Xem Nhiều 3/2023 #️ Tính Toán Ma Trận Và Giải Hệ Phương Trình Tuyến Tính Trong Mathematica # Top 7 Trend | Caffebenevietnam.com

Xem Nhiều 3/2023 # Tính Toán Ma Trận Và Giải Hệ Phương Trình Tuyến Tính Trong Mathematica # Top 7 Trend

Cập nhật thông tin chi tiết về Tính Toán Ma Trận Và Giải Hệ Phương Trình Tuyến Tính Trong Mathematica mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.

Xây dựng các ma trận

Table[f, {i,m}, {j,n}] Xây dựng ma trận cỡ m x n với là hàm của i, j để phát sinh phần tử khi i, j chạy từ 1 tới m, n Table[Random[], {m}, {n}] Sinh ma trận ngẫu nhiên cỡ m x n Sinh ma trận m x n tam giác dưới Array[f, {m,n}] Sinh ma trận m x n các phần tử dạng f[i,j] DiagonalMatrix[{...}] Sinh ma trận đường chéo, các phần tử trên đường chéo ở trong tham số danh sách IdentityMatrix[n] Tạo ma trận đơn vị cấp n Normal[SparseArray[ MatrixForm[] Hiện thị ma trận với định dạng lưới chữ nhật

Ví dụ:

In[1]:=

Table[a[i, j], {i, 2}, {j, 2}]

Out[1]:=

( left( begin{array}{cc} a(1,1) & a(1,2) \ a(2,1) & a(2,2) \ end{array} right) )

Đọc và cập nhật dữ liệu phần tử ma trận

m[[i, j]] Truy cập phần tử ma trận m ở vị trí dòng i, cột j (để đọc hoặc gán) m[[i]] Dòng thứ i của ma trận m (để đọc hoặc gán) m[All,[i]] Cột thứ i của ma trận m (để đọc hoặc gán) Take[m, {i0, i1}, {j0, j1}] Ma trận con từ m (trích từ dòng i0 đến i1, cột j0 đến j1) Tr[m, List] Các phần tử trên đường chéo ArrayRules[m] Những vị trí có giá trị khác 0 của ma trận VectorQ[expr] True nếu expr là một vector MatrixQ[expr] True nếu expr là ma trận Dimensions[expr] Lấy cỡ ma trận

Một số phép toán trên ma trận, vector

Những phép toán dựa trên các hàm Mathematica lấy ma trận (vector, danh sách) làm tham số thì nó sẽ thực hiện trên từng phần tử của ma trận đó.

Ví dụ:

In[1]:=

Sqrt[{a, b, c}]

Out[1]:=

( left{sqrt{a},sqrt{b},sqrt{c}right} )

Tổng hai vector cùng cỡ sẽ thực hiện trên các phần tử tương ứng của 2 vector, nhưng nếu cộng một số với một vector thì số đó cộng với từng phần tử của vector (tương tự cho nhân, chia).

In[1]:=

{a, b} + {c , d}

Out[1]:=

{a + c, b + d}

In[1]:=

c {a, b}

Out[1]:=

{a c, b c}

Nhân hai ma trận

Nhân 2 ma trận thì dùng ký hiệu dấu chấm m . v

In[1]:=

{{a, b}, {c, d}} . {{1, 2}, {3, 4}}

Out[1]:=

{{a + 3 b, 2 a + 4 b}, {c + 3 d, 2 c + 4 d}}

Nghịch đảo ma trận

Inverse[m] tìm ma trận nghịch đảo của ma trận m

In[1]:=

Inverse[{{1, -2}, {3, 2.}}]

Out[1]:=

{{0.25, 0.25}, {-0.375, 0.125}}

Transpose[m] Chuyển trí ma trận Inverse[m] Nghịch đảo ma trận Det[m] Tính định thức ma trận MatrixRank[m] Hạng ma trận m Eigenvalues[m] Trị riệng của m Eigenvectors[m] Vector riêng của m

Giải hệ phương trình tuyến tính

Phương trình tuyến tính dạng m . x = b có nghiệm duy nhất khi Det[ m ] != 0, nếu bằng 0 thì vô nghiệm hoặc vô số nghiệm

LinearSolve[m, b] Giải hệ m . x = b Inverse[m].[b] Tương đương với giải hệ bằng LinearSolve NullSpace[m] Giải hệ m.x = {0 .. 0} (hệ có vector hệ số bằng 0)

Ví dụ:

m = {{1, 5}, {2, 1}} m . {x, y} == {a, b} Solve[%, {x, y}] LinearSolve[m, {a, b}]

Giải Các Hệ Phương Trình Tuyến Tính

Giải các hệ phương trình tuyến tính

Giải pháp của một hệ phương trình tuyến tính là việc tìm ra các biến không xác định đi vào các phương trình, sự thay thế làm cho hệ thống bằng nhau.

Hệ phương trình tuyến tính có thể được giải quyết theo nhiều cách khác nhau, ví dụ, phương pháp Kramer hoặc phương pháp Gaus hoặc theo các cách khác. Sử dụng dịch vụ của chúng tôi, bạn có thể nhận các giải pháp trực tuyến miễn phí với các hành động và giải thích từng bước. Máy tính của chúng tôi cũng sẽ hữu ích nếu bạn cần kiểm tra tính toán của riêng bạn.

Xuất số thập phân

, số vị trí thập phân:

Giải pháp:

Mô tả

Cách sử dụng

Dịch vụ trực tuyến của chúng tôi cho phép chúng tôi giải quyết các hệ thống các phương trình đại số tuyến tính bằng nhiều cách:

bằng phương pháp của Cramer (quy tắc của Cramer)

phương pháp ma trận nghịch đảo

bằng phương pháp Gauss-Montante (thuật toán Bareys)

bằng phương pháp Gauss (phương pháp loại bỏ các biến số)

bằng phương pháp Gauss-Jordan (phương pháp loại bỏ hoàn toàn những thứ chưa biết)

Trong trường hợp này, dịch vụ cung cấp một loạt các giải pháp, không chỉ là câu trả lời.

Ngoài ra, bạn có thể kiểm tra hệ thống phương trình cho tính tương thích.

Sử dụng các dấu hiệu + và – để xác định số lượng yêu cầu của các biến trong phương trình. Nếu phương trình của bạn không bao gồm bất kỳ unknowns, sau đó chỉ cần để trống các lĩnh vực (trống).

Trong các tế bào, chỉ định các hệ số (giá trị) cho unknowns. Nếu dữ liệu nguồn được thiết lập để x1, x2 và như vậy, trong tế bào trước khi tiết lộ những điều không biết, chỉ định 1.

Giá trị của những thứ chưa biết có thể là:

số nguyên: 7, -3, 0

thập phân (hữu hạn và định kỳ) phân số: 7/8, 6.13, -1.3(56), 1.2e-4

biểu thức số học: 1/2+3*(6-4), (6-y)/x^3, 2^0.5

Sau đó nhấp chuột vào nút với tên của phép toán học cần thiết.

Các giá trị trong các kết quả giải pháp có thể được kéo bằng chuột đến trường dữ liệu nguồn.

Giải Hệ Phương Trình Bằng Máy Tính Fx 570 Es Plus

Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 1 Bí Kíp Công Phá Kì Thi THPT Quốc Gia Giải Hệ Phương Trình Bằng Máy Tính Fx 570 ES PLUS Version 2.0 I, Giới thiệu Xin chào tất cả các em! Khi các em đang đọc những dòng này là các em đang nắm trên tay bí kíp giải hệ phương trình giúp tăng khả năng lấy điểm thứ 9 của các em một cách dễ dàng hơn. Hi vọng, sau khi đọc xong tài liệu này, các em sẽ cảm thấy Hệ Phương Trình thật đơn giản và không còn thấy sợ câu thứ 9 này nữa. Ở phiên bản 2.0 này anh sẽ bổ sung, sửa đổi, hoàn thiện, nâng cấp rất nhiều vấn đề của version 1.0 II, Lý do chọn đề tài Có rất nhiều em gửi thắc mắc tới anh : "tại sao anh lại giải câu hệ như vậy ?" đó cũng là câu hỏi anh đã từng băn khoăn hồi còn ôn thi như các em, mà không một thầy giáo nào giải thích cho anh cả, anh phải tự mò mẫm cho mình 1 lý do, các thầy chỉ dạy cho mình phương pháp làm là chính chứ rất ít khi các thầy giải thích tại sao và thường chỉ đưa ra dấu hiệu là người ta cho thế này thì mình làm thế này. Nhưng hôm nay, anh sẽ trình bày với các em một hướng đi mới trong việc công pháp điểm thứ 9 này với máy tính fx 570 ES PLUS, đảm bảo học xong các em ở mức Trung Bình - khá chăm chỉ 1 chút cũng sẽ làm được, thực tế là sau khi anh phát hành version 1.0 đã khá nhiều bạn quay lại cảm ơn anh, vì đã làm thành công nhiều hệ phương trình. III, Yêu cầu chung 1. Có tinh thần Quyết tâm đỗ Đại Học !!! 2. Có kiến thức căn bản sử dụng các phương pháp thế, đưa về phương trình tích, phương pháp hàm số, phương pháp đánh giá... Ví dụ như: Đưa về phương trình tích 0 . 0 0 A A B B      Phương pháp hàm số: ( ) ( )f x f y mà hàm f đồng biến ( nghịch biến) trên đoạn  ;a b và  , ;x y a b Thì phương trình có nghiệm duy nhất là x = y Phương pháp đánh giá: thường là sử dụng BĐT Cô-Si vì BĐT này có trong SGK lớp 10 Ta có : , 0; 2a b a b ab    3. Có 1 chiếc máy tính có tính năng SOLVE : fx 570 es plus, fx 570 es, .... Lý do anh chọn Fx 570 ES PLUS vì đây là máy tính hiện đại nhất được mang vào phòng thi bây giờ và là bản nâng cấp của fx 570 es nên sẽ cho tốc độ cao hơn chút và có một số tính năng mới. IV, Nội Dung Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo .co m Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 2 Anh sẽ hướng dẫn các em công phá tất cả các hệ phương trình từ 2010 cho tới nay bằng máy fx 570 es plus theo cách tự nhiên và dễ hiểu nhất. * Đường lối chung để giải 1 hệ phương trình : Vậy vai trò của máy ở đây là gì ? Máy tính sẽ giúp ta làm chủ cuộc chơi chứ không phải tác giả nữa, tức là nhờ máy ta sẽ tìm được mối quan hệ ở Bước 2 để áp dụng phương pháp cho thích hợp, tránh hiện tượng "mò", và ở Bước 3 cũng vậy. Vai trò chính là giúp ta định hướng cách làm nhanh hơn.  Nội dung chính của tài liệu này: (Anh chỉ bám sát nội dung thi, không đi quá xa đà vào những hệ quá khó, quá phức tạp so với đề thi) Anh sẽ chia ra làm 2 dạng cơ bản : 1. Từ 1 phương trình là đã tìm luôn được quy luật ( 90% Đề thi thử và ĐH cho dạng này) Biểu hiện: khi cho Y nguyên thì X, 2X tìm được là số nguyên 2. Phải kết hợp 2 phương trình thì mới tìm ra được quy luật ( một số đề thi thử cho) Biểu hiện là cho Y nguyên nhưng được X, 2X rất lẻ Muốn tìm được quy luật giữa x và y của dạng này các em cần kết hợp 2 phương trình như cộng trừ 2 vế để khử số hạng tự do. *Sau khi tìm được mối liên hệ giữa X và Y thế vào 1 phương trình còn lại thì lại có 2 khả năng chính a. Bấm máy phương trình ra nghiệm đẹp : vậy là xác suất 90% xử lý được b. Bấm máy phương trình ra nghiệm xấu: Từ 1 trong 2 phương trình, hoặc phức tạp hơn là phải kết hợp 2 phương trình Mối quan hệ giữa x và y (muốn làm được điều này thì các em phải dùng các pp thế, đưa về phương trình tích, ẩn phụ, hàm số, đánh giá.) Thế vào 1 trong các phương trình để đưa về phương trình 1 ẩn, có thể là giải được luôn, hoặc có thể là một phương trình chứa căn phải dùng thêm phương pháp mới giải được, tùy vào mức độ đề thi Truy cập chúng tôi để download thêm các tài liệu học tập khác ho gb oc uo .co m Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 3 thường đề ĐH họ chỉ cho nghiệm xấu dạng a a b c       là những nghiệm của phương trình bậc 2, muốn xử lý được ta phải áp dụng định lý Vi-et đảo, anh sẽ nói rõ trong bài tập. Với phương pháp này các em có thể xử lý được 90% các hệ trong đề thi thử THPT Quốc Gia và đề thi chính thức, phương pháp này còn giúp chúng ta luyện giải phương trình vô tỷ rất tốt, thậm chí là bất phương trình vô tỉ. Nhưng phương pháp nào cũng có giới hạn của nó, có điểm mạnh điểm yếu riêng, anh sẽ trình bày cụ thể trong quá trình giải bài. *Dạng 1: Các mối quan hệ được rút ra từ 1 phương trình * Các ví dụ Ví dụ 1: (CĐ-2014) Giải hệ phương trình sau 2 2 2 2 x xy y 7 (x, y R) x xy 2y x 2y           * Nhận xét chung: Hệ gồm 2 phương trình 2 ẩn, điều đặc biệt là ở chỗ 1 phương trình có thể biến đổi được còn 1 phương trình thì không có gì mà biến đổi, nhìn qua thì các em thấy như vậy Vậy dàn ý chung là: từ phương trình biến đổi được đưa ra mối quan hệ x và y rồi thế vào phương trình không biến đổi được Bằng giác quan ta sẽ tìm các nào đó để xử lý phương trình số 2, các em đa số là sẽ cứ viết dùng đủ mọi cách nhóm và rồi tự biến đổi mò 1 lúc thì nó ra mối quan hệ x và y. Nhưng anh sẽ trình bày 1 phương pháp sử dụng máy tính để tìm mối liên hệ như sau: Sử dụng tính năng Solve: Các em biến đổi phương trình 2 về hết 1 vế : 2 2X XY 2Y X 2Y 0     Ấn trên máy: Alpha X 2x - Alpha X Alpha Y - 2 Alpha Y 2x Alpha + alpha X - 2 alpha Y ( không cần ấn = 0, khác version 1.0) Giải thích "Alpha X, Alpha Y" là gọi biến X, biến Y nhưng với máy tính thì mặc định X là biến, Y là tham số Sau đó các em bấm: Shift Solve Máy hiện : Y?  tức là máy hỏi ban đầu cho tham số Y bằng mấy để còn tìm X Các em khởi tạo giá trị ban đầu cho Y là 0 bằng cách nhập: 0 = Truy cập chúng tôi để download thêm các tài liệu học tập khác k on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 4 Bây giờ máy sẽ xử lý Máy hiện: X = 0 tức là khi y=0 thì có nghiệm x=0 -R= 0 sai số của nghiệm là 0 Rồi vậy là được Y=0 thì X=0 Tiếp theo các em ấn "mũi tên chỉ sang trái" để quay trở về phương trình Lại bắt đầu khởi tạo giá trị ban đầu Y=1, X=0 Thì máy lại tính ra X = 2 Cứ như vậy tới Y=5, X =0 ta được bảng giá trị sau: Bảng 1: Y 0 1 2 3 4 5 X 0 2 -3 -4 -5 -6 *Cách 2: phức tạp hơn nhưng kiểm soát được toàn bộ nghiệm Với Y = 0 ta đã tìm được 1 nghiệm X = 0 Để xem phương trình có còn nghiệm nào khác không các em làm như sau: Ấn mũi tên sang ngang sửa phương trình thành: 2 2(X XY 2Y X 2Y): (X 0)     Phương trình này để bỏ nghiệm vừa tìm được và tìm nghiệm mới. Sau đó lại bấm như ban đầu thì được X = -1 Sau đó lại ấn 2 2X XY 2Y X 2Y (X 0)(X 1)       Sau đó lại bấm giải nghiệm thì máy báo " Can't solve" tức là vô nghiệm hay hết nghiệm rồi Vậy là được Y=0 thì X=0, X = -1 Tiếp theo các em ấn "mũi tên chỉ sang trái" để quay trở về phương trình Ta lại phải sửa phương trình thành: 2 2X XY 2Y X 2Y    Lại bắt đầu khởi tạo giá trị ban đầu Y=1, X=0 Thì máy lại tính ra X = 2 hoặc -2 Cứ như vậy tới Y=5 thì được các kết quả như sau: Bảng 2: Y 0 1 2 3 4 5 X 0 hoặc -1 2 hoặc -2 -3 hoặc 4 -4 hoặc 6 -5 hoặc 8 -6 hoặc 10 Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on bo cu oc .co m Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 5 Cách 2 này tuy đẩy đủ nhưng sẽ rất mất thời gian chỉnh sửa phương trình nên trong tài liệu đa phần anh sẽ giải bằng cách 1, vì những bài thi ĐH không quá phức tạp *Cách 3: Để tìm nghiệm khác ngoài 1 nghiệm tìm được Ví dụ khi Y=0, lúc máy hỏi " Solve for X" Các em ấn 0 = sẽ tìm được nghiệm X = 0 Các em ấn "-9=" thì sẽ được nghiệm X = -1 Các em ấn "9=" thì sẽ được nghiệm X=0 Vậy là ta đã tìm được ngay 2 nghiệm X = -1 và X =0 khi Y= 0 Anh rất hay dùng cách 1 cho hệ và cách 3 cho phương trình 1 ẩn, để tăng tốc độ làm bài Các kết quả này hoàn toàn là do máy, từ bảng 1 ta thấy khi Y = 2 tới Y=5 anh thấy nó xuất hiện 1 quy luật gì đó Tại Y=0, Y=1 không xuất hiện quy luật do có nhân tử khác gây nhiễu bởi vì tính năng Solve là tính năng dò nghiệm theo công thức Newton nên nó sẽ tìm nghiệm gần với giá trị biến hiện tại của X , ở đây các TH chúng ta đều khởi tạo giá trị ban đầu X = 0. Từ Y=2 anh thấy nó xuất hiện 1 quy luật gì đó, dễ dàng nhận thấy là x+y+1 = 0 Vậy anh sẽ biến đổi phương trình 2 theo xem được không: Thêm bớt để ép nhân tử : 2 2 2 2 2 x xy 2y x 2y x xy 2y x 2y 0 x(x y 1) 2xy 2y 2y 0 x(x y 1) 2y(x y 1) 0 (x 2y)(x y 1) 0                               Vậy nghiệm vừa nãy bị nhiễu là do x-2y =0 Còn lại thì dễ dàng rồi nào: 2 ( 1) x y x y      thế vào phương trình đầu tiên * x=2y thì: 2 2 24 2 7 1y y y y      Anh nói thì dài thôi chứ lúc làm thì nhanh lắm!!! Như vậy là anh vừa trình bày chi tiết cách giải 1 bài hệ bằng máy tính casio fx-570 ES Plus nhưng bài trên là 1 bài dễ và chưa sử dụng một ứng dụng chính của Solve là tìm nghiệm phương trình 1 ẩn dù nó có phức tạp tới đâu. Truy cập chúng tôi để download thêm các tài liệu học tập khác k on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 6  Nhận xét chung Thấy ngay phương trình số 2 khó biến đổi, phương trình 1 có vẻ dễ hơn , vậy ta thử xem nào Lưu ý ở bài này: điều kiện pt 1 là x y bởi vậy lúc khởi tạo giá trị ban đầu " Solve for X" các em phải nhập số lớn hơn Y, chẳng hạn là "9=" . Tại sao lại thế ? Vì nếu em cho Y = 3 mà giá trị ban đầu X = 2 thì máy sẽ có 2 kiểu dò nghiệm 1 là : 2 2,1 2,2 2,3 ....    2 là : .... 1,7 1,8 1,9 2    Nhưng đi theo đường nào thì x y cũng không xác định ngay, do đó máy dừng dò nghiệm và báo "Can't Solve" Do đó phải khởi tạo giá trị ban đầu của X lớn hơn Y Các em làm tương tự, anh cho kết quả luôn: Y 0 1 2 3 4 5 X 1 2 3 4 5 6 Dựa vào bảng ta thấy luôn : 1x y  hoặc 1x y  Vậy là đầu tiên anh đi theo hướng "x-y-1=0" trước vì vế phải có sẵn rồi kìa, chỉ cần biến đổi những số còn lại xem có được không là chuyển hướng luôn (1 y) x y x 2 (x y 1) y (1 y) x y x 2 (x y 1) y 0 (1 y) x y (x y 1) (y 1) (x y 1) y 0 (1 y) x y 1 (x y 1) 1 y 0                                             Tới đây phải nói là quá may mắn    (1 )( 1) 1 1 0 1 0 1 11 0 pt y x y y x y x y x y yy                         Ví dụ 2: (ĐH-B-2014) Giải hệ phương trình 2 (1 y) x y x 2 (x y 1) y 2y 3x 6y 1 2 x 2y 4x 5y 3                  (x, y là các số thực) Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 7 Thế vào phương trình 2 ta được: Với y = 1 thì 9-3x =0  x=3 Với y = x - 1 2 2 2 3( 1) 6 1 2 1 1 2 3 2 1 y y y y y y y y              Điều kiện ban đầu 0y  mà bây giờ lại có 1y  Vậy  0;1y Dễ thấy VT đồng biến với điều kiện trên, VP thì nghịch biến, các em tính đạo hàm ra sẽ thấy nên nếu phương trình có nghiệm thì sẽ là nghiệm duy nhất Thử bấm máy xem nào: 2 alpha X 2x + 3 alpha X -2 Alpha = 1- alpha X Sau đó bấm Shift solve 0 ,5 = Ta đang tìm X trong khoảng [0;1] mà nên phải khởi tại giá trị ban đầu X = 0,5 chẳng hạn được X=0,618033.. Nếu x nguyên thì xong rồi đó nhưng đằng này có vẻ không còn may mắn nữa. Vậy Bộ Giáo Dục cố tình ra nghiệm lẻ để làm khó ta, nhưng anh đã có cách Ta thử bình phương nghiệm X đó lên xem có đẹp không nhưng câu trả lời là không! Hi vọng nghiệm này không quá xấu, nó có dạng a b c  là dạng nghiệm của phương trình bậc 2 thì ta sẽ giải quyết được. *Tư duy ở đây là: phương trình trên nếu bình phương lên sẽ ra bậc 4 đầy đủ nên có thể phân tích được thành: 2 2 ' '(x )( )Sx P x S x P    Do đó anh chỉ cần tìm được 1 nhân tử 2(x )Sx P  là xong, vậy ta cần tìm 3 trong 4 nghiệm Về lý thuyết là vậy nhưng thực tế anh tìm cả 4 nghiệm luôn Bản chất của phương trình trên là bậc 4 nên ta sẽ bình phương lên để mất căn rồi chuyển sang 1 vế Các em nhập lại phương trình thành: (2 alpha X 2x + 3 alpha X -2) 2 - (1- alpha X) Các em bấm dấu "=" để lưu phương trình vào máy Sau đó bấm Shift solve 0 = Máy báo X = 0,3228. Sau đó các em bấm RCL X Shift STO A để lưu nghiệm X vừa tìm được vào A Vậy là được 1 nghiệm, để tìm nghiệm thứ 2 ta làm như nhau : Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on g oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 8 Nhấn nút đẩy lên 2 lần để tìm phương trình ta đã lưu Đưa mũi tên chỉ sang trái, sửa phương trình thành: ((2 alpha X 2x + 3 alpha X -2) 2 - (1- alpha X)): ( X-A) Sau đó bấm Shift solve Máy hỏi A? 0,3228.. thì các em bấm dấu = Máy hiện "Solve for X" thì các em cũng ấn 0= Máy báo X = 0,6180.... Các em ấm phím đẩy sang trái rồi ấn = để lưu lại phương trình Sau đó các em bấm RCL X Shift STO B để lưu nghiệm X vừa tìm được vào B Vậy đã có nghiệm thứ 2, các em lại ấn nút đẩy lên 2 lần, rồi đẩy sang trái để sửa phương trình tìm nghiệm thứ 3 các em lại sửa thành ((2 alpha X 2x + 3 alpha X -2) 2 - (1- alpha X)) : ( X-A)(X-B) Sau đó bấm Shift solve = = 0= Được nghiệm thứ 3 là : X= -1,61803.. Các em ấm phím đẩy sang trái rồi ấn = để lưu lại phương trình Sau đó các em bấm RCL X Shift STO C để lưu nghiệm X vừa tìm được vào C Tương tự phương trình tìm nghiệm thứ 4 : ((2 alpha X 2x + 3 alpha X -2) 2 - (1- alpha X)) : ( X-A)(X-B)(X-C) Sau đó bấm Shift solve = = = 0= Các em sẽ được nghiệm thứ 4 là : X = -2,3228 Vậy ta đã được 4 nghiệm là A,B,C,X Ta biết rõ ràng là nghiệm B = 0,618 là nghiệm của phương trình ban đầu nên ta sẽ xét các tích BA,BC,BX xem tích nào đẹp Thấy ngay: BC = - 1 và B+C = -1 Vậy phương trình chứa nghiệm B,C này là 2 1x x  ( định lý Vi-et đảo) Đây chính là cách phân tích phương trình bậc 4 thành nhân tử với máy tính Vậy ta sẽ cố nhóm để xuất hiện nhân tử này: với bài thì là 2 1y y  , ép nhân tử như sau: Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 9 2 2 2 2 2 2 2 3 2 1 2( 1) 1 0 (1 ) 2( 1) 0 1 1 ( 1)(2 ) 0 1 5 1 5 1 ( ) 2 2 1 0 5 1 ( ) 2 y y y y y y y y y y y y y y y y y y tm x y y y loai                                           Ví dụ 3: (ĐH-AA1-2014) Giải hệ phương trình 2 3 x 12 y y(12 x ) 12 x 8x 1 2 y 2            (x, y là số thực) *Nhận xét chung: Ta thấy phương trình 1 dễ biến đổi hơn phương trình 2 Điều kiện 2 2 12 12 y x     * Anh cho bảng kết quả bấm máy luôn Y 2 3 4 5 6 12 0 X 3,16 3 2,828 2,64 2,44 0 3,464 Nhận xét chung là Y tăng thì X giảm Với Y=2, Y=4, Y=5, Y=6 thì kết quả xấu quá ta thử bình phương lên xem có sử dụng được không Y 2 3 4 5 6 12 0 2X 9,9999 9 8 7 6 0 12 Chứng tỏ các bác ở BGD cũng không làm khó ta lắm Nhận thấy 2 12y x  Căn cứ vào phương trình 1 thì sẽ là 212y x  Làm sao để chứng minh điều này, dễ thấy không thể phân thích thành nhân tử như bài trước được Giờ chỉ còn hàm số và đánh giá mà thôi Do x, y không độc lập lên không dùng hàm số được ( kinh nghiệm nhỏ của anh) Vậy thử đánh giá, mà có 2 tích nên chỉ có Cô-si thôi Truy cập chúng tôi để download thêm các tài liệu học tập khác on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 10 Chúng ta dùng chức năng CALC để tính giá trị biểu thức Các em nhập nguyên vế trái vào: 2x 12 y y(12 x )   Alpha X 12 - alpha Y + alpha Y - (12 - alpha X 2x ) Sau đó các em bấm CALC Máy hiện X? em nhập 1 = Máy lại hỏi Y? em nhập vào là 11= hoặc tùy ý X 1 1 2 2 3 3 4 Y 10 11 10 11 8 11 Giá trị hàm 11,9 12 11,7 11,38 10,89 8,7 error Ta nhận thấy 12VT VP  vậy đánh giá là phương pháp đúng đắn Áp dụng Bất đẳng thức Cô-si ta được: 2 2 2 x (12 y) y (12 x )x 12 y y(12 x ) 12 2 2           Dấu "=" xảy ra khi 22 012 1212 xx y y xy x          Thế vào phương trình 2 ta được: 3 28 1 2 10x x x    Ta bấm máy xem có nghiệm nguyên không , có thì coi như xong Các em bấm như sau: Alpha X Shift 2x -8 Alpha X -1 = 2 10 - alpha X 2x Sau đó ấn Shifl Solve 9= Ra được x=3, tới đây có thể mỉm cười được rồi Ta sẽ biến đổi theo x-3 = 0 3 2 3 2 8 1 2 10 ( 8 3) 2(1 10 ) 0 x x x x x x            Anh ghép 1 với 210 x vì khi nhân liên hợp nó xuất hiện 2 9 ( 3)( 3)x x x    bấm máy cái này Được x=3 và 2 nghiệm xấu nhưng không sao vậy là được rồi Ta tiến hành chia 3 8 3x x  cho (x-3) được 2 3 1x x  Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 11 Vậy ta có: 2 2 2 2 2 2 2 ( 3)( 3 1) 2(1 10 ) 0 9 ( 3)( 3 1) 2. 0 1 10 2( 3) ( 3) 3 1 0 1 10 x x x x x x x x x x x x x x                             Ta có 0x  nên 2 2 2( 3) 3 1 0 1 10 x x x x        Do đó phương trình có nghiệm duy nhất x=y=3 Ví dụ 4: Đề thi thử THPT Quốc Gia của Sở GD TP. HCM Giải hệ phương trình :   22 2 2 1 2 2 1 y y y x x x y x y y y x               Giải: Khi nhìn vào 2 phương trình này thì ta thấy phương trình số 2 dễ biến đổi hơn phương trình 1, em nào không nhìn ra điều này thì đi thử cả 2 phương trình cũng được. Điều kiện: 2, 0x y  Các em nhập phương trình : 2 1x y x y y y x      như sau: Alpha X + 1 AlphaX AlphaY  + AlphaY AlphaX = Alpha Y 2x + Alpha Y Sau đó các em bấm: Shift Solve máy sẽ hiện " Y?" các em nhập 1 = Máy sẽ hiện " Solve for X" tức là khai báo giá trị ban đầu của X Các em bấm " 0 = " Máy sẽ trả về giá trị nghiệm X = 0,5. Vậy Y = 1 thì X = 0,5 Để tìm nghiệm tiếp với Y=2 thì các em bấm : Shift Solve máy sẽ hiện " Y?" các em nhập 2 = Cứ như vậy với Y = 3,4,5 ta thu được bẳng giá trị sau: Y 1 2 3 4 5 X 0,5 0,333= 1/3 0,25 = 1/4 0,2 = 1/5 0,16666.. =1/6 Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 12 Dựa vào bảng, ta thấy xuất hiện quy luật : 1 1 0 1 X XY X Y       Ta sẽ ép để xuất hiện nhân tử trên như sau: 2 2 2 3 2 2 2 1 1 0 ( 1) 0 ( 1) ( 1) 0 ( 1)( ) 0(3) x y x y y y x xy x y y y y x xy x x y y x xy xy x x y xy x xy x x y                                Rất may ở bài này chúng ta không bị nhiễu bởi nhân tử 2x y như ở ví dụ 1. Với 2, 0x y  thì 1 0xy x   nên từ (3) ta có : 2x y thế vào phương trình (1) ta c

Cách Tính Delta Và Delta Phẩy Phương Trình Bậc 2

Tài liệu ôn tập vào lớp 10 môn Toán

Cách tính delta và delta phẩy phương trình bậc 2 là tài liệu do VnDoc sưu tầm và giới thiệu cho các bạn học sinh và thầy cô nghiên cứu, học tập tốt môn Toán 9 cũng như luyện tập nhằm chuẩn bị tốt nhất cho các kì thi sắp diễn ra. Mời các bạn tham khảo.

Công thức tính delta và delta phẩy phương trình bậc 2

Tài liệu sẽ đưa ra công thức delta và delta phẩy cho các bạn học sinh, đồng thời cũng sẽ giải thích lý do chúng ta phải tính biệt thức delta này. Qua đó sẽ giúp các bạn học sinh hiểu rõ hơn về phương trình bậc hai và cách vận dụng vào giải các bài Toán lớp 9.

Thông thường đối với một học sinh lớp 9, khi hỏi cách tính phương trình bậc 2, các bạn học sinh sẽ trả lời là: “Ta đi tính

1. Định nghĩa phương trình bậc hai một ẩn

Phương trình bậc hai một ẩn là phương trình có dạng:

Trong đó a ≠0, a, b là hệ số, c là hằng số.

2. Công thức nghiệm của phương trình bậc hai một ẩn

Ta sử dụng một trong hai công thức nghiệm sau để giải phương trình bậc hai một ẩn:

+ Tính:

Nếu

Nếu

Nếu

+ Tính :

Nếu

Nếu

Nếu

3. Tại sao phải tìm ∆?

Ta xét phương trình bậc 2:

Vế phải chính là

+ Với

+ Với

Phương trình đã cho có nghiệm kép

+ Với

Phương trình đã cho có hai nghiệm phân biệt

4. Các dạng bài tập sử dụng công thức nghiệm, công thức nghiệm thu gọn

Lời giải:

a,

Ta có:

Phương trình đã cho có hai nghiệm phân biệt:

Vậy tập nghiệm của phương trình là:

b,

Ta có:

Phương trình đã cho vô nghiệm

Vậy phương trình vô nghiệm

c,

Ta có:

Phương trình đã cho có nghiệm kép:

Vậy tập nghiệm của phương trình là:

d,

Ta có:

Phương trình đã cho có hai nghiệm phân biệt:

Vậy phương trình có tập nghiệm S = {-7; -3}

e,

Ta có:

Phương trình đã cho có hai nghiệm phân biệt:

Vậy tập nghiệm của phương trình là S = {-2; 4}

f,

Phương trình đã cho có hai nghiệm phân biệt

Vậy tập nghiệm của phương trình là

g,

Học sinh tính được ∆ và nhận thấy ∆ < 0 nên phương trình đã cho vô nghiệm.

Vậy phương trình vô nghiệm.

h,

Học sinh tính được ∆ và nhận thấy ∆ < 0 nên phương trình đã cho vô nghiệm.

Vậy phương trình vô nghiệm.

Bài 2: Cho phương trình

a, Tìm m để phương trình có nghiệm x = 1

b, Tìm m để phương trình có nghiệm kép

c, Tìm m để phương trình có hai nghiệm phân biệt

Lời giải:

a, x = 1 là nghiệm của phương trình (1). Suy ra thay x = 1 vào phương trình (1) có:

Xét phương trình (2)

Phương trình (2) có hai nghiệm phân biệt

Vậy với m = 5 hoặc m = -1 thì x = 1 là nghiệm của phương trình (1)

b, Xét phương trình (1) có:

Để phương trình (1) có nghiệm kép khi và chỉ khi

Sử dụng công thức nghiệm để giải phương trình (2) có

Vậy với

c, Xét phương trình (1) có:

Để phương trình (1) có hai nghiệm phân biệt khi và chỉ khi

Vậy với

Bạn đang xem bài viết Tính Toán Ma Trận Và Giải Hệ Phương Trình Tuyến Tính Trong Mathematica trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!