Bài Tập Xstk Có Lời Giải Chi Tiết
--- Bài mới hơn ---
Page 1
BỘ ĐỀ THI VÀ LỜI GIẢI XÁC SUẤT THỐNG KÊ
1
1. Đường kính của một loại trục máy là một đại lượng ngẫu nhiên có phân phối chuẩn
ĐỀ SỐ 1
22
( 250 ; 25 )N mm mm
µσ
= =
. Trục máy được gọi là hợp quy cách nếu đường kính từ
245mm đến 255mm. Cho máy sản xuất 100 trục. Tính xác suất để:
a. Có 50 trục hợp quy cách.
b. Có không quá 80 trục hợp quy cách.
2. Quan sát một mẫu (người) , ta có bảng thống kê chiều cao X(cm), trọng lượng Y(kg):
X
Y
150-155
155-160
160-165
12
a. Ước lượng chiều cao trung bình với độ tin cậy
95%
γ
=
.
b. Những người cao từ 170cm trở lên gọi là quá cao. Ước lượng trọng lượng trung bình
những người quá cao với độ tin cậy 99%.
c. Một tài liệu thống kê cũ cho biết tỷ lệ những người quá nặng (
70kg≥
) là 30%. Cho
kết luận về tài liệu đó, với mức ý nghĩa
10%
α
=
.
d. Lập phương trình tương quan tuyến tính của Y theo X.
BÀI GIẢI
1. Gọi D là đường kính trục máy thì
22
( 250 ; 25 )D N mm mm
µσ
∈= =
.
Xác suất trục hợp quy cách là:
1
Đề thi:GS Đặng Hấn. Lời giải:Th.S Lê Lễ.
Tài liệu dùng cho sinh viên đại học, học viên thi Th.s, NCS.
Page 2 255 250 245 250
0,4.0,3 0,12pZ= = =
1 (0,12 0,46) 0,42pZ==−+ =
( ) 0.0,12 1.0,46 2.0,42 1,3MZ=++ =
22 2 2
( ) 0 .0,12 1 .0,46 2 .0,42 2,14MZ
=++ =
22 2
()( ) ( ) 2,14 1,3 0,45DZ M M ZZ= − −==
Vậy
30 100 0,42UX Y Z=++
suy ra
( ) 30 ( ) 100 ( ) 0,42 ( )MU MX MY MZ=++
30.30 100.250 0,42.1,3 25900,546=++ =
22 2
( ) 30 ( ) 100 ( ) 0,42 ( )DDDU X Y ZD=++
22 2
30 12 100 100 0,42 0,45 101. 0800,0 79=++ =
(2,50) (1,63) 1 0,9484 0,0516=Φ −Φ = − =
(1,63) (0,76) 0,9484 0,7764 0,172=Φ −Φ = − =
(0,11) (0,76) 1 0,5438 0,7764 1 0,3203=Φ +Φ −= + −=
0,8365 0,5438 0,2927=−=
Page 7
0,227 0,473p≤≤
Tỷ lệ cây loại A trong khoảng từ 22,7% đến 47,3%.
6
Số lớp là 5, phân phối chuẩn
2
(; )N
µσ
có 2 tham số nên: tra bảng chi bình phương
2
Χ
với bậc tự do bằng: số
lớp-số tham số-1=5-2-1=2.
Page 8 ĐỀ SỐ 3
1. Một xí nghiệp có 2 máy. Trong ngày hội thi, mỗi công nhân sẽ chọn ngẫu nhiên một máy
và sản xuất 100 sản phẩm. Nếu số sản phẩm loại I không ít hơn 70 thì được thưởng. Giả
sử công nhân A xác suất sản xuất sản phẩm loại I với 2 máy lần lượt là 0,6 và 0,7.
a. Tính xác suất để A được thưởng.
b. Giả sử A dự thi 200 lần, số lần A được thưởng tin chắc nhất là bao nhiêu?
c. A phải dự thi ít nhất bao nhiêu lần để xác suất có ít nhất một lần được thưởng không
dưới 90%?
2. Theo dõi số kẹo X (kg) bán trong 1 tuần, ta có:
i
x
9
23
27
30
25
20
5
a. Để ước lượng số kẹo trung bình bán được trong 1 tuần với độ chính xác 10kg và độ
tin cậy 99% thì cần điều tra thêm bao nhiêu tuần nữa?
b. Bằng cách thay đổi mẫu mã, người ta thầy số kẹo trung bình bán được trong 1 tuần là
200kg. Việc thay đổi này có hiệu quả gì vể bản chất không? (mức ý nghĩa 5%)
c. Những tuần bán từ 250kg trở lên là những tuần hiệu quả. Ước lượng tỷ lệ những tuần
hiệu quả với độ tin cậy 90%.
d. Ước lượng số kẹo trung bình bán được trong những tuần có hiệu quả với độ tin cậy
98%.
BÀI GIẢI
1.
a. Gọi T là biến cố công nhân A được thưởng .
I: Biến cố công nhân A chọn máy I.
II: Biến cố công nhân A chọn máy II.
( ) ( ) 0,5PI PII= =
( ) ( ). ( / ) ( ). ( / ) ( ). PT PI PT I PII PT II PI P X PII P Y= + = ≤ ≤ + ≤≤
trong đó
(100;0,6) (60;24), (100;0,7) (70;21)XB N YB N∈≈ ∈≈
b. Gọi Z là số lần được thưởng trong 200 lần A tham gia thi ,
(200;0,26)ZB∈
( ) 1 200.0,26 0,74 ( ) 200.0,26 0,74 1np q Mod Z np q Mod Z−≤≤−+⇒ −≤≤ −+
Page 10
0,1262 0,2338p≤≤
(0,02;24)
2,492t =
Vậy
274,83 295,17kg kg
µ
≤≤
. Trung bình mỗi tuần hiệu quả bán từ 274,83 kg đến
295,17kg kẹo.
Page 11 ĐỀ SỐ 4
1. Có 3 giống lúa, sản lượng của chúng (đơn vị tấn/ha) là 3 đại lượng ngẫu nhiên
12 3
(8;0,8), (10;0,6), (10;0,5)XN XN XN∈∈ ∈
. Cần chọn một trong 3 giống để trồng,
theo bạn cần chọn giống nào?Tại sao?
2. Số kw giờ điện sử dụng trong 1 tháng của hộ loại A là
(90;100)XN∈
. Một tổ dân phố
gồm 50 hộ loại A. Giá điện là 2000 đ/kw giờ, tiền phí dịch vụ là 10 000 đ một tháng. Dự
đoán số tiền điện phải trả trong 1 tháng của tổ với độ tin cậy 95%.
3. X( %) và Y(cm) là 2 chỉ tiêu của một sản phẩm. Kiểm tra một số sản phẩm ta có:
X
Y
0-2
2-4
4-8
8-10
10-12
100-105
5
115-120
120-125
5
a. Để ước lượng trung bình X với độ chính xác 0,2% thì đảm bảo độ tin cậy bao
nhiêu?
b. Những sản phẩm có X dưới 2% là loại II. Ước lượng trung bình Y của sản phẩm
loại II với độ tin cậy 95%.
c. Các sản phẩm có Y
≥
125cm là loại I. Để ước lượng trung bình X các sản phẩm
loại I cần điều tra thêm bao nhiêu sản phẩm nữa , nếu muốn độ chính xác là 0,3%
và độ tin cậy 95%?
d. Giả sử Y của sản phẩm loại II có phân phối chuẩn, ước lượng phương sai của Y
những sản phẩm loại II với độ tin cậy 90%.
BÀI GIẢI
1. Chọn giống
3
X
vì năng suất trung bình cao nhất (kỳ vọng lớn nhất) và độ ổn định năng
suất cao nhất (phương sai bé nhất ) .
2. Trước hết ước lượng khoảng số kw giờ điện 1 hộ loại A phải dùng trong 1 tháng.
Dùng quy tắc
2
σ
, ta có:
au au
σµ σ
− ≤ ≤+
Page 12
→
Vậy hộ loại A dùng từ 70,4 kw giờ đến 109,6 kg giờ điện trong 1 tháng
Trong 1 tháng cả tổ phải trả số tiền từ
50(70,4.2000 10000)+
đồng đến
50(109,6.2000 10000)+
đồng , tức là khoảng từ 7 540 000 đ đến 11 460 000 đồng .
3. a. n=213,
6,545x =
,
3,01
x
s =
.
0,2=x
ts
n
= →
(0,05;14)
2,145t =
Page 13
Page 14 ĐỀ SỐ 5
1. Có 3 lô sản phẩm, mỗi lô có 10 sản phẩm. Lô thứ i có i phế phẩm. Lấy ngẫu nhiên ở mỗi
lô 1 sản phẩm. Tính xác suất:
a. Cả 3 đều tốt.
b. Có đúng 2 tốt.
c. Số sản phẩm tốt đúng bằng số đồng xu sấp khi tung 2 đồng xu.
2. Theo dõi sự phát triển chiều cao của cây bạch đàn trồng trên đất phèn sau một năm, ta có:
i
x
(cm)
250-300
300-350
350-400
400-450
450-500
500-550
550-600
5
20
25
30
30
23
14
a. Biết chiều cao trung bình của bạch đàn sau một năm trồng trên đất không phèn là
4,5m. Với mức ý nghĩa 0,05 có cần tiến hành biện pháp kháng phèn cho bạch đàn
không?
b. Để ước lượng chiều cao trung bình bạch đàn một năm tuổi với độ chính xác 0,2m thì
đảm bảo độ tin cậy là bao nhiêu?
c. Những cây cao không quá 3,5m là chậm lớn. Ước lượng chiều cao trung bình các cây
chậm lớn với độ tin cậy 98%.
d. Có tài liệu cho biết phương sai chiều cao bạch đàn chậm lớn là 400. Với mức ý nghĩa
5%, có chấp nhận điều này không?
BÀI GIẢI
1.
a.
0,9.0,8.0,7 0,504p = =
b.
0,9.0,8.0,3 0,9.0,2.0,7 0,1.0,8.0,7 0,398p =++=
c. X: số đồng xu sấp khi tung 2 đồng xu. X=0,1,2.
Y: số sản phẩm tốt trong 3 sản phẩm
p=p+p[ 3, 3]
pA pX X pX X pX X pX X
===+==+==+==
3 3 03 3 0
33
0,8 .0,2 . 0,7 .0,3CC+
=0,36332
X: số kiện được chấp nhận trong 100 kiện,
(100;0,36332) (36,332;23,132)XB N∈≈
6n→≥
Page 23
(0,01;26)
2,779t =
37,2088 0,3369xy=−+
.
145
37,2088 0,3369.145 11,641x =−+ =
(%) .
Page 24 ĐỀ SỐ 8
1. Sản phẩm được đóng thành hộp. Mỗi hộp có 10 sản phẩm trong đó có 7 sản phẩm loại A.
Người mua hàng quy định cách kiểm tra như sau: Từ hộp lấy ngẫu nhiên 3 sản phẩm, nếu
cả 3 sản phẩm loại A thì nhận hộp đó, ngược lại thì loại. Giả sử kiểm tra 100 hộp.
a. Tính xác suất có 25 hộp được nhận.
b. Tính xác suất không quá 30 hộp được nhận.
c. Phải kiểm tra ít nhất bao nhiêu hộp để xác suất có ít nhất 1 hộp được nhận
95%≥
?
2. Tiến hành khảo sát số gạo bán hàng ngày tại một cửa hàng, ta có
i
x
(kg)
110-125
125-140
140-155
155-170
170-185
185-200
200-215
215-230
2
9
12
25
30
20
13
4
a. Giả sử chủ cửa hàng cho rằng trung bình mỗi ngày bán không quá 140kg thì tốt hơn
là nghỉ bán. Từ số liệu điều tra, cửa hàng quyết định thế nào với mức ý nghĩa 0,01?
b. Những ngày bán
≥
200kg là những ngày cao điểm. Ước lượng số tiền bán được
trung bình trong ngày với độ tin cậy 99%, biết giá gạo là 5000/kg.
c. Ước lượng tỷ lệ ngày cao điểm .
d. Để ước lượng tỷ lệ ngày cao điểm với độ chính xác 5% thì đảm bảo độ tin cậy bao
nhiêu?
BÀI GIẢI
1.
a. A: biến cố 1 hộp được nhận.
3
7
3
10
( ) 0,29
C
pA
C
= =
X: số hộp được nhận trong 100 hộp.
(100;0,29) (29;20,59)XB N∈≈
Page 25
(6,39) (0,22) 1 0,5871=Φ +Φ − =
(0,01;16)
2,921t =
--- Bài cũ hơn ---