ; k2 2 2 2 2 − ≤ ≤≈ π π π π π ∈ ∈ ⇔ ≤ + π ≤ ⇔ ⇒ ∈ ∈ ℤ ℤ . Bài giải tham khảo ( ) ( )( )2cos x 1 2 sin x cos x 2sin x cos x sin x∗ ⇔ − + = − ( )( ) ( ) 2cos x 1 2 sin x cos x sin x 2cos x 1 0⇔ − + − − = ( ) ( ) ( )( ) 2cos x 1 2sin x cos x sin x 0 2cos x 1 sin x cos x 0 ⇔ − + − = ⇔ − + = ( ) x k22cos x 1 0 cos x cos 3 k; l3 sin x cos x 0 tan x 1 x l 4 π π = ± + π − = = ⇔ ⇔ ⇔ ∈ + = π = − = − + π ℤ . Lời bình: Từ việc xuất hiện các cung 3x và 2x , chúng ta nghĩ ngay đến việc đưa chúng về cùng một cung x bằng công thức nhân ba và công thức nhân đôi của hàm cos Bài giải tham khảo ( ) 3 2 3 24 cos x 3cos x 2cos x 1 cos x 1 0 2cos x cos x 2cos x 1 0∗ ⇔ − + − − − = ⇔ + − − = ( ) ( ) ( )( ) 2 2cos x 2cos x 1 2cos x 1 0 2cos x 1 cos x 1 0⇔ + − + = ⇔ + − = Bài 1. Giải phương trình: ( ) cos 3x 4 cos2x 3cos x 4 0 , x 0;14 − + − = ∗ ∀ ∈ Trích đề thi tuyển sinh Đại học khối D năm 2002 Bài 2. Giải phương trình: ( )( ) ( ) 2cos x 1 2 sin x cos x sin2x sin x− + = − ∗ Trích đề thi tuyển sinh Đại học khối D năm 2004 Bài 3. Giải phương trình: ( ) cos 3x cos2x cos x 1 0+ − − = ∗ Trích đề thi tuyển sinh Đại học khối D năm 2006 Phương trình lượng giác và ứng dụng (Nâng cao) chúng tôi Ths. Lê Văn Đoàn “Cần cù bù thông minh” chúng tôi - 9 - Bài 4. Giải phương trình: ( ) sin x cos x 1 sin2x cos2x 0+ + + + = ∗ Trích đề thi tuyển sinh Đại học khối B năm 2005 ( ) ( ) 2 sin x 0 x k 2cos x 1 sin x 0 k;l1 2 cos x x l2 2 3 = = π ⇔ − + = ⇔ ⇔ ∈π = − = ± + π ℤ . Bài giải tham khảo ( ) ( ) 2sin x cos x 2 sin x cos x 2cos x 0∗ ⇔ + + + = ( ) ( ) sin x cos x 2cos x sin x cos x 0⇔ + + + = ( )( ) sin x cos x 1 2cos x 0⇔ + + = ( ) sin x cos x tan x 1 x k 4 k; l1 2 2cos x cos x cos x l22 3 3 π = − =− = − + π ⇔ ⇔ ⇔ ∈π π= − = = ± + π ℤ . Lời bình: Từ việc xuất hiện của cung 2x và cung x mà ta nghĩ đến việc chuyển cung 2x về cung x bằng công thức nhân đôi của hàm sin và cos, từ đó xuất hiện nhân tử chung ở hai vế ( ) ( )2sin x 1 2cos x 1 2 sin x cos x 1 cos x∗ ⇔ + − + = + ( ) ( ) 22sin x cos x 2 sin x cos x 1 cos x 2sin x cos x cos x 1 1 cos x 0⇔ + = + ⇔ + − + = ( )( ) ( ) 21 x k2cos x 3cos x 1 sin2x 1 0 k, l2 sin2x 1 x l 4 π = ± + π = − ⇔ + − = ⇔ ⇔ ∈ π= = + π ℤ . Lời bình: Từ việc xuất hiện hai cung 3x 2 π − và 7 x 4 π − giúp ta suy nghĩ đến việc đưa hai cung khác nhau này về cùng một cung chung là x . Để làm được điều đó, ta có thể dùng công thức cộng cung hoặc dùng câu thần chú "cos đối – sin bù – phụ chéo''. Ta thực hiện hai ý tưởng đó qua hai cách giải sau đây Bài giải tham khảo Cách giải 1. Sử dụng công thức cộng cung: ( )sin a b chúng tôi chúng tôi b± = ± Bài 6. Giải phương trình: ( ) 1 1 7 4 sin x sin x 43 sin x 2 π + = − ∗ π − Trích đề thi tuyển sinh Đại học khối A năm 2008 Bài 5. Giải phương trình: ( ) ( ) sin x 1 cos2x sin2x 1 cos x+ + = + ∗ Trích đề thi tuyển sinh ĐạiBài Tập Phương Trình Lượng Giác Nâng Cao Lớp 11
Bài 1: giải các phương trình Bài 2: Tìm nghiệm thuộc khoảng (0; 2) của phương trình: Bài 3: Tìm xnghiệm đúng của phương trình: cos3x – 4cos2x + 3cosx – 4= 0 Bài 4: Xác định m để phương trình 2(sin4x + cos4x) + cos4x + 2sin2x + m = 0 có ít nhất 1 nghiệm thuộc đoạn Bài 5: Cho phương trình: Giải phương trình (1) khi a = Tìm a để phương trình (1) có nghiệm. Bài 6: Tìm x thỏa mãn phương trình Bài 7: Cho phương trình: 4cos3x + (m – 3)cosx – 1 = cos2x Giải phương trình khi m = 1 Tìm m để phương trình có đúng 4 nghiệm phân biệt thuộc khoảng BÀI TẬP PHƯƠNG TRÌNH LƯỢNG GIÁC NÂNG CAO LỚP 11 Bài 1. Giải các phương trình Bài 2. Giải các phương trình (Dạng: at2 + bt + c = 0) Bài 3. Giải các phương trình Bài 4. Giải phương trình. (Phương trình đẳng cấp đối với sinx và cosx) Bài 5. Giải các phương trình.(Dạng: asinx + bcosx = c) Bài 6. Tìm nghiệm của phương trình sau trong khoảng đã cho. với với với với Bài 7. Tìm giá trị lớn nhất, nhỏ nhất của hàm số. Bài 8. Tìm TXĐ Bài 9. Giải các phương trình (Dạng đối xứng và phản đối xứng) Bài 10. Giải các phương trình ĐẠI HỌC NGOẠI THƯƠNG 2000 sin^8 x + cos^8 x = 2(sin^10 x + cos^10 x ) + 5/4 cos2x ĐẠI HỌC NGOẠI NGỮ 1999 2sin^3 x -- cos2x +cosx = 0 ĐẠI HỌC NGOẠI NGỮ 2000 1+ cos^3 x -- sin^3 x =sin2x HỌC VIỆN QUAN HỆ QUỐC TẾ 1989 cos^2 x +cos^2 2x + cos^2 3x +cos^ 4x = 3/2 ĐẠI HỌC QUỐC GIA 1989 - khối B sin^3 x + cos^3 x = 2(sin^5 x + cos^5 x ) ĐẠI HỌC QUỐC GIA 1989 khối D sin^2 x = cos^2 2x + cos^2 3x ĐẠI HỌC QUỐC GIA 2000 khối B cos^6 x -- sin^6 x = 13/8 cos^2 2x ĐẠI HỌC SƯ PHẠM HỒ CHÍ MINH 2000 – KB 2cos^2 x + 2cos^2 2x + 2cos^2 3x -- 3 = cos4x(2sin2x +1) ĐẠI HỌC Y HÀ NỘI 1999 4sin^3 x -- sin x -- cosx = 0 ĐẠI HỌC Y HÀ NỘI 2000 sin 4x = tan x ĐẠI HỌC QUỐC GIA 2000 –KA 2sin2x --cos2x = 7sin x + 2cos -- 4 ĐẠI HỌC SƯ PHẠM 2000 4cos^3 x + 3sqrt[n]{2} sin 2x = 8cosx
Phương Trình Lượng Giác Chứa Căn Và Phương Trình Lượng Giác Chứa Giá Trị Tuyệt Đối
PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA CĂN VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA GIÁ TRỊ TUYỆT ĐỐI A) PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA CĂN Cách giải : Áp dụng các công thức A 0 B A B 0 A B A ≥ ≥⎧ ⎧= ⇔ ⇔⎨ ⎨ B= =⎩ ⎩ 2 B 0 A B A B ≥⎧= ⇔ ⎨ =⎩ Ghi chú : Do theo phương trình chỉnh lý đã bỏ phần bất phương trình lượng giác nên ta xử lý điều kiện B bằng phương pháp thử lại và chúng tôi bỏ 0≥ các bài toán quá phức tạp. Bài 138 : Giải phương trình ( )5cos x cos2x 2sin x 0 *− + = ( )* 5cos x cos2x 2sin x⇔ − = − 2 sin x 0 5cos x cos2x 4sin x ≤⎧⇔ ⎨ − =⎩ ( ) (2 2 sin x 0 5cos x 2cos x 1 4 1 cos x ≤⎧⎪⇔ ⎨ − − = −⎪⎩ ) = 2 sin x 0 2cos x 5cos x 3 0 ≤⎧⇔ ⎨ + −⎩ ( ) sin x 0 1cos x cos x 3 loại 2 ≤⎧⎪⇔ ⎨ = ∨ = −⎪⎩ ≤⎧⎪⇔ π⎨ = ± + π ∈⎪⎩ π⇔ = − + π ∈ sin x 0 x k2 , k 3 x k2 , k 3 Bài 139 : Giải phương trình 3 3 3 3sin x cos x sin x cot gx cos xtgx 2sin2x+ + + = Điều kiện : cos x 0 sin 2x 0 sin x 0 sin 2x 0 sin 2x 0 sin2x 0 Lúc đó : ( ) 3 3 2 2* sin x cos x sin x cos x cos xsin x 2sin2x⇔ + + + = ( ) ( )2 2sin x sin x cos x cos x cos x sin x 2sin2x⇔ + + + = ( ) ( )2 2sin x cos x sin x cos x 2sin 2x⇔ + + = ( )2 sin x cos x 0 sin x cos x 2sin2x + ≥⎧⎪⇔ ⎨ + =⎪⎩ ( ) sin x 02 sin x 0 44 sin2x 1 nhận do sin2x 01 sin2x 2sin2x ( ) ⎧ π ⎧ π⎛ ⎞ ⎛ ⎞+ ≥ + ≥⎜ ⎟ ⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠ ⎝ ⎠⇔ ⇔⎨ ⎨π π π⎪ ⎪= + π ∈ = + π ∨ = + π ∈⎪ ⎪⎩ ⎩ sin x 0 sin x 0 4 4 5x k , k x m2 x m2 loại , m 4 4 4 π⇔ = + π ∈ x m2 ,m 4 Bài 140 : Giải phương trình ( )π⎛ ⎞+ = ⎜ ⎟⎝ ⎠ 21 8sin chúng tôi 2x 2sin 3x * 4 + Ta có : (*) 2 2 sin 3x 0 4 1 8sin2x cos 2x 4sin 3x 4 ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π⎛ ⎞⎪ + = ⎜ ⎟⎪ ⎝ ⎠⎩ + ( ) ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π⎡ ⎤⎪ + + = − +⎢ ⎥⎪ ⎣ ⎦⎩ sin 3x 0 4 1 4 sin 2x 1 cos 4x 2 1 cos( 6x ) 2 ( ) ( sin 3x 0 4 1 4sin2x 2 sin6x sin2x 2 1 sin6x ⎧ π⎛ ⎞+ ≥⎪ ⎜ ⎟⇔ ⎝ ⎠⎨⎪ + + − = +⎩ ) ⎧ π ⎧ π⎛ ⎞ ⎛ ⎞+ ≥ + ≥⎜ ⎟ ⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠ ⎝ ⎠⇔ ⇔⎨ ⎨ π π⎪ ⎪= = + π ∨ = + π ∈⎪ ⎪⎩ ⎩ sin 3x 0 sin 3x 0 4 4 1 5sin 2x x k x k , k 2 12 12 So lại với điều kiện sin 3x 0 4 π⎛ ⎞+ ≥⎜ ⎟⎝ ⎠ Khi x k thì 12 π• = + π sin 3x sin 3k cosk 4 2 π π⎛ ⎞ ⎛ ⎞+ = + π =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ π ( ) ( ) ( ) ( ) ⎡= ⎢−⎢⎣ 1 , nếu k chẵn nhận 1, nếu k lẻ loại π• = + π5Khi x k thì 12 π π π⎛ ⎞ ⎛ ⎞ ⎛+ = + π = − + π⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝ 3sin 3x sin 3k sin k 4 2 2 ⎞⎟⎠ ( ) ( ) −⎡= ⎢⎢⎣ 1,nếu k chẵn loại 1, nếu k lẻ nhận Do đó ( ) ( )π π⇔ = + π ∨ = + + π ∈ 5* x m2 x 2m 1 ,m 12 12 Bài 141 : Giải phương trình ( )1 sin2x 1 sin2x 4cos x * sin x − + + = Lúc đó : ( )* 1 sin2x 1 sin2x 2sin2x⇔ − + + = ( hiển nhiên sinx = 0 không là nghiệm , vì sinx =0 thì VT = 2, VP = 0 ) 2 22 2 1 sin 2x 4sin 2x sin2x 0 ⎧⎪ + − =⇔ ⎨ ≥⎪⎩ 2 21 sin 2x 2sin 2x 1 sin2x 0 ⎧⎪ − =⇔ ⎨ ≥⎪⎩ − 2 4 2 2 1 sin 2x 4sin 2x 4sin 2x 1 1sin 2x 2 sin2x 0 ⎧ − = −⎪⎪⇔ ≥⎨⎪ ≥⎪⎩ + ( )2 2sin 2x 4sin 2x 3 0 1sin 2x 2 ⎧ − =⎪⇔ ⎨ ≥⎪⎩ ⎧ −= ∨ =⎪⎪⇔ ⎨⎪ ≥⎪⎩ 3 3sin 2x sin 2x 2 2 2sin 2x 2 3sin2x 2 ⇔ = π π⇔ = + π ∨ = + π ∈ 22x k2 2x k2 , k 3 3 π π⇔ = + π ∨ = + π ∈ x k x k , k 6 3 Chú ý : Có thể đưa về phương trình chứa giá trị tuyệt đối ( ) ≠⎧⎪⇔ ⎨ − + + =⎪⎩ ⇔ − + + = sin x 0 * cos x sin x cos x sin x 2sin 2x cos x sin x cos x sin x 2sin 2x Bài 142 : Giải phương trình ( )+ + + =sin x 3 cos x sin x 3 cos x 2 * Đặt sin 3t sin x 3 cos x sin x cos x cos 3 π = + = + π 1t sin x 2sin x 3 3cos 3 π π⎛ ⎞ ⎛ ⎞⇔ = + = +⎜ ⎟ ⎜ ⎟π ⎝ ⎠ ⎝ ⎠ ( ) + =* thành t t 2 ⇔ = − − ≥ ≤⎧ ⎧⇔ ⇔⎨ ⎨= − + − + =⎩ ⎩ ≤⎧⇔ ⇔ =⎨ = ∨ =⎩ 2 2 t 2 t 2 t 0 t 2 t 4 4t t t 5t 4 0 t 2 t 1 t 1 t 4 Do đó ( ) * π π π π π⎛ ⎞⇔ + = ⇔ + = + π + = + π ∈⎜ ⎟⎝ ⎠ 1 5sin x x k2 hay x k2 , k 3 2 3 6 3 6 π π⇔ = − + π ∨ = + π ∈ x k2 x k2 , k 6 2 Bài 143 : Giải phương trình ( ) ( ) ( )+ + = +3 tgx 1 sin x 2 cos x 5 sin x 3cos x * Chia hai vế của (*) cho cos x 0≠ ta được ( ) ( ) ( )* 3 tgx 1 tgx 2 5 tgx 3⇔ + + = + Đặt u tgx 1 với u= + ≥ 0 x Thì 2u 1 tg− = (*) thành ( ) ( )2 23u u 1 5 u 2+ = + 3 23u 5u 3u 10 0⇔ − + − = ( ) ( )2u 2 3u u 5 0⇔ − + + = ( )2u 2 3u u 5 0 vô nghiệm⇔ = ∨ + + = Do đó ( ) ⇔* tgx 1 2+ = tgx 1 4⇔ + = tgx 3 tg với 2 2 π π⎛ ⎞⇔ = = α − < α <⎜ ⎟⎝ ⎠ ,x k kα π⇔ = + ∈ Bài 144 : Giải phương trình ( ) ( )11 cos x cos x cos2x sin4x *2− + = ( ) ( )* 1 cos x cos x cos2x sin 2x cos2x⇔ − + = ≥⎧⇔ − +⎨ =⎩ cos x 0 hay 1 cos x cos x sin 2x cos 2x 0 = ⎧ ≥≥⎧ ⎪⎪⇔ ≥⎨ ⎨π= + π ∈⎪ ⎪⎩ + − =⎩ 2 cos x 0cos x 0 hay sin 2x 0 2x k , k 2 1 2 (1 cos x)cosx sin 2x ⎧ ≥≥⎧ ⎪⎪⇔ ≥⎨ ⎨π π= + ∈⎪ ⎪⎩ + − = ≥ ≥⎩ 2 cos x 0cos x 0 hay sin 2x 0 x k , k 4 2 1 2 (1 cos x)cosx sin 2x ( VT 1 VP ) ≥⎧≥ ⎪⎧ ≥⎪ ⎪⇔ ⎨ ⎨π π= ± + π = ± + π ∈ =⎪ ⎪⎩ ⎪ − =⎩ 2 cos x 0 cos x 0 sin 2x 0 hay5x h hay x h , h sin 2x 1 4 4 (1 cos x ) cos x 0 π⇔ = ± + π ∈ = =⎧ ⎧⎨ ⎨= ⇒ = = ⇒ = ⇒ =⎩ ⎩ x h , h 4 sin 2x 1 sin 2x 1 hay hay cos x 0 ( sin 2x 0 ) cos x 1 ( sin x 0 sin 2x 0 ) π⇔ = ± + π ∈ x h , h 4 Bài 145 : Giải phương trình ( ) ( ) ( )3 3sin x 1 cot gx cos x 1 tgx 2 sin x cos x *+ + + = ( ) 3 3sin x cos x cos x sin x* sin x cos x 2 sin x cos sin x cos x + +⎛ ⎞ ⎛ ⎞⇔ + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ x ( ) ( )2 2sin x cos x sin x cos x 2 sin x cos x⇔ + + = sin x cos x 0 1 sin2x 2sin2x + ≥⎧⇔ ⎨ + =⎩ ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪+ ≥⎧ ⎪ ⎝ ⎠⇔ ⇔⎨ ⎨= π⎩ ⎪ = + π ∈⎪⎩ sin x 0sin x cos x 0 4 sin 2x 1 x k , k 4 ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π π⎪ + = + π ∈⎪⎩ sin x 0 4 x k , k 4 2 ⎧ π⎛ ⎞+ ≥⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π π π π⎪ + = + π + = + π ∈⎪⎩ sin x 0 4 3x h2 hay x h2 , h 4 2 4 2 π⇔ = + π ∈ x h2 , h 4 Bài 146 : Giải phương trình ( )cos2x 1 sin2x 2 sin x cos x *+ + = + Điều kiện cos2x 0và sin x 0 4 π⎛ ⎞≥ +⎜ ⎟⎝ ⎠ ≥ Lúc đó : ( ) ( )22 2* cos x sin x cos x sin x 2 cos x sin x⇔ − + + = + ( ) ( )2 22 2cos x sin x cos x sin x 2 cos2x cos x sin x⇔ − + + + + ( )4 sin x cos x= + ( ) ( ) ( )cos x cos x sin x sin x cos x cos2x 2 sin x cos x⇔ + + + = + sin x cos x 0 cos x cos2x 2 + =⎡⇔ ⎢ + =⎣ ( ) tgx 1 cos2x 2 cos x * * = −⎡⇔ ⎢ = −⎢⎣ 2 tgx 1 cos2x 4 4cos x cos x = −⎡⇔ ⎢ = − +⎣ 2tgx 1 cos x 4cosx 5 0⇔ = − ∨ + − = ( )tgx 1 cos x 1 cos x 5 loại⇔ = − ∨ = ∨ = − π⇔ = − + π ∨ = π ∈ x k x k2 , k 4 Thử lại : ( )π π⎛ ⎞• = − + π = − =⎜ ⎟⎝ ⎠x k thì cos2x cos 0 nhận4 2 Và ( )sin x sin k 0 nhận 4 π⎛ ⎞+ = π =⎜ ⎟⎝ ⎠ ( )• = π =x k2 thì cos 2x 1 nhận và ( )cos x cos 0 nhận 4 4 Do đó (*) π⇔ = − + π ∨ = π ∈ x k x k2 , k 4 Chú ý : Tại (**) có thể dùng phương trình lượng giác không mực ( ) cos x cos2x 2* * sin x cos x 0 ⎧ + =⎪⇔ ⎨ + ≥⎪⎩ 2 cos x 1 cos2x 2cos x 1 1 sin x cos x 0 =⎧⎪⇔ = −⎨⎪ + ≥⎩ = π ∈ =⎧⇔ ⇔ =⎨ + ≥⎩ cos x 1 x 2k , k sin x cos x 0 Cách khác ( ) ( )22 2* cos x sin x cos x sin x 2 cos x sin x⇔ − + + = + ( )⇔ + − + + = +2(cos x sin x).(cos x sin x ) cos x sin x 2 cos x sin x ( ) cos x sin x 0 cos x sin x 0 hay cos x sin x cos x sin x 2 cos x sin x 0 tgx 1 hay 2cos x 2 cos 2x 4 cos x sin x 0 tgx 1 hay cos x cos 2x 2 =⎧π⇔ = − + π ∈ ⎨ =⎩ cos x 1 x k , k hay cos 2x 14 π⇔ = − + πx k hay = π ∈ 4 x 2k , k BÀI TẬP 1. Giải phương trình : a/ 1 sin x cosx 0+ + = b/ 2 2 4xcos cos x 3 0 1 tg x − =− c/ sin x 3 cos x 2 cos2x 3 sin 2x+ = + + d/ 2sin x 2sin x 2 2sin x 1− + = − e/ = −− 3tgx2 3sin x 3 2 sin x 1 f/ 2 4sin 2x cos 2x 1 0 sin cos x + − = g/ + − + =28 cos 4x cos 2x 1 cos 3x 1 0 h/ 2sin x sin x sin x cosx 1+ + + = k/ 25 3sin x 4 cos x 1 2cos x− − = − l/ 2cos2x cos x 1 tgx= + 2. Cho phương trình : ( )1 sin x 1 sin x mcos x 1+ + − = a/ Giải phương trình khi m = 2 b/ Giải và biện luận theo m phương trình (1) 3. Cho f(x) = 3cos62x + sin42x + cos4x – m a/ Giải phương trình f(x) = 0 khi m = 0 b/ Cho ( ) 2 2g x 2cos 2x 3cos 2x 1= + . Tìm tất cả các giá trị m để phương trình f(x) = g(x) có nghiệm. ( )ĐS : 1 m 0≤ ≤ 4. Tìm m để phương trình sau có nghiệm 1 2cosx 1 2sin x m+ + + = ( )ĐS : 1 3 m 2 1 2+ ≤ ≤ + B) PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA CÁC TRỊ TUYỆT ĐỐI Cách giải : 1/ Mở giá trị tuyệt đối bằng định nghĩa 2/ Áp dụng A B A• = ⇔ = ±B ≥≥ ≥⎧⎧ ⎧• = ⇔ ⇔ ⇔ ∨⎨ ⎨ ⎨ ⎨ <⎧= ± ==⎩ ⎩⎩ 2 2 B 0B 0 A 0 A 0 A B = −⎩A B A BA B A B Bài 147 : Giải phương trình ( )cos3x 1 3 sin3x *= − ( ) 2 2 1 3 sin3x 0 * cos 3x 1 2 3 sin3x 3sin 3x ⎧ − ≥⎪⇔ ⎨ = − +⎪⎩ ⎧ ≤⎪⇔ ⎨⎪ − = − +⎩ 2 2 1sin 3x 3 1 sin 3x 1 2 3 sin 3x 3sin 3x ⎧ ≤⎪⇔ ⎨⎪ − =⎩ 2 1sin 3x 3 4 sin 3x 2 3 sin 3x 0 ⎧ ≤⎪⎪⇔ ⎨⎪ = ∨ =⎪⎩ 1sin 3x 3 3sin 3x 0 sin 3x 2 ⇔ = π⇔ = ∈ sin 3x 0 kx , k 3 Bài 148 : Giải phương trình ( )3sin x 2 cos x 2 0 *+ − = ( )* 2 cos x 2 3sin⇔ = − x 2 2 2 3sin x 0 4cos x 4 12sin x 9sin x − ≥⎧⇔ ⎨ = − +⎩ ( ) ⎧ ≤⎪⇔ ⎨⎪ − = − +⎩ 2 2 2sin x 3 4 1 sin x 4 12sin x 9sin x ⎧ ≤⎪⇔ ⎨⎪ − =⎩ 2 2sin x 3 13sin x 12sin x 0 ⎧ ≤⎪⎪⇔ ⎨⎪ = ∨ =⎪⎩ 2sin x 3 12sin x 0 sin x 13 ⇔ = ⇔ = π ∈ sin x 0 x k , k Bài 149 : Giải phương trình ( )sin x cos x sin x cos x 1 *+ + = Đặt t sin x cos x 2 sin x 4 π⎛ ⎞= + = +⎜ ⎟⎝ ⎠ Với điều kiện : 0 t 2≤ ≤ Thì 2t 1 2sin xcos= + x Do đó (*) thành : 2t 1 t 1 2 − + = ( ) 2t 2t 3 0 t 1 t 3 loại ⇔ + − = ⇔ = ∨ = − Vậy ( ) ⇔* 21 1 2sin xcos= + x ⇔ = π⇔ = ∈ sin 2x 0 kx , k 2 Bài 150 : Giải phương trình ( )sin x cos x 2sin 2x 1 *− + = Đặt ( )t sin x cos x điều kiện 0 t 2= − ≤ ≤ Thì 2t 1 sin2= − x ( ) ( )2* thành: t 2 1 t 1+ − = ( ) 22t t 1 0 1t 1 t loại dođiều kiện 2 ⇔ − − = ⇔ = ∨ = − khi t = 1 thì 21 1 sin2= − x ⇔ = π⇔ = ∈ sin 2x 0 kx , k 2 Bài 151 : Giải phuơng trình ( )4 4sin x cos x sin x cos x *− = + ( ) ( ) ( )2 2 2 2* sin x cos x sin x cos x sin x cos x⇔ + − = + cos2x sin x cos x⇔ − = + 2 cos2x 0 cos 2x 1 2 sin x cos x − ≥⎧⎪⇔ ⎨ = +⎪⎩ 2 cos2x 0 1 sin 2x 1 sin2x ≤⎧⎪⇔ ⎨ − = +⎪⎩ 2 cos2x 0 sin2x sin 2x ≤⎧⎪⇔ ⎨ = −⎪⎩ cos2x 0 sin2x 0 ≤⎧⇔ ⎨ =⎩ 2 cos2x 0 cos2x 1 cos 2x 1 ≤⎧⇔ ⇔⎨ =⎩ = − π⇔ = + π ∈ x k , k 2 Bài 152 : Giải phương trình ( )23 sin2x 2cos x 2 2 2cos2x *− = + Ta có : ( ) ( )2 2* 2 3 sin x cos x 2cos x 2 2 2 2cos x 1⇔ − = + − 3 1cos x sin x cos x cos x 2 2 ⎛ ⎞⇔ −⎜ ⎟⎜ ⎟⎝ ⎠ = cos chúng tôi x cos x 6 π⎛ ⎞⇔ − =⎜ ⎟⎝ ⎠ cos x 0 cos x 0 cos x 0 sin x 1 sin x 1 6 6 > <⎧ ⎧⎪ ⎪⇔ = ∨ ∨π π⎨ ⎨⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎩ = − > <⎧ ⎧⎪ ⎪⇔ = ∨ ∨π π π π⎨ ⎨− = + π ∈ − = − + π ∈⎪ ⎪⎩ ⎩ cos x 0 cos x 0 cos x 0 x k2 , k x k2 , k 6 2 6 2 > <⎧ ⎧π ⎪ ⎪⇔ = + π ∈ ∨ ∨π π⎨ ⎨= + π ∈ = − + π ∈⎪ ⎪⎩ ⎩ cos x 0 cos x 0 x k , k 22 x k2 , k x k2 , k 3 3 π⇔ = + π ∈ x k , k 2 Bài 153 : Tìm các nghiệm trên ( )0,2π của phương trình : ( )sin3x sin x sin2x cos2x * 1 cos2x − = +− Ta có : ( ) 2cos2xsin x* 2 co 42 sin x s 2x π⎛ ⎞⇔ = ⎜ ⎟⎝ ⎠− Điều kiện : sin x 0 x k≠ ⇔ ≠ π ( )* 2 cos2x 2 cos 2x 4 π⎛ ⎞⇔ = ⎜ ⎟⎝ ⎠− ( ) π⎛ ⎞⇔ = ± − + π ∈⎜ ⎟⎝ ⎠ π⇔ = + π ∈ π π⇔ = + ∈ π π∈ π = = 2x 2x k2 , k 4 4x k2 , k 4 kx , k 16 2 9Do x 0, nên x hay x 16 16 Khi ( )x ,2∈ π π thì sinx < 0 nên : ( ) ( ) ( ) π⎛ ⎞⇔ − = −⎜ ⎟⎝ ⎠ π⎛ ⎞⇔ π − = −⎜ ⎟⎝ ⎠ π⇔ − = ± π − + π ∈ π⇔ = + π ∈ π π⇔ = + ∈ * cos 2x cos 2x 4 cos 2x cos 2x 4 2x 2x k2 , k 4 54x k2 , k 4 5 kx , k 16 2 Do ( )x ,2∈ π π π π= ∨ = •21 29nên x x 16 16 Bài 154 Cho phương trình : 6 6sin x cos x a sin 2x (*)+ = Tìm a sao cho phương trình có nghiệm. Ta có : ( ) ( ) ( ) + = + − + = + − = − 6 6 2 2 4 2 2 4 22 2 2 2 2 sin x cos x sin x cos x sin x sin x cos x cos x sin x cos x 3sin x cos x 31 sin 2x 4 Đặt t = sin 2x điều kiện 0 t 1≤ ≤ thì (*) thành : ( )− =231 t at * * 4 1 3 t a t 4 ⇔ − = (do t = 0 thì (**) vô nghiệm) Xét ( ]= − =1 3y t trên D t 4 0,1 thì 2 1 3y ‘ 0 t 4 = − − < Do đó : (*) có nghiệm 1a 4 ⇔ ≥ • Bài 155 Cho phương trình ( )= +2cos 2x m cos x 1 tgx * Tìm m để phương trình có nghiệm trên 0, 3 π⎡ ⎤⎢ ⎥⎣ ⎦ Đặt t = tgx thì Vậy : (*) thành: ( )21 t m 1 t * *− = + (chia 2 vế cho ) 2cos 0≠ Khi 0 x 3 π≤ ≤ thì t 0, 3⎡ ⎤∈ ⎣ ⎦ Vậy (**) ( ) ( ) ( )2 1 t 1 t1 tm 1 1 t 1 t − +−⇔ = = = − ++ + t 1 t Xét ( )y 1 t 1 t trên 0, 3⎡ ⎤= − + ⎣ ⎦ Ta có ( ) ( ) ( )− − + + −= − + + =+ + − − ⎡ ⎤⇔ = < ∀ ∈ ⎣ ⎦+ 1 t 2 1 t 1 t y ‘ 1 t 2 1 t 2 1 t 3t 1y ‘ 0 t 0, 3 2 1 t Do đó : (*) có nghiệm trên 0, 3 π⎡ ⎤⎢ ⎥⎣ ⎦ ( )1 3 1 3 m 1⇔ − + ≤ ≤ • BÀI TẬP 1. Giải các phương trình 2 2 a/ sin x cox 1 4sin2x b/ 4sin x 3 cos x 3 1c/ tgx cot gx cos x 1 1 1 1 3cosd/ 2 2 sin x 1 cos x 1 cos x sin x 1e/ cot gx tgx sin x f/ 2cos x sin x 1 1 cos x 1 cos xg/ 4sin x cos x 1 cos2x 1h/ 2 cos x sin x 2 m/ cos2x 1 − = − + = = + ⎛ ⎞++ − = − ⎜ ⎟− + ⎝ ⎠ = + − = + + − = − ⎛ ⎞= −⎜ ⎟⎝ ⎠ + + x 3 3 2 sin x cos xsin2x 2 n/ cos x sin3x 0 1r/ cot gx tgx sin x s/ cos x 2sin2x cos3x 1 2sin x cos2x tg x 1o/ tgx 1 tgx 1 tgx 1 p/ sin x cos x sin x cos x 2 += + = = + + − = + − = + +− − − + + = 2. sin x cos x a sin 2x 1+ + = Tìm tham số a dương sao cho phương trình có nghiệm 3. Cho phương trình: sin x cos x 4sin 2x m− + = a/ Giải phương trình khi m = 0 b/ Tìm m để phương trình có nghiệm (ĐS 652 4 m 16 − ≤ ≤ ) Th.S Phạm Hồng Danh (TT luyện thi ĐH Vĩnh Viễn)
Phương Trình Lượng Giác (Đầy Đủ)
I/ PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN.1. Phương trình: . + Nếu (hay ) thì phương trình vô nghiệm + Nếu (hay ) Khi đó:
VD 01. Giải các phương trình lượng giác sau: a) ; b) ; c) ; d) ; e) ; f) ; g) ; h) ; i) ; j) ;Lưu ý: (1). Nếu a không phải là các giá trị đặc biệt thì ta sử dụng hàm ngược của hàm sin (arcsin) trình bày các họ nghiệm của phương trình như sau:
(2). Các trường hợp đặc biệt:
2. Phương trình: . + Nếu (hay ) thì phương trình vô nghiệm + Nếu (hay ) Khi đó:
VD 02. Giải các phương trình lượng giác sau: a) ; b) ; c) ; d) ; e) ; f) ; g) ; h) ; i) ; j) ;Lưu ý: (1). Nếu a không phải là các giá trị đặc biệt thì ta sử dụng hàm ngược của hàm cos (arccos) trình bày các họ nghiệm của phương trình như sau:
(2). Các trường hợp đặc biệt:
3. Phương trình: ,
VD 03. Giải các phương trình lượng giác sau: a) ; b) ; c) ; d) ; e) ; f) ;Lưu ý: Nếu a không phải là các giá trị đặc biệt thì ta sử dụng hàm ngược của hàm tan (arctan) trình bày các họ nghiệm của phương trình như sau:
4. Phương trình: ,
VD 04. Giải các phương trình lượng giác sau: a) ; b) ; c) ; d) ; e) ; f) ;Lưu ý: Nếu a không phải là các giá trị đặc biệt thì ta sử dụng hàm ngược của hàm tan (arctan) trình bày các họ nghiệm của phương trình như sau:
5. Mở rộng:Mở rộng 1. Sử dụng MTBT để giải phương trình lượng giác:VD 05. Giải các phương trình sau: a) b) c) Mở rộng 2. (Cung chứa bội):VD 06. Giải các phương trình sau: a) b) c) Mở rộng 3. (Cung chứa tổng):VD 07. Giải các phương trình sau: a) b) c) d) e) f) g) h) i) Mở rộng 4. Phương trình tích (đơn giản): A.B = 0 VD 08. Giải các phương trình sau: a) b) c) d) e) f)
Bạn đang xem bài viết Phương Trình Lượng Giác Và Ứng Dụng (Nâng Cao) trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!