Bài Giải Toán Đếm Hình Lớp 2

--- Bài mới hơn ---

  • Giải Lưu Hoằng Trí Lớp 7
  • Văn Mẫu Lớp 7, Bài Văn Hay Lớp 7, Học Tốt Văn Lớp 7 Đầy Đủ Nhất
  • Giải Thích Câu Tục Ngữ Thương Người Như Thể Thương Thân
  • Bài Văn Mẫu Lớp 7 Số 6 Đề 1: Giải Thích Lời Khuyên Của Bác Hồ Qua 2 Dòng Thơ Về Tết Trồng Cây
  • Bài Văn Nghị Luận Hay Lớp 7
  • Giải Bài Tập Toán 10 Hình Học, Giải Bài Tập Toán 7 Hình Học, Giải Bài Tập Toán Lớp 7 Hình Học, Giải Bài Toán Đơn Hình, Giải Bài Toán Hình Lớp 7, Giải Bài Toán Lớp 7 Hình Học, Giải Toán Hình 6, Bài Giải Toán Đếm Hình Lớp 2, Bài Giải Toán Hình Lớp 9, ứng Dụng Giải Bài Toán Hình, Giải Bài Tập Mô Hình Toán Kinh Tế, Đáp án 80 Bài Toán Hình Học Giải Tích Phẳng, Giải Cùng Em Học Toán Lớp 5 Tập 2 Bài Hình Tròn. Đường Tròn Trang6 7 8, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Hộp Chữ Nhật, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Lập Phương, Giải Bài Tập Diện Tích Hình Tròn Hình Quạt Tròn, Bài Giải Hình Học Họa Hình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16, Giải Bài Tập 10 Hình Học, Giải Bài Tập Hình Học 11, Giải Bài Tập Hình Học 12, Giải Bài Tập Qua Hình ảnh, Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt, Giải Bài Tập 6 Trang 90 Hình Học 12, Bài Giải ôn Tập Chương 1 Hình Học 12, Giải Bài Tập 6 Trang 68 Hình Học 12, Giải Bài Tập 6 Trang 114 Sgk Hình Học 11, Giải Bài Tập 7 Trang 91 Hình Học 12, Giải Bài Tập 8 Trang 81 Hình Học 10, Giải Bài Tập ôn Tập Chương 3 Hình 8, Giải Bài Tập ôn Tập Chương 2 Hình Lớp 10, Giải Bài ôn Tập Chương 1 Hình Học 8, Giải Bài ôn Tập Chương 1 Hình Học 7, Giải Bài ôn Tập Chương 1 Hình Học 10, Giải Bài Tập 7 Trang 80 Hình Học 12, Giải Bài Tập ôn Tập Chương 3 Hình Học 12, Giải Bài Tập 3 Trang 91 Hình Học 11, Giải Bài 2 ôn Tập Chương 1 Hình Học 11, Giải Bài Tập Hình Học 12 Nâng Cao, Giải Bài Tập 5 Trang 80 Hình Học 12, Bài Giải Hình Chữ Nhật, Giải Bài Tập ôn Tập Chương 2 Hình Học 11, Bài Giải Hình Lập Phương, Giải Bài Tập ôn Tập Chương 1 Hình Học 10, Giải Bài Tập 5 Trang 80 Hình Học 10, Phương Pháp Giải Toán Qua Các Bài Toán Olympic, Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1, Các Dạng Toán Và Phương Pháp Giải Toán 8, Các Dạng Toán Và Phương Pháp Giải Toán 6, Giải Bài Tập Bài 5 Cấu Hình Electron Nguyên Tử, Báo Cáo Tình Hình Giải Ngân, Kĩ Năng Giải Quyết Vụ án Hình Sự, Bài Giải Hình Bình Hành, Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán, Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm, Giải Thích Điều 47 Bộ Luật Hình Sự, Báo Cáo Tình Hình Giải Quyết Khiếu Nại Tố Cáo, Giải Bài Tập Diện Tích Hình Thoi Lớp 8, Bài Giải Diện Tích Hình Bình Hành, Báo Cáo Tình Hình Giải Quyết Tranh Chấp Đất Đai, Giải Quyết Trách Nhiệm Dân Sự Trong Vụ án Hình Sự, Hãy Giải Thích Quá Trình Hình Thành Bộ Xương Hóa Thạch, Hình Thái Động Lực Giải Ven Bờ Delta Sông Hồng, Phân Dạng Và Phương Pháp Giải Các Chuyên Đề Hình Học 10 , Toán Lớp 3 Bài ôn Tập Về Hình Học, Toán 4 ôn Tập Về Hình Học, Toán 4 Bài ôn Tập Về Hình Học, Toán Hình 6, Toan Hinh 11, Toán Lớp 4 ôn Tập Về Hình Học, Toán Hình 10, Toán Lớp 2 Bài ôn Tập Về Hình Học, Toán Lớp 3 ôn Tập Về Hình Học, Giải Pháp Quản Lý Bảo Vệ Chủ Quyền Biển Đảo Trong Tinh Hinh Moi, Hãy Giải Thích Vì Sao Nguồn Điện Ba Pha Thường Được Nối Hình Sao Có Dây Trung , Các Giai Đoạn Hình Thành Và Phát Triển Làm Việc Nhóm, Toán Lớp 3 Bài ôn Tập Về Giải Toán Trang 176, Toán 8 Bài ôn Tập Chương 1 Hình Học, Toán 7 ôn Tập Chương 3 Hình Học, Toán 7 ôn Tập Chương 1 Hình Học, Toán 7 ôn Tập Chương 2 Hình Học, Toán 6 ôn Tập Phần Hình Học, Toán Lớp 5 Chuyên Đề Hình Học, Toán 9 Chương 2 Hình Học, Bài 1 ôn Tập Chương 2 Toán Hình 11, Định Lý Toán Hình 9, Định Lý Toán Hình 8, Toán Hình 7 Định Lý, Báo Cáo Tổng Kết Mô Hình Rau An Toàn, Toán 9 ôn Tập Chương 1 Hình Học, Toán 8 ôn Tập Chương 1 Hình Học,

    Giải Bài Tập Toán 10 Hình Học, Giải Bài Tập Toán 7 Hình Học, Giải Bài Tập Toán Lớp 7 Hình Học, Giải Bài Toán Đơn Hình, Giải Bài Toán Hình Lớp 7, Giải Bài Toán Lớp 7 Hình Học, Giải Toán Hình 6, Bài Giải Toán Đếm Hình Lớp 2, Bài Giải Toán Hình Lớp 9, ứng Dụng Giải Bài Toán Hình, Giải Bài Tập Mô Hình Toán Kinh Tế, Đáp án 80 Bài Toán Hình Học Giải Tích Phẳng, Giải Cùng Em Học Toán Lớp 5 Tập 2 Bài Hình Tròn. Đường Tròn Trang6 7 8, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Hộp Chữ Nhật, Giải Bài Tập Diện Tích Xung Quanh Và Diện Tích Toàn Phần Của Hình Lập Phương, Giải Bài Tập Diện Tích Hình Tròn Hình Quạt Tròn, Bài Giải Hình Học Họa Hình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16, Giải Bài Tập 10 Hình Học, Giải Bài Tập Hình Học 11, Giải Bài Tập Hình Học 12, Giải Bài Tập Qua Hình ảnh, Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt, Giải Bài Tập 6 Trang 90 Hình Học 12, Bài Giải ôn Tập Chương 1 Hình Học 12, Giải Bài Tập 6 Trang 68 Hình Học 12, Giải Bài Tập 6 Trang 114 Sgk Hình Học 11, Giải Bài Tập 7 Trang 91 Hình Học 12, Giải Bài Tập 8 Trang 81 Hình Học 10, Giải Bài Tập ôn Tập Chương 3 Hình 8, Giải Bài Tập ôn Tập Chương 2 Hình Lớp 10, Giải Bài ôn Tập Chương 1 Hình Học 8, Giải Bài ôn Tập Chương 1 Hình Học 7, Giải Bài ôn Tập Chương 1 Hình Học 10, Giải Bài Tập 7 Trang 80 Hình Học 12, Giải Bài Tập ôn Tập Chương 3 Hình Học 12, Giải Bài Tập 3 Trang 91 Hình Học 11, Giải Bài 2 ôn Tập Chương 1 Hình Học 11, Giải Bài Tập Hình Học 12 Nâng Cao, Giải Bài Tập 5 Trang 80 Hình Học 12, Bài Giải Hình Chữ Nhật,

    --- Bài cũ hơn ---

  • Bài Giải Toán Hình Lớp 9
  • Giải Bài Toán Hình Lớp 7
  • Bài Toán Đố Áp Dụng Thực Tế Lớp 7 Ôn Thi Học Kì 1
  • Các Dạng Toán Về Số Hữu Tỉ Và Bài Tập Vận Dụng
  • Hướng Dẫn Học Sinh Lớp 7 Giải Dạng Toán “tìm X”
  • 40 Bài Toán Đếm Hình Lớp 1

    --- Bài mới hơn ---

  • Bài Toán Giải Bằng Hai Phép Tính
  • Cách Giải Bài Toán 2 Tỉ Số, Tổng Hoặc Hiệu Không Đổi
  • Cách Giải Bài Toán Tìm Hai Số Khi Biết Tổng Và Tỉ Số
  • Phương Pháp Sơ Đồ Đoạn Thẳng Để Giải Các Bài Toán Đơn Ở Lớp 2
  • Bài Giải Của Lớp 2
  • Published on

    40 BÀI TOÁN ĐẾM HÌNH LỚP 1

    1. 3. BÀI TẬP ĐẾM HÌNH TOÁN LỚP 1 – . . . . . . . . . . . . . . hình vuông Bài 13: Hình bên có: – Có ……… hình vuông – Có ……… hình tam giác Bài 14: Hình bên có: Có ……… hình vuông Có ………hình chữ nhật. Có ……… hình tam giác Bài 15: Hình dưới có a b/ Có …… hình tam giác Có …… hình vuông Bài 16 Vẽ thêm một đoạn thẳng để có 3 hình tam giác. Bài 17 Vẽ thêm một đoạn thẳng để có 2 hình tam giác. Sưu tầm Chúc các em học tốt
    2. 4. BÀI TẬP ĐẾM HÌNH TOÁN LỚP 1 Bài 18: Hình bên có: Có ……… hình vuông Có ……… hình tam giác Bài 19 Kẻ thêm 1 đoạn thẳng để có 3 hình tam giác. Bài 20 Hình bên có: Có ……… hình vuông Có ……… hình tam giác Bài 21 Hình bên có: …… đoạn thẳng, đó là: …………… A N B …………………………………………………. …………………………………………………. …… điểm, đó là: ……………………………………. ……… hình tam giác, đó là: D C ………………………………………………………………………………………………………….. Bài 22 Trong hình bên : Sưu tầm Chúc các em học tốt
    3. 5. BÀI TẬP ĐẾM HÌNH TOÁN LỚP 1 a) Có ……… hình tam giác. b) Có …….. hình vuông. Câu 23 Trong hình bên : a) Có ……… hình tam giác. b) Có …….. hình vuông. Bài 24 Hình vẽ bên có : a) ………… hình tam giác? b) Có …… hình vuông. Có …… hình tam giác. Bài 25 Trong hình vẽ bên có: a) ……….. hình vuông. b) ……….. hình tam giác. Bài 26 Viết số thích hợp vào chỗ chấm: Trong hình vẽ bên có: Sưu tầm Chúc các em học tốt
    4. 8. BÀI TẬP ĐẾM HÌNH TOÁN LỚP 1 a. 4 hình tam giác b. 5 hình tam giác c. 6 hình tam giác d. 7 hình tam giác e. 10 tam giác Bài 38.Viết số thích hợp vào chỗ chấm hình vẽ bên có ? – ………………………..hình tam giác ? – ………………………..hình vuông ? Bài 39 Viết tên mỗi hình vào chỗ chấm: Hình ……………. Hình ……………. Hình ……………….. Bài chúng tôi hình vẽ a. Trong hình có bao nhiêu hình vuông? Có…..Hình vuông b. Trong hình có bao nhiêu hình tam giác? Có…..Hình tam giác Sưu tầm Chúc các em học tốt

    Recommended

    --- Bài cũ hơn ---

  • Ôn Tập Giải Toán Có Lời Văn Lớp 2 On Tap Giai Toan Co Loi Van Lop 2 Doc
  • Ôn Tập Giải Toán Có Lời Văn Lớp 2
  • Bài Giải Toán Tìm X Lớp 2
  • Đề Tài Hướng Dẫn Học Sinh Lớp 2 Giải Bài Toán Có Lời Văn
  • Giải Bài Tập Sbt Lịch Sử Lớp 7 Bài 12: Đời Sống Kinh Tế, Văn Hoá
  • Bài Tập Quy Tắc Đếm Lớp 11 Có Lời Giải

    --- Bài mới hơn ---

  • Cách Giải Bài Tập Xác Suất Nâng Cao, Cực Hay Có Lời Giải
  • Đề Thi Học Sinh Giỏi Lớp 8 Có Đáp Án
  • Giải Toán Lớp 5 Trang 100, Luyện Tập, Giải Bài 1, 2, 3 Sgk
  • Giải Toán Lớp 5 Trang 99 Sgk, Giải Bài Tập 1, 2, 3, 4
  • Giải Toán Lớp 5 Trang 100, 101, Luyện Tập Chung, Giải Bài 1, 2, 3, 4
  • Bài viết sau đây ôn tập cho các bạn về quy tắc đếm lớp 11. Sau đó là phần bài tập về quy tắc đếm lớp 11 có lời giải chi tiết và phân dạng theo phương pháp giải.

    I. ÔN TẬP LÝ THUYẾT QUY TẮC ĐẾM

    Giả sử một công việc V có thể được thực hiện theo phương án A hoặc phương án B. Có m cách thực hiện theo phương án A và có n cách thực hiện theo phương án B, không có cách thực hiện nào của phương án A trùng với cách thực hiện của phương án B. Khi đó có m+n cách thực hiện công việc V.

    Giả sử một công việc V có thể được thực hiện theo một trong k phương án A(1), A(2),…,A(k). Có n(1) cách thực hiện theo phương án A(1), có n(2) cách thực hiện theo phương án A(2),…có n(k) cách thực hiện theo phương án A(k), không có cách thực hiện nào của các phương án trùng nhau. Khi đó có n(1)+n(2)+…+n(k) cách thực hiện công việc V.

    Cho A và B là hai tập hợp hữu hạn. Khi đó n(A∪B)=n(A)+n(B)-n(A∩B). Đặc biệt nếu A∩B=∅ thì n(A∪B)=n(A)+n(B).

    Giả sử một công việc V được thực hiện qua hai công đoạn liên tiếp A và B. Có m cách thực hiện công đoạn A. Với mỗi cách thực hiện công đoạn A lại có n cách thực hiện công đoạn B. Khi đó có m.n cách thực hiện công việc V.

    Giả sử một công việc V được thực hiện qua k công đoạn liên tiếp nhau A(1), A(2),…,A(k). Có n(1) cách thực hiện công đoạn A(1), với mỗi cách thực hiện công đoạn A(1) có n(2) cách thực hiện công đoạn A(2),…, với mỗi cách thực hiện công đoạn A(k-1) có n(k) cách thực hiện công đoạn A(k). Khi đó có n(1).n(2)….n(k) cách thực hiện công việc V.

    Khi đó n(AxB)=n(A).n(B).

    II. BÀI TẬP QUY TẮC ĐẾM LỚP 11 CÓ LỜI GIẢI : ĐẾM TRỰC TIẾP

    Để đếm số cách thực hiện một công việc, ta phân chia cách thực hiện công việc đó thành các phương án, trong mỗi phương án lại chia thành các công đoạn. Sau đó sử dụng quy tắc nhân và quy tắc cộng để suy ra số cách thực hiện công việc đó.

    Từ các chữ số 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên gồm:

    a.Một chữ số.

    b.Hai chữ số.

    c.Hai chữ số kháu nhau?

    a. Liệt kê được 4 số thỏa mãn.

    b. Gọi số có 2 chữ số cần lập là ab.

    Chữ số a có 4 cách chọn, chữ số b có 4 cách chọn

    Vậy theo quy tắc nhân ta có: 4.4 = 16 (số).

    c. Gọi số có 2 chữ số cần lập là ab.

    Chữ số a có 4 cách chọn, chữ số b có 3 cách chọn.

    Vậy theo quy tắc nhân ta có: 4.3 = 12 (số).

    Có bao nhiêu số nguyên của tập hợp {1; 2;…; 1000} mà chia hết cho 3 hoặc 5?

    Xếp 7 bạn nữ thành hàng ngang có 7.6.5.4.3.2.1=5040 cách xếp.

    Khi đó 7 bạn nữ chia hàng ngang thành 8 khoảng trống.

    Xếp 5 bạn nam vào 8 khoảng trống đó sao cho mỗi khoảng trống xếp nhiều nhất một bạn nam. Số cách xếp 5 bạn nam là: 8.7.6.5.4=6720 cách xếp.

    Theo quy tắc nhân có: 5040x 6720=33868800 cách xếp.

    III. BÀI TẬP QUY TẮC ĐẾM LỚP 11 CÓ LỜI GIẢI : ĐẾM GIÁN TIẾP

    Để đếm số cách thực hiện một công việc nào đó, mà việc đếm trực tiếp phức tạp, người ta có thể sử dụng phương pháp đếm phần bù. Nghĩa là bỏ đi một giả thiết gây ra sự phức tạp. Khi đó giả sử đếm được m cách thực hiện. Trong số cách thực hiện đó ta đếm số cách thực hiện công việc mà không thỏa mãn giả thiết bỏ đi được n cách thực hiện. Suy ra có m-n cách thực hiện công việc đã cho.

    Trong một hộp có 4 viên bi xanh và 6 viên bi đỏ. Có bao nhiêu cách chọn ra 3 viên bi sao cho có ít nhất 1 viên bi đỏ?

    Chọn ngẫu nhiên 3 viên bi bất kỳ có (10.9.8):(3.2.1)=120 cách. Số cách chọn 3 viên màu xanh là 4.3.2=24.

    Vậy số cách thỏa mãn yêu cầu bài toán là 120-24=96 cách.

    Trong mặt phẳng có 5 điểm phân biệt A, B, C, D, E. Hỏi có bao nhiêu véc tơ khác véc tơ không. Có điểm đầu và điểm cuối là các điểm A, B, C, D, E thỏa mãn điểm A không phải là điểm đầu?

    Ta đếm số véc tơ được tạo thành từ 5 điểm là 5.4=20.

    Ta đếm số cách chọn véc tơ được tạo thành từ 5 điểm mà điểm A là điểm đầu có 4 véc tơ.

    Vậy có 20-4=16 véc tơ thỏa mãn.

    Mỗi mật khẩu máy tính gồm 6 ký tự, mỗi ký tự hoặc là một chữ cái hoặc là một chữ số và mặt khẩu phải có ít nhất một chữ số. Hỏi lập được bao nhiêu mật khẩu?

    Mỗi ký tự có 26+10=36 cách chọn. Do đó chuỗi gồm 6 ký tự có 36^6 cách lập.

    Số chuỗi 6 ký tự không có chữ số là 26^6 .

    Vậy có tất cả 36^6-26^6=1867866560 mật khẩu.

    --- Bài cũ hơn ---

  • Chuyên Đề 8 Toán 10
  • Bài 1 Trang 9 Sgk Toán 10 Đại Số
  • Lời Giải Bài 2 Trang 55 Sgk Toán 12 Hay Nhất
  • Bài 1, 2, 3, 4, 5 Trang 132 Sgk Toán 1
  • Giải Toán Lớp 4 Trang 131, 132 Luyện Tập Chung, Đáp Số Bài 1,2,3 Sgk
  • Bài Tập Quy Tắc Đếm Lớp 11 Có Lời Giải Chi Tiết

    --- Bài mới hơn ---

  • Hướng Dẫn Làm Bài Tập Toán Lớp 11 Trắc Nghiệm
  • Các Dạng Bài Tập Về Quy Tắc Đếm (Quy Tắc Cộng Và Quy Tắc Nhân)
  • Giải Bài Tập Bài 1,2,3,4,5 Trang 21 Hóa 9: Luyện Tập Tính Chất Hóa Học Của Oxit Và Axit
  • Giải Bài Tập Sgk Bài 56: Ôn Tập Cuối Năm
  • Giải Bài Tập 5 Hóa 9 Sgk Trang 19
  • 1. QUI TẮC NHÂN

    Một công việc H được thực hiện qua K giai đoạn H1, H2, H3 ,trong đó:

    • Giai đoạn H1 có n1 cách thực hiện
    • Giai đoạn H2 có n2 cách thực hiện
    • Giai đoạn H3 có n3 cách thực hiện
    • ………………………………….
    • Giai đoạn Hk có nk cách thực hiện

    Khi đó để hoàn thành công việc H phải thực hiện đồng thời K giai đoạn thì suy ra có (n1.n2.n3….nk ) cách để hoàn thành công việc H.

    2. QUI TẮC CỘNG

    Một công việc H bao gồm K công việc H1, H2 ,H3 chúng tôi trong đó:

    • Giai đoạn H1 có n1 cách thực hiện
    • Giai đoạn H2 có n2 cách thực hiện
    • Giai đoạn H3 có n3 cách thực hiện
    • ………………………………….
    • Giai đoạn Hk có nk cách thực hiện

    Khi đó để hoàn thành công việc H chỉ phải thực hiện 1trong các công việc trên thì suy ra có (n1+ n2 + n3 + nk ) cách để hoàn thành công việc H.

    3. BÀI TẬP QUY TẮC ĐẾM LỚP 11 CÓ LỜI GIẢI CHI TIẾT

    Bài 1:

    Đề thi cuối khó môn toán khối 12 ở một trường trung học gồm hai loại đề tự luận và trắc nghiệm.Một học sinh dự thi phải thực hiện hai đề thi gồm 1 tự luận và một trắc nghiệm,trong đó tự luận có 12 đề, trắc nghiệm có 15 đề.Hỏi mỗi học sinh có bao nhiêu cách chọn đề thi?

    Giải:

    – Số cách chọ 1 đề tự luận là 12 cách

    – Số cách chọn 1 đề trắc nghiệm là 15 cách

    Vì một học sinh phải làm đồng thời 2 loại đề nên có tất cả 12.15 = 180 cách chọn đề thi

    Bài 2:

    Cho tập hợp A = {1,2,3,5,7,9}

    a. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau

    b. Từ tập A có thể lập được bao nhiêu số tự nhiên chẵn gồm có 5 chữ số đôi một khác nhau

    Giải:

    a. Gọi số tự nhiên gồm 4 chữ số là:

    Để có số n ta phải chọn đồng thời a1,a2,a3,a4 trong đó:

    – a1 có 6 cách chọn

    – a2 có 5 cách chọn

    – a3 có 4 cách chọn

    – a4 có 3 cách chọn

    Vậy có 6.5.4.3 = 360 số n cần tìm

    b.Gọi số tự chẵn có 5 chữ số cần tìm là n = , trong đó:

    – a5 chỉ có 1 cách chọn (bằng 2)

    – a1 có 5 cách chọn

    – a2 có 4 cách chọn

    – a3 có 3 cách chọn

    – a4 có 2 cách chọn

    Vậy số n cần tìm là:1.2.3.4.5 = 120 số

    Bài 3:

    Cho tập A = {0,1,2,3,4,5,6,7,8,9}.Có bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau lấy ra từ tập A

    Giải:

    Gọi số cần tìm là n = , trong đó:

    – a1 có 9 cách chọn(vì a1 ≠ 0)

    – a2 có 9 cách chọn

    – a3 có 8 cách chọn

    – a4 có 7 cách chọn

    – a5 có 6 cách chọn

    Vậy có tất cả 9.9.8.7.6 = 27216 cách

    Bài 4:

    Cho tập A = {0,1,2,3,4,5,6,7,8}

    a. Từ tập A có thể lập được bao nhiêu số tự nhiên gòm 5 chữ số đôi một khác nhau và các chữ số này lẻ,chia hết cho 5

    b. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau sao cho chữ số đứng cuối chia hết cho 4

    Từ khóa:

    • bài tập về phép đếm có lời giải
    • bài tập trắc nghiệm quy tắc đếm
    • bài tập vận dụng quy tắc đếm hoán vị chỉnh hợp tổ hợp
    • quy tắc điểm bài tập sgk
    • quy tắc đếm lớp 11
    • bài tập đếm số lớp 11 có lời giải

    --- Bài cũ hơn ---

  • Bài 1,2,3,4 Trang 46 Sgk Đại Số Và Giải Tích 11: Quy Tắc Đếm
  • Giải Vở Bài Tập Toán 4 Bài 37: Tìm Hai Số Khi Biết Tổng Và Hiệu Của Hai Số Đó
  • Lập Trình Java Căn Bản
  • Ebook Bài Tập Java Lập Trình Hướng Đối Tượng Có Lời Giải Pdf
  • Lập Trình Mạng Với Java (Bài 6)
  • Các Bài Toán Hình Học Lớp 9 Có Lời Giải

    --- Bài mới hơn ---

  • Soạn Anh 7: Unit 9. Neighbors
  • Soạn Anh 7: Unit 8. At The Post Office
  • Unit 8. Films. Lesson 5. Skills 1
  • Skills 1 Trang 22 Unit 8 Tiếng Anh 7 Mới
  • Unit 3. Community Service. Lesson 5. Skills 1
  • , Working at Trường Đại học Công nghệ Thông tin và Truyền thông – Đại học Thái Nguyên

    Published on

    Cac bai-toan-hinh-hoc-on-thi-vao-lop-10

    1. 4. N y x O K F E M BA 3. Rõ ràng đây là câu hỏi khó đối với một số em, kể cả khi hiểu rồi vẫn không biết giải như thế nào , có nhiều em may mắn hơn vẽ ngẫu nhiên lại rơi đúng vào hình 3 ở trên từ đó nghĩ ngay được vị trí điểm C trên nửa đường tròn. Khi gặp loại toán này đòi hỏi phải tư duy cao hơn. Thông thường nghĩ nếu có kết quả của bài toán thì sẽ xảy ra điều gì ? Kết hợp với các giả thiết và các kết quả từ các câu trên ta tìm được lời giải của bài toán. Với bài tập trên phát hiện M là trực tâm của tam giác không phải là khó, tuy nhiên cần kết hợp với bài tập 13 trang 72 sách Toán 9T2 và giả thiết M là điểm chính giữa cung AC ta tìm được vị trí của C ngay. Với cách trình bày dưới mệnh đề “khi và chỉ khi” kết hợp với suy luận cho ta lời giải chặt chẽ hơn. Em vẫn có thể viết lời giải cách khác bằng cách đưa ra nhận định trước rồi chứng minh với nhận định đó thì có kết quả , tuy nhiên phải trình bày phần đảo: Điểm C nằm trên nửa đường tròn mà thì AD là tiếp tuyến. Chứng minh nhận định đó xong ta lại trình bày phần đảo: AD là tiếp tuyến thì . Từ đó kết luận. 4. Phát hiện diện tích phần tam giác ADC ở ngoài đường tròn (O) chính là hiệu của diện tích tứ giác AOCD và diện tích hình quạt AOC thì bài toán dễ tính hơn so với cách tính tam giác ADC trừ cho diện tích viên phân cung AC. Bài 3 Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F. 1. Chứng minh: 2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. 3. Gọi K là giao điểm của AF và BE, chứng minh . 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. BÀI GIẢI CHI TIẾT 1. Chứng minh: . EA, EM là hai tiếp tuyến của đường tròn (O) cắt nhau ở E nên OE là phân giác của . Tương tự: OF là phân giác của . Mà và kề bù nên: (đpcm) hình 4 2. Chứng minh: Tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. ” 0 60BC =” 0 60BC = · 0 EOF 90= MK AB⊥ 3 · 0 EOF 90= ·AOM ·BOM ·AOM·BOM· 0 90EOF =
    2. 5. Ta có: (tính chất tiếp tuyến) Tứ giác AEMO có nên nội tiếp được trong một đường tròn. Tam giác AMB và tam giác EOF có:, (cùng chắn cung MO của đường tròn ngoại tiếp tứ giác AEMO. Vậy Tam giác AMB và tam giác EOF đồng dạng (g.g). 3. Gọi K là giao điểm của AF và BE, chứng minh . Tam giác AEK có AE // FB nên: . Mà : AE = ME và BF = MF (t/chất hai tiếp tuyến cắt nhau). Nên . Do đó MK // AE (định lí đảo của định lí Ta- let). Lại có: AE AB (gt) nên MK AB. 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. Gọi N là giao điểm của MK và AB, suy ra MN AB. FEA có MK//AE nên (1). BEA có NK//AE nên (2). Mà (do BF // AE) nên hay (3). Từ (1), (2) và (3) suy ra . Vậy MK = NK. Tam giác AKB và tam giác AMB có chung đáy AB nên: . Do đó. Tam giác AMB vuông ở M nên tg A = . Vậy AM = và MB = = (đvdt). Lời bàn: (Đây là đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của tỉnh Hà Nam) . Từ câu 1 đến câu 3 trong quá trình ôn thi vào lớp 10 chắc chắn thầy cô nào cũng ôn tập, do đó những em nào ôn thi nghiêm túc chắc chắn giải được ngay, khỏi phải bàn, những em thi năm qua ở tỉnh Hà Nam xem như trúng tủ. Bài toán này có nhiều câu khó, và đây là một câu khó mà người ra đề khai thác từ câu: MK cắt AB ở N. Chứng minh: K là trung điểm MN. · · 0 90EAO EMO= = · · 0 180EAO EMO+ = *· · 0 EOF 90AMB = =· ·MAB MEO= MK AB⊥ AK AE KF BF = AK ME KF MF = ⊥⊥ 3 ⊥ ∆MK FK AE FA = ∆NK BK AE BE = FK BK KA KE = FK BK KA FK BK KE = + + FK BK FA BE = MK KN AE AE = 1 2 AKB AMB S KN S MN = = 1 2 AKB AMBS S= 3 MB MA = · 0 60MAB⇒ = 2 a3 2 a⇒1 1 3 . . . 2 2 2 2 AKB a a S⇒ = 21 3 16 a
    3. 6. x H Q I N M O C BA K x H Q I N M O C BA Nếu chú ý MK là đường thẳng chứa đường cao của tam giác AMB do câu 3 và tam giác AKB và AMB có chung đáy AB thì các em sẽ nghĩ ngay đến định lí: Nếu hai tam giác có chung đáy thì tỉ số diện tích hai tam giác bằng tỉ số hai đường cao tương ứng, bài toán qui về tính diện tích tam giác AMB không phải là khó phải không các em? Bài 4 Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng: a) Tứ giác AMQI nội tiếp. b) . c) CN = NH. (Trích đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của sở GD&ĐT Tỉnh Bắc Ninh) BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác AMQI nội tiếp: Ta có: MA = MC (tính chất hai tếp tuyến cắt nhau) OA = OC (bán kính đường tròn (O)) Do đó: MO AC . (góc nội tiếp chắn nửa đường tròn (O)) . Hai đỉnh I và Q cùng nhìn AM dưới Hình 5 một góc vuông nên tứ giác AMQI nội tiếp được trong một đường tròn. b) Chứng minh:. Tứ giác AMQI nội tiếp nên Hình 6 (cùng phụ ) (2). có OA = OC nên cân ở O. (3). Từ (1), (2) và (3) suy ra . c) Chứng minh CN = NH. Gọi K là giao điểm của BC và tia Ax. Ta có: (góc nội tiếp chắn nửa đường tròn(O)). AC BK , AC OM OM // BK. Tam giác ABK có: OA = OB, OM // BK MA = MK. Áp dụng hệ quả định lí Ta let cho có NH // AM (cùng AB) ta được: · ·AQI ACO= ⊥· 0 90MIA⇒ = · 0 90AQB = · 0 90MQA⇒ = · ·AQI ACO= · ·AQI AMI= ·MAC AOC∆· ·CAO ACO⇒ =· ·AQI ACO= · 0 90ACB =⊥⊥⇒⇒ ABM∆ ⊥
    4. 8. · · · · CDB CAB CAB CFA  =  = x F E D C B O A Từ (1) và (2) suy ra: chúng tôi = chúng tôi c) Chứng minh tứ giác CDEF nội tiếp: Ta có: (hai góc nội tiếp cùng chắn cung BC) ( cùng phụ ) Do đó tứ giác CDEF nội tiếp. Cách khác và có: chung và (suy từ chúng tôi = chúng tôi nên chúng đồng dạng (c.g.c). Suy ra: . Vậy tứ giác CDEF là tứ giác nội tiếp. d) Xác định số đo của góc ABC để tứ giác AOCD là hình thoi: Ta có: (do BD là phân giác ) . Tứ giác AOCD là hình thoi OA = AD = DC = OC AD = DC = R Vậy thì tứ giác AOCD là hình thoi. Tính diện tích hình thoi AOCD theo R: . Sthoi AOCD = (đvdt). Hình 8 Lời bàn 1. Với câu 1, từ gt BD là phân giác góc ABC kết hợp với tam giác cân ta nghĩ ngay đến cần chứng minh hai góc so le trong và bằng nhau. 2. Việc chú ý đến các góc nội tiếp chắn nửa đường tròn kết hợp với tam giác AEB, FAB vuông do Ax là tiếp tuyến gợi ý ngay đến hệ thức lượng trong tam giác vuông quen thuộc. Tuy nhiên vẫn có thể chứng minh hai tam giác BDC và BFE đồng dạng trước rồi suy ra chúng tôi = chúng tôi Với cách thực hiện này có ưu việc hơn là giải luôn được câu 3. Các em thử thực hiện xem sao? 3. Khi giải được câu 2 thì câu 3 có thể sử dụng câu 2 , hoặc có thể chứng minh như bài giải. 4. Câu 4 với đề yêu cầu xác định số đo của góc ABC để tứ giác AOCD trở thành hình thoi không phải là khó. Từ việc suy luận AD = CD = R nghĩ ngay đến cung AC bằng 1200 từ đó suy ra số đo góc ABC ·FAC· ·CDB CFA⇒ = ∆DBC∆FBE∆ µBBD BC BF BE = · ·EFBCDB = · ·ABD CBD=·ABC” “AD CD⇒ = ⇔ ⇔” ” 0 60AD DC⇔ = =” 0 120AC⇔ =· 0 60ABC⇔ = · 0 60ABC = ” 0 120 3AC AC R= ⇒ = 2 1 1 3 . . . 3 2 2 2 R OD AC R R= = ·ODB·OBD ” 0 120 3AC AC R= ⇒ =
    5. 9. H N F E CB A bằng 600 . Tính diện tích hình thoi chỉ cần nhớ công thức, nhớ các kiến thức đặc biệt mà trong quá trình ôn tập thầy cô giáo bổ sung như ,…….. các em sẽ tính được dễ dàng. Bài 6 Cho tam giác ABC có ba góc nhọn. Đường tròn đường kính BC cắt cạnh AB, AC lần lượt tại E và F ; BF cắt EC tại H. Tia AH cắt đường thẳng BC tại N. a) Chứng minh tứ giác HFCN nội tiếp. b) Chứng minh FB là phân giác của . c) Giả sử AH = BC . Tính số đo góc của ∆ABC. BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác HFCN nội tiếp: Ta có : (góc nội tiếp chắn nửa đường tròn đường kính BC) Tứ giác HFCN có nên nội tiếp được trong đường tròn đường kính HC) (đpcm). b) Chứng minh FB là tia phân giác của góc EFN: Ta có (hai góc nội tiếp cùng chắn của đường tròn đường kính BC). (hai góc nội tiếp cùng chắn của đường tròn đường kính HC). Suy ra: . Vậy FB là tia phân giác của góc EFN (đpcm) c) Giả sử AH = BC. Tính số đo góc BAC của tam giác ABC: FAH và FBC có: , AH = BC (gt), (cùng phụ ). Vậy FAH = FBC (cạnh huyền- góc nhọn). Suy ra: FA = FB. AFB vuông tại F; FA = FB nên vuông cân. Do đó . Bài 7 (Các em tự giải) Cho tam giác ABC nhọn, các đường cao BD và CE cát nhau tại H. a) Chứng minh tứ giác BCDE nội tiếp. b) Chứng minh AD. AC = AE. AB. c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh OA DE. ·EFN ·BAC · · 0 90BFC BEC= = · · 0 180HFC HNC+ = · ·EFB ECB=”BE · ·ECB BFN=¼HN · ·EFB BFN= ∆∆· · 0 AFH 90BFC= =· ·FAH FBC=·ACB∆∆ ∆· 0 45BAC = ⊥
    6. 10. = // O FE C DBA d) Cho biết OA = R , . Tính BH. BD + CH. CE theo R. Bài 8 Cho đường tròn (O) đường kính AB. Trên tia AB lấy điểm D nằm ngoài đoạn AB và kẻ tiếp tuyến DC với đường tròn (O) (C là tiếp điểm). Gọi E là chân đường vuông góc hạ từ A xuống đường thẳng CD và F là chân đường vuông góc hạ từ D xuống đường thẳng AC. Chứng minh: a) Tứ giác EFDA nội tiếp. b) AF là phân giác của . c) Tam giác EFA và tam giác BDC đồng dạng. d) Các tam giác ACD và ABF có cùng diện tích. (Trích đề thi tốt nghiệp và xét tuyển vào lớp 10- năm học 2000- 2001) BÀI GIẢI a) Chứng minh tứ giác EFDA nội tiếp: Ta có: (gt). Hai đỉnh E và F cùng nhìn AD dưới góc 900 nên tứ giác EFDA nội tiếp được trong một đường tròn. b) Chứng minh AF là phân giác của góc EAD: Ta có: . Vậy ( so le trong) Tam giác AOC cân ở O (vì OA = OC = R) nên . Do đó: . Vậy AF là phân giác của góc EAD (đpcm). c) Chứng minh tam giác EFA và tam giác BDC đồng dạng: EFA và BDC có: (hai góc nội tiếp cùng chắn của đường tròn ngoại tiếp tứ giác EFDA). . Vậy EFA và BDC đồng dạng (góc- góc). d) Chứng minh các tam giác ACD và ABF có cùng diện tích: SACD = và SABF = . (1) BC // DF (cùng AF) nên hay DF. AC = chúng tôi (2). Từ (1) và (2) suy ra : SACD = SABF (đpcm) (Lưu ý: có thể giải 2 cách khác nữa). · 0 60BAC = ·EAD · · 0 AFD 90AED = = // AE CD AE OC OC CD ⊥ ⇒ ⊥ · ·EAC CAD= · ·CAO OCA=· ·EAC CAD= ∆∆ · ·EFA CDB=”AE · · · · · ·EAC CAB EAF BCD CAB DCB  = ⇒ = = ∆∆ 1 . 2 DF AC 1 .AF 2 BC ⊥ AF BC AC DF =
    7. 11. O P K M H A C B Bài 9 Cho tam giác ABC ( ) nội tiếp trong nửa đường tròn tâm O đường kính AB. Dựng tiếp tuyến với đường tròn (O) tại C và gọi H là chân đường vuông góc kẻ từ A đến tiếp tuyến đó. AH cắt đường tròn (O) tại M (M ≠ A). Đường vuông góc với AC kẻ từ M cắt AC tại K và AB tại P. a) Chứng minh tứ giác MKCH nội tiếp. b) Chứng minh ∆MAP cân. c) Tìm điều kiện của ∆ABC để ba điểm M, K, O thẳng hàng. BÀI GIẢI a) Chứng minh tứ giác MKCH nội tiếp: Ta có : (gt), (gt) Tứ giác MKCH có tổng hai góc đối nhau bằng 1800 nên nội tiếp được trong một đường tròn. b) Chứng minh tam giác MAP cân: AH // OC (cùng vuông góc CH) nên (so le trong) AOC cân ở O (vì OA = OC = R) nên . Do đó: . Vậy AC là phân giác của . Tam giác MAP có AK là đường cao (do AC MP), đồng thời là đường phân giác nên tam giác MAP cân ở A (đpcm). Cách 2 Tứ giác MKCH nội tiếp nên (cùng bù ). (cùng bằng sđ), (hai góc đồng vị của MP// CB). Suy ra: . Vậy tam giác AMP cân tại A. c) Tìm điều kiện cho tam giác ABC để ba điểm M; K; O thẳng hàng: Ta có M; K; P thẳng hàng. Do đó M; K; O thẳng hàng nếu P O hay AP = PM. Kết hợp với câu b tam giác MAP cân ở A suy ra tam giác MAP đều. Do đó . Đảo lại: ta chứng minh P O: Khi (do AC là phân giác của ) . Tam giác MAO cân tại O có nên MAO đều. Do đó: AO = AM. Mà AM = AP (do MAP cân ở A) nên AO = AP. Vậy P O. Trả lời: Tam giác ABC cho trước có thì ba điểm M; K và O thẳng hàng. · 0 45BAC < · 0 90MHC =· 0 90MKC = · ·MAC ACO= ∆· ·ACO CAO=· ·MAC CAO=·MAB⊥ · ·AMP HCK=·HMK· ·HCA CBA=1 2 “AC· ·CBA MPA= · ·AMP APM= ≡ · 0 30CAB =· 0 30CAB = ≡ · 0 30CAB = ⇒· 0 60MAB =·MAB· 0 60MAO =∆∆≡ · 0 30CAB =
    8. 12. / / //// H QP I O N M CB A Bài 10 Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N ( A≠ M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh: a) b) Tứ giác BMNC nội tiếp. c) Điểm I là trực tâm tam giác APQ. BÀI GIẢI a) Chứng minh : (góc nội tiếp chắn nửa đường tròn (O)). Nên Tam giác ANH vuông tại N. (do AH là đường cao của ABC) nên tam giác AHC vuông ở H. Do đó (cùng phụ ). b) Chứng minh tứ giác BMNC nội tiếp: Ta có : (hai góc nội tiếp cùng chắn cung AN). (câu a). Vậy: . Do đó tứ giác BMNC là một tứ giác nội tiếp. c) Chứng minh I là trực tâm tam giác APQ: OA = OH và QH = QC (gt) nên QO là đường trung bình của tam giác AHC. Suy ra: OQ//AC, mà AC AB nên QO AB. Tam giác ABQ có AH BQ và QO AB nên O là trực tâm của tam giác. Vậy BO AQ. Mặt khác PI là đường trung bình của tam giác BHO nên PI // BO. Kết hợp với BO AQ ta được PI AQ. Tam giác APQ có AH PQ và PI AQ nên I là trực tâm tam giác APQ (đpcm). Bài 11 Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C≠ A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh: a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó. b) KN là tiếp tuyến của đường tròn (O; R). c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định. BÀI GIẢI · ·AHN ACB= · ·AHN ACB= · 0 90ANH = · 0 90AHC =∆· ·AHN ACB=·HAC · ·AMN AHN= · ·AHN ACB= · ·AMN ACB= ⊥⊥ ⊥⊥⊥⊥⊥⊥⊥
    9. 13. H / / = = P O K I N M C BA a) Chứng minh tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó: Ta có (góc nội tiếp chắn nửa đường tròn (O)). Do đó: Tứ giác ICPN có nên nội tiếp được trong một đường tròn. Tâm K của đường tròn ngoại tiếp tứ giác ICPN là trung điểm của đoạn thẳng IP. b) Chứng minh KN là tiếp tuyến của đường tròn (O). Tam giác INP vuông tại N, K là trung điểm IP nên . Vậy tam giác IKN cân ở K . Do đó (1). Mặt khác (hai góc nội tiếp cùng chắn cung PN đường tròn (K)) (2) N là trung điểm cung CB nên . Vậy NCB cân tại N. Do đó : (3). Từ (1), (2) và (3) suy ra , hai góc này ở vị trí đồng vị nên KN // BC. Mặt khác ON BC nên KN ON. Vậy KN là tiếp tuyến của đường tròn (O). Chú ý: * Có thể chứng minh * hoặc chứng minh . c) Chứng minh rằng khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định: Ta có (gt) nên . Vậy OM là phân giác của . Tương tự ON là phân giác của , mà và kề bù nên . Vậy tam giác MON vuông cân ở O. Kẻ OH MN, ta có OH = chúng tôi = R. = không đổi. Vậy khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định (O; ). · · 0 90ACB ANB= = · · 0 90ICP INP= = · · 0 180ICP INP+ = 1 2 KN KI IP= = · ·KIN KNI= · ·NKP NCP= ” “CN BN CN NB= ⇒ =∆ · ·NCB NBC=· ·INK IBC= ⊥⊥ · · ·0 0 90 90KNI ONB KNO+ = ⇒ = · · ·0 0 90 90KNA ANO KNO+ = ⇒ = ¼ ¼AM MC=· ·AOM MOC=·AOC ·COB·AOC·COB· 0 90MON = ⊥2 2 2 2 R 2 2 R
    10. 14. / / // // H O K E D C B A _ = = / / O K H E D C B A Bài 12 Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC tới đường tròn ( B, C là các tiếp điểm). Đường thẳng qua A cắt đường tròn (O) tại D và E (D nằm giữa A và E , dây DE không qua tâm O). Gọi H là trung điểm của DE, AE cắt BC tại K . a) Chứng minh tứ giác ABOC nội tiếp đường tròn . b) Chứng minh HA là tia phân giác của c) Chứng minh : . BÀI GIẢI a) Chứng minh tứ giác ABOC nội tiếp: (tính chất tiếp tuyến) Tứ giác ABOC có nên nội tiếp được trong một đường tròn. b) Chứng minh HA là tia phân giác của góc BHC: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra . Do đó . Vậy HA là tia phân giác của góc BHC. c) Chứng minh : ABD và AEB có: chung, (cùng bằng sđ ) Suy ra : ABD ~ AEB Do đó: (1) ABK và AHB có: chung, (do ) nên chúng đồng dạng. Suy ra: (2) Từ (1) và (2) suy ra: chúng tôi = AK. AH === = (do AD + DE = AE và DE = 2DH). Vậy: (đpcm). Bài 13 Cho đường tròn (O;R) có đường kính AB. Trên đường tròn (O;R) lấy điểm M sao cho . Vẽ đường tròn (B; BM) cắt đường tròn (O; R) tại điểm thứ hai là N. ·BHC 2 1 1 AK AD AE = + · · 0 90ABO ACO= = · · 0 180ABO ACO+ = ” “AB AC=· ·AHB AHC= 2 1 1 AK AD AE = + ∆∆ ·BAE· ·ABD AEB=1 2 “BD ∆∆ 2 . AB AD AB AD AE AE AB = ⇒ = ∆∆ ·BAH· ·ABK AHB=” “AB AC= 2 . AK AB AB AK AH AB AH = ⇒ = 1 . AH AK AE AD ⇒ = 2 2 . AH AK AE AD ⇒ =( )2 . AD DH AE AD +2 2 . AD DH AE AD + = . AD AD ED AE AD + + . AE AD AE AD +1 1 AD AE + 2 1 1 AK AD AE = + · 0 60MAB =
    11. 15. 60° O J IN M B A a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). b) Kẻ các đường kính MOI của đường tròn (O; R) và MBJ của đường tròn (B; BM). Chứng minh N, I và J thẳng hàng và JI . JN = 6R2 c) Tính phần diện tích của hình tròn (B; BM) nằm bên ngoài đường tròn (O; R) theo R. BÀI GIẢI a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). Ta có . (góc nội tiếp chắn nửa đường tròn(O)). Điểm M và N thuộc (B;BM); AM MB và AN NB. Nên AM; AN là các tiếp tuyến của (B; BM). b) Chứng minh N; I; J thẳng hàng và JI .JN = 6R2 . (các góc nội tiếp chắn nửa đường tròn tâm O và tâm B). Nên IN MN và JN MN . Vậy ba điểm N; I và J thẳng hàng. Tam giác MJI có BO là đường trung bình nên IJ = 2BO = 2R. Tam giác AMO cân ở O (vì OM = OA), nên tam giác MAO đều. AB MN tại H (tính chất dây chung của hai đường tròn (O) và (B) cắt nhau). Nên OH = . Vậy HB = HO + OB = . Vậy JI . JN = 2R . 3R = 6R2 c) Tính diện tích phần hình tròn (B; BM) nằm ngoài đường tròn (O; R) theo R: Gọi S là diện tích phần hình tròn nằm (B; BM) nằm bên ngoài hình tròn (O; R). S1 là diện tích hình tròn tâm (B; BM). S2 là diện tích hình quạt MBN. S3 ; S4 là diện tích hai viên phân cung MB và NB của đường tròn (O; R). Ta có : S = S1 – (S2 + S3 + S4). Tính S1: . Vậy: S1 = . Tính S2: S2 = = Tính S3: S3 = Squạt MOB – SMOB. Squạt MOB = . OA = OB SMOB = SAMB = = = Vậy S3 = = S4 (do tính chất đối xứng). Từ đó S = S1 – (S2 + 2S3) · · 0 90AMB ANB= = ⊥ ⊥ · · 0 90MNI MNJ= =⊥⊥ · 0 60MAO = ⊥ 1 1 2 2 OA R= 3 2 2 R R R+ = 3 2. 3 2 R NJ R⇒ = = · “0 0 60 120MAB MB= ⇒ =3MB R⇒ = ( ) 2 2 3 3R Rπ π= · 0 60MBN = ⇒ ( ) 2 0 0 3 60 360 Rπ 2 2 Rπ · 0 120MOB = ⇒2 0 2 0 .120 360 3 R Rπ π = ⇒1 2 1 1 . . . 2 2 AM MB 1 . 3 4 R R 2 3 4 R 2 3 Rπ 2 3 4 R −
    12. 16. _ // // = M O I H D C BA = – = (đvdt). Bài 14 Cho đường tròn (O; R) , đường kính AB . Trên tiếp tuyến kẻ từ A của đường tròn này lấy điểm C sao cho AC = AB . Từ C kẻ tiếp tuyến thứ hai CD của đường tròn (O; R), với D là tiếp điểm. a) Chứng minh rằng ACDO là một tứ giác nội tiếp. b) Gọi H là giao điểm của AD và OC. Tính theo R độ dài các đoạn thẳng AH; AD. c) Đường thẳng BC cắt đường tròn (O; R) tại điểm thứ hai M. Chứng minh . d) Đường tròn (I) ngoại tiếp tam giác MHB. Tính diện tích phần của hình tròn này nằm ngoài đường tròn (O; R). BÀI GIẢI a) Chứng minh tứ giác ACDO nội tiếp: (tính chất tiếp tuyến). Tứ giác ACDO có nên nội tiếp được trong một đường tròn. b) Tính theo R độ dài các đoạn thẳng AH; AD: CA = CD (tính chất hai tiếp tuyến cắt nhau); OA = OD =R và AH = HD Tam giác ACO vuông ở A, AH OC nên = =. Vậy AH = và AD = 2AH = . c) Chứng minh : (góc nội tiếp chắn nửa đường tròn) . Hai đỉnh H và M cùng nhìn AC dưới góc 900 nên ACMH là tứ giác nội tiếp. Suy ra: . Tam giác ACB vuông tại A, AC = AB(gt) nên vuông cân. Vậy . Do đó : . d) Tính diện tích hình tròn (I) nằm ngoài đường tròn (O) theo R: Từ và mà (do CAB vuông cân ở B). Nên Tứ giác HMBO nội tiếp . Do đó . Vậy tâm I đường tròn ngoại tiếp tam giác MHB là trung điểm MB. Gọi S là diện tích phần hình tròn (I) ở ngoài đường tròn (O). 2 3 Rπ2 2 2 2 3 2 3 2 R R Rπ π  + − ÷ ÷   2 2 11 3 3 6 R Rπ + · 0 45MHD = · · 0 90CAO CDO= = · · 0 180CAO CDO+ = OC AD⇒ ⊥ ⊥ 2 2 2 1 1 1 AH AO AC = + ( ) 22 1 1 2R R + 2 5 4R 2 5 5 R4 5 5 R · 0 45MHD = · 0 90AMB =· 0 90CMA⇒ =· ·ACM MHD= · 0 45ACB = · 0 45MHD = · 0 90CHD =· 0 45MHD =· 0 45CHM⇒ =· 0 45CBA =∆ · ·CHM CBA= ⇒· · 0 90MHB MOB= =
    13. 17. E I K H ON M D C BA S1 là diện tích nửa hình tròn đường kính MB. S2 là diện tích viên phân MDB. Ta có S = S1 – S2 . Tính S1: . Vậy S1 = . Tính S2: S2 = SquạtMOB – SMOB = = . S = ( ) = . Bài 15 Cho đường tròn (O) đường kính AB bằng 6cm . Gọi H làđiểm nằm giữa A và B sao cho AH = 1cm. Qua H vẽ đường thẳng vuông góc với AB , đường thẳng này cắt đường tròn (O) tại C và D. Hai đường thẳng BC và DA cắt nhau tại M. Từ M hạ đường vuông góc MN với đường thẳng AB ( N thuộc thẳng AB). a) Chứng minh MNAC là tứ giác nội tiếp. b) Tính độ dài đoạn thẳng CH và tính tg. c) Chứng minh NC là tiếp tuyến của đường tròn (O). d) Tiếp tuyến tại A của đường tròn (O) cắt NC ở E. Chứng minh đường thẳng EB đi qua trung điểm của đoạn thẳng CH. BÀI GIẢI a) Chứng minh tứ giác MNAC nội tiếp: (góc nội tiếp chắn nửa đường tròn) Suy ra . Tứ giác MNAC có nên nội tiếp được trong một đường tròn. b) Tính CH và tg ABC. AB = 6 (cm) ; AH = 1 (cm) HB = 5 (cm). Tam giác ACB vuông ở C, CH AB CH2 = AH . BH = 1 . 5 = 5 (cm). Do đó tg ABC = . c) Chứng minh NC là tiếp tuyến của đường tròn (O): Ta có (hai góc nội tiếp cùng chắn cung AN của đường tròn ngoại tiếp tứ giác MNAC). (so le trong của MN // CD) và (cùng chắn ) Nên . Do sđ sđ . Suy ra CN là tiếp tuyến của đường tròn (O). (xem lại bài tập 30 trang 79 SGK toán 9 tập 2). d) Chứng minh EB đi qua trung điểm của CH: ” 0 90 2MB MB R= ⇒ = 2 2 1 2 . 2 2 4 R Rπ π   = ÷ ÷  ∆2 0 2 0 .90 360 2 R Rπ − 2 2 4 2 R Rπ − ∗2 4 Rπ − 2 2 4 2 R Rπ − 2 2 R ·ABC · 0 90ACB = · 0 90MCA =µ µ 0 180N C+ = ⇒ ⊥⇒ 5CH⇒ = 5 5 CH BH = · ·NCA NMA=· ·NMA ADC=· ·ADC ABC=”AC· ·NCA ABC=· 1 2 ABC = “AC· 1 2 NCA⇒ = “AC
    14. 18. / /? _ αK E H M O D C B A Gọi K là giao điểm của AE và BC; I là giao điểm của CH và EB. KE//CD (cùngvới AB) (đồng vị). (cùng chắn cung BD). (đối đỉnh) và (cùng chắn ). Suy ra: cân ở E. Do đó EK = EC. Mà EC = EA (tính chất hai tiếp tuyến cắt nhau) nên EK = EA. có CI // KE và có IH // AE . Vậy mà KE = AE nên IC = IH (đpcm). Bài 16 Cho đường tròn tâm O, đường kính AC. Vẽ dây BD vuông góc với AC tại K (K nằm giữa A và O). Lấy điểm E trên cung nhỏ CD (E không trùng C và D), AE cắt BD tại H. a) Chứng minh tam giác CBD cân và tứ giác CEHK nội tiếp. b) Chứng minh AD2 = AH. AE. c) Cho BD = 24cm; BC = 20cm. Tính chu vi hình tròn (O). d) Cho . Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tam giác MBC cân tại M. Tính góc MBC theo để M thuộc đường tròn (O). Hướng dẫn c) Tính BK = 12 cm, CK = 16 cm, dùng hệ thức lượng tính được CA = 25 cm R = 12,5 cm. Từ đó tính được C = 25 d) M (O) ta cần có tứ giác ABMC nội tiếp. Từ đó tính được . Bài 17 Cho nửa đường tròn (O) đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax và dây AC bất kỳ. Tia phân giác của góc xAC cắt nửa đường tròn tại D, các tia AD và BC cắt nhau tại E. a) Chứng minh ∆ABE cân. b) Đường thẳng BD cắt AC tại K, cắt tia Ax tại F . Chứng minh tứ giác ABEF nội tiếp. c) Cho . Chứng minh AK = 2CK. Bài 18 Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB; AC và cát tuyến AMN không đi qua tâm O. Gọi I là trung điểm MN. ⊥· ·AKB DCB⇒ =· ·DAB DCB=· ·DAB MAN=· ·MAN MCN=¼MN · ·EKC ECK KEC= ⇒ ∆ KBE∆⇒CI BI KE BE = ABE∆⇒IH BI AE BE = CI IH KE AE = ·BCD α= α ⇒ π ∈ ⇔· · 0 180ABM ACM+ =·0 0 90 2 180 2 MBC α ⇔ + + = · 0 180 4 MBC α− = · 0 30CAB =

    --- Bài cũ hơn ---

  • Lời Giải Toán Lớp 9
  • Đáp Án Củng Cố Và Ôn Luyện Tiếng Anh 9 Tập 2
  • Củng Cố Và Ôn Luyện Toán 9 Tập 1
  • Củng Cố Và Ôn Luyện Toán 9
  • Skills Trang 10 Unit 6 Sgk Tiếng Anh 11 Mới
  • Toán Lớp 2 Nâng Cao Có Lời Giải

    --- Bài mới hơn ---

  • 80 Bài Toán Ôn Luyện Học Sinh Giỏi Lớp 2
  • Bản Mềm: 29 Bài Toán Nâng Cao Lớp 1
  • Chọn Mua Sách Toán Lớp 1 Nâng Cao Có Lời Giải Cho Con
  • Sáng Kiến Kinh Nghiệm Rèn Luyện Kỹ Năng Trình Bày Lời Giải Bài Toán Cho Học Sinh Lớp 6
  • Các Dạng Toán Nâng Cao Lớp 6 Có Lời Giải
  • Tổng hợp các bài toán lớp 2 nâng cao có lời giải được biên soạn chi tiết nhất của kênh youtube : Học Toán Online.

    Bài 1. Nhà Hà có số con gà bằng số con chó, tổng số chân gà và chó là 48 chân. Hỏi nhà Hà có bao nhiêu con gà, bao nhiêu con chó.

    Bài giải

    Một cặp gồm 1 con gà và 1 con chó có số chân là :

    2 + 4 = 6 (chân)

    Do số gà bằng số chó nên nhà Hà có số cặp gà và chó là :

    48 : 6 = 8 (cặp)

    Vậy nhà Hà có 8 con gà và 8 con chó.

    Đáp số : Gà : 8 con ; Chó : 8 con.

    Xem toàn bộ toán nâng cao lớp 2

    Bài 2. Có 8 can dầu mỗi can chứa 5 lít. Hỏi với số dầu đó mà đựng vào các can, mỗi can 4 lít thì cần bao nhiêu can?

    Bài 3. Toán nâng cao lớp 2 có lời giải – tính tuổi.

    Hiện nay anh 22 tuổi, em 16 tuổi. Tính tổng số tuổi của hai anh em khi em bằng tuổi anh hiện nay?

    Xem video học toán lớp 2 sách giáo khoa. Gợi ý :

    -Hiện nay anh hơn em : 22 – 16 = 6(tuổi).

    -Khi em bằng tuổi anh hiện nay, tức là em 22 tuổi, thì anh vấn hơn em là 6 tuổi.

    -Lúc đó tuổi của anh là : 22 + 6 = 28 (tuổi)

    -Vậy tổng số tuổi của hai anh em lúc đó là : 22 + 28 = 50 (tuổi)

    Bài giải

    Anh hơn em số tuổi là :

    22 – 16 = 6 (tuổi)

    Khi em bằng tuổi anh hiện nay (khi em 22 tuổi) thì tuổi của anh lúc đó là :

    22 + 6 = 28 (tuổi)

    Tổng số tuổi của hai anh em lúc đó là :

    22 + 28 = 50 (tuổi)

    Đáp số : 50 tuổi.

    Bài 4. Hãy tìm số có ba chữ số mà hiệu của chữ số hàng chục và chữ số hàng trăm bằng 1, còn hiệu của chữ số hàng chục và hàng đơn vị bằng 9

    Bài giải

    -Hiệu của hai chữ số bằng 9 chỉ có thể là : 9 – 0 = 9

    -Vậy chữ số hàng chục bằng 9, chữ số hàng đơn vị bằng 0

    -Hiệu của chữ số hàng chục và chữ số hàng trăm bằng 1

    vậy chữ số hàng trăm là :

    9 – 1 = 8

    Số cần tìm là : 890

    Câu 5. Dùng 31 chữ số để viết các số liền nhau thành dãy số : 1 ; 2 ; 3 ; … ; b.

    b là số cuối cùng. Hỏi b là số bao nhiêu?

    --- Bài cũ hơn ---

  • Giải Cùng Em Học Toán Lớp 2 Tập 1
  • Bản Mềm: 120 Bài Toán Cơ Bản Và Nâng Cao Lớp 2
  • Một Số Bài Toán Nâng Cao Lớp 2 Có Lời Giải
  • Bài Tập Tiếng Anh Lớp 7 Tập 2 (Không Đáp Án)
  • Tổng Hợp Các Bài Toán Có Lời Văn Lớp 2
  • Chuyên Đề Giải Toán Có Lời Văn Lớp 2

    --- Bài mới hơn ---

  • Hàm Số Bậc Hai Toán Lớp 10 Bài 3 Giải Bài Tập
  • Bản Mềm: Bài Tập Ôn Luyện Các Dạng Toán Lớp 3
  • 51 Bài Tập Cuối Tuần Toán Lớp 3 Học Kì 2 Chọn Lọc, Có Đáp Án
  • 71 Bài Toán Bồi Dưỡng Học Sinh Giỏi Lớp 3
  • 3 Dạng Toán Quan Trọng Của Bài Toán Lớp 3 Có 2 Lời Giải
  • Chương trình toán lớp 2 không có kiến thức quá nặng nhưng rất quan trọng. Xây dựng nền tảng cho lớp học tiếp theo. Tuy không khó nhưng toán lớp 2 đã hình thành kiến thức rõ nét hơn ở lớp 1.

    Đối với một số học sinh cần cố gắng có thể gặp khó khăn. Nhất là dạng toán có lời văn. Việc tóm tắt bài giải, tìm dữ liệu chính từ bài toán cũng cần có phương pháp hợp lý.

    Thế nào là dạng toán có lời văn

    Chuyên đề giải toán có lời văn lớp 2 là dạng toán chắc chắn sẽ xuất hiện trong đề thi cuối kì 2 các lớp.

    Do đó, đây là dạng toán vô cùng quan trọng. Dạng toán có lời văn là dạng toán bài cho dữ liệu dưới dạng lời văn. Từ đó, học sinh sẽ tìm cách tìm giá trị bài toán yêu cầu.

    Dạng toán này sẽ giúp học sinh khai thác khả năng đọc hiểu của học sinh. Ngoài ra, nó cũng giúp học sinh ôn tập toàn bộ những dạng toán được học và vận dụng chúng vào giải toán.

    Nội dung của chuyên đề giải toán có lời văn lớp 2

    Giới thiệu một số phương pháp hướng dẫn học sinh giải toán có lời văn. Trước tiên là xác định các bước.

    Bước 1:Tìm hiểu nội dung bài toán

    Bước 2: Tìm cách giải bài toán

    – Chọn phép tính giải thích hợp

    – Đặt câu lời giải thích hợp

    – Trình bày bài giải

    Tài liệu hữu ích cho giáo viên đang cần soạn thảo sáng kiến kinh nghiệm. Đầy đủ các chia sẻ về kinh nghiệm hướng dẫn giải toán có lời văn cho học sinh lớp 2. Để học sinh học tốt, giáo viên cần thường xuyên trau dồi kiến thức. Tìm kiếm tài liệu tìm ra phương pháp tối ưu để giúp học sinh của mình hiểu bài. Đạt kết quả như mong muốn của mỗi cá nhân.

    Cần kết hợp với các phương pháp khác trong quá trình giảng dạy để tăng hiệu quả. Đối với học sinh hiểu chậm, nên sử dụng thêm giáo cụ trực quan. Để các em hình dung ra được các yếu tố trong bài toán. Sử dụng tranh ảnh, đồ vật, que tính để hỗ trợ trong quá trình học tập.

    Cách đặt lời giải sao cho đúng chuẩn

    Hỏi Lan cần bao nhiêu tiền mua sách ?

    Lời giải: Lan cần số tiền mua sách là:

    Hỏi Hoa có tất cả bao nhiêu quả táo ?

    Lời giải: Hoa có tất cả số quả táo là:

    Tải tài liệu miễn phí ở đây

    --- Bài cũ hơn ---

  • Rèn Luyện Kĩ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 3
  • Bản Mềm: Tuyển Tập 30 Bài Toán Có Lời Văn Lớp 3 Có Hướng Dẫn
  • 30 Bài Toán Có Lời Văn Lớp 3 (Có Đáp Án)
  • 300 Bài Toán Có Lời Văn Cơ Bản Lớp 3
  • Giải Vở Bài Tập Toán 5 Bài 76: Luyện Tập Trang 92,93
  • Giải Bài Tập Sgk Toán Lớp 11. Chương 2. Bài 1. Quy Tắc Đếm

    --- Bài mới hơn ---

  • Bài Tập Căn Bậc 2 Lớp 9 Chọn Lọc
  • Giải Toán 10 Bài 1. Các Định Nghĩa
  • Các Dạng Toán Về Số Phức, Cách Giải Và Bài Tập
  • Giải Toán Lớp 12 Bài 1, 2, 3, 4 Trang 138 Sgk Giải Tích
  • Sách Giải Vở Bài Tập Toán Lớp 5 Trang 9 Tập 1 Câu 1, 2, 3 Đúng Nhất Baocongai.com
  • Bài 1 (trang 46 SGK Đại số 11): Từ các chữ số 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên gồm:

    c.Hai chữ số kháu nhau?

    + Gọi số có 1 chữ số là a

    + a có 4 cách chọn.

    Vậy có 4 cách chọn số một chữ số.

    b. Gọi số có 2 chữ số là ab

    + a có 4 cách chọn

    + b có 4 cách chọn

    Vậy theo quy tắc nhân ta có: 4.4 = 16 (số)

    c. Một số tự nhiên có hai chữ số khác nhau lập từ 4 chữ số trên có thể lập bằng cách chọn chữ số hàng chục: 4 cách.

    Sau khi chọn chữ số hàng chục thì còn 3 cách chọn chữ số hàng đơn vị.

    Vậy có 4.3 = 12 số tự nhiên có hai chữ số khác nhau được lập từ 4 chữ số trên.

    Bài 2 (trang 46 SGK Đại số 11): Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên bé hơn 100?

    Đặt B = {1, 2, 3, 4, 5, 6}

    + Gọi số tự nhiên bé hơn 100 là a và cd

    + Số cách chọn chữ số a là 6 cách

    + Số cách chọn chữ số c là 6 cách

    + Số cách chọn chữ số d là 6 cách

    + Số cách chọn chữ số cd là 6.6 = 36 cách.

    Theo quy tắc cộng thì số cách chọn thỏa yêu cầu bài toán là:

    Bài 3 (trang 46 SGK Đại số 11): Dưới thành phố A, B, C, D được nối với nhau bởi các con đường như hình dưới:

    a. Có bao nhiêu cách đi từ A đến D mà qua B và C chỉ một lần?

    b. Có bao nhiêu cách đi từ A đến D rồi quay lại A?

    a.+Từ A đến B có 4 con đường nên có 4 cách đi

    + Từ B đến C có 2 con đường nên có 2 cách đi.

    Vậy từ A đến C có 4.2 = 8 cách đi.

    +Từ C đến D có 3 con đường nên có 3 cách đi

    Vậy từ A đến D có 8.3 = 24 cách đi.

    b.Theo câu a thì từ A đến D có 24 cách đi nên từ D đến A cũng có 24 cách đi. Vậy số cách đi từ A đến D rồi trở về A là 24.24 = 576 (cách đi)

    Bài 4 (trang 46 SGK Đại số 11): Có ba kiểu mặt đồng hồ đeo tay (vuông, tròn, elip) và bốn kiểu dây (kim loại, da, vải và nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?

    – Có 3 kiểu mặt đồng hồ nên có 3 cách chọn.

    – Có 4 kiểu dây nên có 4 cách chọn.

    Vậy số cách chọn một chiếc đồng hồ gồm một mặt và một dây là:

    --- Bài cũ hơn ---

  • Bài 1,2,3,4,5,6,7,8,9,10, 11,12,13,14,15 Trang 50,51 Sgk Đại Số 10: Ôn Tập Chương 2
  • Giải Bài Tập Sgk Toán 9 Bài 1: Căn Bậc Hai
  • Giải Vở Bài Tập Toán 3 Trang 16 Tập 2 Câu 1, 2, 3, 4
  • Giải Vở Bài Tập Toán 4 Trang 17 Tập 1 Câu 1, 2, 3
  • Giải Vở Bài Tập Toán 3 Trang 17 Tập 2 Câu 1, 2, 3, 4
  • Ôn Tập Giải Toán Có Lời Văn Lớp 2

    --- Bài mới hơn ---

  • Ôn Tập Giải Toán Có Lời Văn Lớp 2 On Tap Giai Toan Co Loi Van Lop 2 Doc
  • 40 Bài Toán Đếm Hình Lớp 1
  • Bài Toán Giải Bằng Hai Phép Tính
  • Cách Giải Bài Toán 2 Tỉ Số, Tổng Hoặc Hiệu Không Đổi
  • Cách Giải Bài Toán Tìm Hai Số Khi Biết Tổng Và Tỉ Số
  • Ôn tập giải toán có lời văn lớp 2

    ÔN TẬP GIẢI TOÁN CÓ LỜI VĂN LỚP 2 1. Ấp Phong Phú có 513 người là nữ và 485 người là nam. Hỏi ấp Phong Phú có bao nhiêu người? 2. Một trang trại nuôi 376 con ngựa và 253 con bò. Hỏi số con nào nhiều hơn và nhiều hơn bao nhiêu con? 3. Tết trồng cây năm nay, trường em trồng được 345 cây tràm và một số cây bạch đàn nhiều hơn số cây tràm là 213 cây. Hỏi trường em trồng được bao nhiêu cây bạch đàn? 4. Sau khi bán được 142kg muối thì cửa hàng còn lại 236kg muối. Hỏi trước khi bán cửa hàng có bao nhiêu kilogam muối? 5. Tring tủ sách của bố có 568 cuốn sách tiếng Việt Nam. Số sách tiếng nước ngoài ít hơn số sách tiếng Việt 428 cuốn. Hỏi trong tủ có bao nhiêu cuốn sách tiếng nước ngoài? 6. Ngày hôm nay qua một siêu thị điện máy có 185 chiếc ti-vi. Nhưng ngày hôm nay siêu thị đó chỉ còn lại 124 chiếc ti-vi. Hỏi số ti-vi đã bán? 7. Mẹ mua cả bao thư lẫn tem hết 1000 đồng. Giá của con tem là 800 đồng. Hỏi giá tiền của bao thư? 8. Trong kho có 758kg gạo tẻ. Số gạo tẻ nhiều hơn số gạo nếp 634kg. Hỏi có bao nhiêu kilogam gạo nếp? 9. Đường quốc lộ chạy trước cửa nhà em gồm 6 làn xem. Mỗi làn xe rộng 4m. Hỏi mặt đường rộng bao nhiêu mét? 10. Trong vường có 27 cây ăn quả. Số cây cam chiếm 1 số cây trong vườn. Hỏi có bao 3 nhiêu cây cam. 11. Một toàn nhà chung cư gồm có 5 tầng. Mỗi tầng có 20 căn hộ. Hỏi toàn nhà có tất cả bao nhiêu căn hộ? 12. Số đậu xanh, đậu đen, đậu nành bằng nhau. Biết rằng có 30kg đậu xanh, hỏi có tất cả bao nhiêu kilogam đậu? 13. Trong phòng có 40 người ngồi họp trên các ghế băng, mỗi ghế 5 người. Hỏi phải xếp mấy ghế băng? 14. Lớp trưởng điều khiển cả lớp xếp hàng tư thì được mỗi hàng 10 học sinh. Hỏi lớp em có bao nhiêu học sinh? 15. Trong vườn trồng 80 cây xanh, chia đều thành 4 hàng. Hỏi mỗi hàng có bao nhiêu cây? 16. Quãng đường từ Hà Nội đến Hải Phòng dài 100m. Quãng đường từ Hà Nội đến Như Quỳnh dài bằng 1 quãng đường từ Hà Nội đến Hải Phòng. Hỏi quãng đường từ Hà Nội 5 đến Như Quỳnh dài bao nhiêu kilomet? 17. Cuốn sách Toán 2 dày 6mm. Hỏi 10 cuốn sách Toán 2 xếp chồng lên nhau thì được một chồng sách dày mấy xăngtimet? 18. Một quyển từ điển Anh – Việt dày 20mm. Chúng xếp lên nhau thanhg một chồng cao 1dm 8cm. Hỏi chồng sách đó gồm mấy quyển từ điển? 19. Anh Ba là sinh viên. Trong ngày chủ nhật vừa qua, thời gian anh Ba dùng để ngủ, để học tập, để nghỉ ngơi bằng nhau. Hỏi hôm ấy anh đã học tập trong mấy giờ? 20. Một năm được chia đều thành 4 mùa: Xuân, Hạ, Thu, Đông. Hỏi mỗi mùa gồm mấy tháng? 21. Một hình tứ giác có 4 cạnh bằng nhau. …

    --- Bài cũ hơn ---

  • Bài Giải Toán Tìm X Lớp 2
  • Đề Tài Hướng Dẫn Học Sinh Lớp 2 Giải Bài Toán Có Lời Văn
  • Giải Bài Tập Sbt Lịch Sử Lớp 7 Bài 12: Đời Sống Kinh Tế, Văn Hoá
  • Bài 23. Kinh Tế, Văn Hóa Thế Kỉ Xvi
  • Giải Bài Tập Sbt Lịch Sử 7 Bài 23: Kinh Tế, Văn Hóa Thế Kỉ Xvi
  • Bài Tập Về Hình Thang, Tính Diện Tích Hình Thang Có Lời Giải

    --- Bài mới hơn ---

  • Giải Bài Tập Trang 94, 95 Sgk Toán 5: Luyện Tập Chung Diện Tích Hình Thang Giải Bài Tập Toán Lớp 5
  • Giải Bài Tập Trang 141 Sgk Toán 5: Quãng Đường
  • Giải Bài Tập Trang 141, 142 Sgk Toán 5: Luyện Tập Quãng Đường
  • Giải Bài Tập Trang 141 Sgk Toán 5, Bài 1, 2, 3
  • Giải Bài Tập Toán Lớp 4 1.0 Apk
  • Chia sẻ một số bài tập cơ bản về hình thang và tính diện tích hình thang có lời giải dành cho học sinh khối lớp 5 luyện tập dạng toán này.

    Để làm được dạng toán này, trước hết phải nắm được công thức tính diện tích hình thang:

    Diện tích hình thang = (Đáy lớn + Đáy nhỏ) x chiều cao : 2

    I. Đề bài

    b) Hỏi có thể trồng được bao nhiêu cây đu đủ, biết rằng trồng mỗi cây đu đủ cần 1,5m² đất ?

    c) Hỏi số cây chuối trổng được nhiều hơn số cây đu đủ bao nhiêu cây, biết rằng trồng mỗi cây chuối cần 1m² đất ?

    Bài 4: Tính diện tích hình thang có đáy lớn bằng 25 m, chiều cao bằng 80% đáy lớn, đáy bé bằng 90% chiều cao.

    Bài 5: Hình thang có tổng độ dài hai đáy bằng 24 cm, đáy lớn hơn đáy bé 1,2 cm, chiều cao kém đáy bé 2,4 cm. Tính diện tích hình thang.

    Bài 6: Tính diện tích hình thang có đáy lớn hơn đáy bé 30 cm; biết 20% đáy lớn bằng 30% đáy bé, đáy bé kém chiều cao 0,5 cm.

    Bài 7: Một thửa ruộng hình thang có đáy lớn 120 m, đáy bé bằng 2/3 đáy lớn và bằng 4/3 chiều cao. Người ta trồng ngô trên thửa ruộng đó, tính ra trung bình 100 m2 thu được 50 kg ngô. Hỏi cả thửa ruộng thu được bao nhiêu tạ ngô?

    Bài 8: Thửa ruộng hình thang có trung bình cộng hai đáy là 46 m. Nếu mở rộng đáy lớn thêm 12 m và giữ nguyên đáy bé thì thì được thửa ruộng mới có diện tích lớn hơn diện tích thửa ruộng ban đầu là 114 m². Tính diện tích thửa ruộng ban đầu

    II. Lời giải

    a, Diện tích hình thang là: (18,5 + 25) x 12,4 : 2 = 269,7m²

    b, Diện tích hình thang là: (10,25 + 15,5) x 10 : 2 = 128,75m²

    Bài 1:

    Diện tích hình thang ABDE là: (1,6 + 2,5) x 1,2 : 2 = 2,46m²

    Diện tích hình thang ABCD là: (1,6 + 2,5 + 1,3) x 1,2 : 2 = 3,24m²

    Bài 2:

    Diện tích hình tam giác BEC là: 3,24 – 2,46 = 0,78m²

    Diện tích hình thang ABED lớn hơn diện tích hình tam giác BEC là: 2,46 – 0,78 = 1,68m² = 168dm²

    a, Diện tích của mảnh vườn hình thang là: (50 + 70) x 40 : 2 = 2400m²

    Diện tích trồng đu đủ là: 2400 x 30 : 100 = 720m²

    Bài 3:

    Diện tích trồng chuối là: 2400 x 25 : 100 = 600m²

    Diện tích trồng rau là: 2400 – 720 – 600 = 1080m²

    b, Số cây đủ đủ trồng được là: 720 : 1,5 = 480 cây

    c, Số cây chuối trồng được là: 600 : 1 = 600 cây

    Số cây chuối trồng được nhiều hơn số cây đủ đủ là số cây là: 600 -480 = 120 cây

    Chiều cao của hình thang là: 25 x 80 : 100 = 20m

    Đáy bé của hình thang là: 20 x 90 : 100 = 18m

    Bài 4:

    Diện tích hình thang là: (25 + 18) x 20 : 2 = 430m²

    Đáy bé là: (24 – 1,2) : 2 = 11,4cm

    Chiều cao của hình thang là: 11,4 – 2,4 = 9cm

    Bài 5:

    Diện tích của hình thang là: 24 x 9 : 2 = 108m²

    Đổi 20% = 1/5, 30% = 3/10

    Phân số chỉ tỉ số giữa đáy lớn và đáy bé là: 3/10 : 1/5 = 3/2

    Bài 6:

    Hiệu số phần bằng nhau là: 3 – 2 = 1 (phần)

    Đáy bé là: 30 : 1 x 2 = 60cm

    Đáy lớn là: 30 : 1 x 3 = 90cm

    Chiều cao của hình thang là: 60 + 0,5 = 60,5cm

    Diện tích của hình thang là: (60 + 90) x 60,5 : 2 = 4537,5cm²

    Đáy bé là: 120 x 2 : 3 = 80m

    Chiều cao là: 80 x 3 : 4 = 60m

    Bài 7:

    Diện tích của thửa ruộng hình thang là: (120 + 80) x 60 : 2 = 6000m²

    Số kg ngô thu được là: 6000 : 50 = 120kg

    Đổi 120kg = 1,2 tạ

    Tổng hai đáy là: 46 x 2 = 92m

    Goi chiều cao thửa ruộng là h

    Bài 8:

    Diện tích thửa ruộng ban đầu là: 92 x h : 2 = 46 x h

    Tổng đáy lớn và đáy bé sau khi mở rộng đáy lớn thêm 12m là: 92 + 12 = 104m

    Diện tích thửa ruộng sau khi mở rộng đáy lớn là: 104 x h : 2 = 52 x h

    Thửa ruộng mới có diện tích mới lớn hơn 114m²

    Suy ra 52 x h – 46 x h = 114 hay h = 19m

    Diện tích thửa ruộng ban đầu là: 46 x 19 = 874m²

    --- Bài cũ hơn ---

  • Giải Bài Tập Trang 94, 95 Sgk Toán 5: Luyện Tập Chung Diện Tích Hình Thang
  • Giải Bài Tập Trang 93, 94 Sgk Toán 5: Diện Tích Hình Thang
  • Giải Bài Tập Trang 43 Sgk Toán 5: Luyện Tập Chung Số Thập Phân
  • Giải Bài Tập Trang 43 Sgk Toán 5: Luyện Tập Chung Số Thập Phân Giải Bài Tập Toán Lớp 5
  • Câu 1, 2, 3 Trang 43 Vở Bài Tập (Sbt) Toán 5 Tập 2
  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100