Các Bài Toán Hình Học Lớp 9 Có Lời Giải

--- Bài mới hơn ---

  • Soạn Anh 7: Unit 9. Neighbors
  • Soạn Anh 7: Unit 8. At The Post Office
  • Unit 8. Films. Lesson 5. Skills 1
  • Skills 1 Trang 22 Unit 8 Tiếng Anh 7 Mới
  • Unit 3. Community Service. Lesson 5. Skills 1
  • , Working at Trường Đại học Công nghệ Thông tin và Truyền thông – Đại học Thái Nguyên

    Published on

    Cac bai-toan-hinh-hoc-on-thi-vao-lop-10

    1. 4. N y x O K F E M BA 3. Rõ ràng đây là câu hỏi khó đối với một số em, kể cả khi hiểu rồi vẫn không biết giải như thế nào , có nhiều em may mắn hơn vẽ ngẫu nhiên lại rơi đúng vào hình 3 ở trên từ đó nghĩ ngay được vị trí điểm C trên nửa đường tròn. Khi gặp loại toán này đòi hỏi phải tư duy cao hơn. Thông thường nghĩ nếu có kết quả của bài toán thì sẽ xảy ra điều gì ? Kết hợp với các giả thiết và các kết quả từ các câu trên ta tìm được lời giải của bài toán. Với bài tập trên phát hiện M là trực tâm của tam giác không phải là khó, tuy nhiên cần kết hợp với bài tập 13 trang 72 sách Toán 9T2 và giả thiết M là điểm chính giữa cung AC ta tìm được vị trí của C ngay. Với cách trình bày dưới mệnh đề “khi và chỉ khi” kết hợp với suy luận cho ta lời giải chặt chẽ hơn. Em vẫn có thể viết lời giải cách khác bằng cách đưa ra nhận định trước rồi chứng minh với nhận định đó thì có kết quả , tuy nhiên phải trình bày phần đảo: Điểm C nằm trên nửa đường tròn mà thì AD là tiếp tuyến. Chứng minh nhận định đó xong ta lại trình bày phần đảo: AD là tiếp tuyến thì . Từ đó kết luận. 4. Phát hiện diện tích phần tam giác ADC ở ngoài đường tròn (O) chính là hiệu của diện tích tứ giác AOCD và diện tích hình quạt AOC thì bài toán dễ tính hơn so với cách tính tam giác ADC trừ cho diện tích viên phân cung AC. Bài 3 Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F. 1. Chứng minh: 2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. 3. Gọi K là giao điểm của AF và BE, chứng minh . 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. BÀI GIẢI CHI TIẾT 1. Chứng minh: . EA, EM là hai tiếp tuyến của đường tròn (O) cắt nhau ở E nên OE là phân giác của . Tương tự: OF là phân giác của . Mà và kề bù nên: (đpcm) hình 4 2. Chứng minh: Tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. ” 0 60BC =” 0 60BC = · 0 EOF 90= MK AB⊥ 3 · 0 EOF 90= ·AOM ·BOM ·AOM·BOM· 0 90EOF =
    2. 5. Ta có: (tính chất tiếp tuyến) Tứ giác AEMO có nên nội tiếp được trong một đường tròn. Tam giác AMB và tam giác EOF có:, (cùng chắn cung MO của đường tròn ngoại tiếp tứ giác AEMO. Vậy Tam giác AMB và tam giác EOF đồng dạng (g.g). 3. Gọi K là giao điểm của AF và BE, chứng minh . Tam giác AEK có AE // FB nên: . Mà : AE = ME và BF = MF (t/chất hai tiếp tuyến cắt nhau). Nên . Do đó MK // AE (định lí đảo của định lí Ta- let). Lại có: AE AB (gt) nên MK AB. 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. Gọi N là giao điểm của MK và AB, suy ra MN AB. FEA có MK//AE nên (1). BEA có NK//AE nên (2). Mà (do BF // AE) nên hay (3). Từ (1), (2) và (3) suy ra . Vậy MK = NK. Tam giác AKB và tam giác AMB có chung đáy AB nên: . Do đó. Tam giác AMB vuông ở M nên tg A = . Vậy AM = và MB = = (đvdt). Lời bàn: (Đây là đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của tỉnh Hà Nam) . Từ câu 1 đến câu 3 trong quá trình ôn thi vào lớp 10 chắc chắn thầy cô nào cũng ôn tập, do đó những em nào ôn thi nghiêm túc chắc chắn giải được ngay, khỏi phải bàn, những em thi năm qua ở tỉnh Hà Nam xem như trúng tủ. Bài toán này có nhiều câu khó, và đây là một câu khó mà người ra đề khai thác từ câu: MK cắt AB ở N. Chứng minh: K là trung điểm MN. · · 0 90EAO EMO= = · · 0 180EAO EMO+ = *· · 0 EOF 90AMB = =· ·MAB MEO= MK AB⊥ AK AE KF BF = AK ME KF MF = ⊥⊥ 3 ⊥ ∆MK FK AE FA = ∆NK BK AE BE = FK BK KA KE = FK BK KA FK BK KE = + + FK BK FA BE = MK KN AE AE = 1 2 AKB AMB S KN S MN = = 1 2 AKB AMBS S= 3 MB MA = · 0 60MAB⇒ = 2 a3 2 a⇒1 1 3 . . . 2 2 2 2 AKB a a S⇒ = 21 3 16 a
    3. 6. x H Q I N M O C BA K x H Q I N M O C BA Nếu chú ý MK là đường thẳng chứa đường cao của tam giác AMB do câu 3 và tam giác AKB và AMB có chung đáy AB thì các em sẽ nghĩ ngay đến định lí: Nếu hai tam giác có chung đáy thì tỉ số diện tích hai tam giác bằng tỉ số hai đường cao tương ứng, bài toán qui về tính diện tích tam giác AMB không phải là khó phải không các em? Bài 4 Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng: a) Tứ giác AMQI nội tiếp. b) . c) CN = NH. (Trích đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của sở GD&ĐT Tỉnh Bắc Ninh) BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác AMQI nội tiếp: Ta có: MA = MC (tính chất hai tếp tuyến cắt nhau) OA = OC (bán kính đường tròn (O)) Do đó: MO AC . (góc nội tiếp chắn nửa đường tròn (O)) . Hai đỉnh I và Q cùng nhìn AM dưới Hình 5 một góc vuông nên tứ giác AMQI nội tiếp được trong một đường tròn. b) Chứng minh:. Tứ giác AMQI nội tiếp nên Hình 6 (cùng phụ ) (2). có OA = OC nên cân ở O. (3). Từ (1), (2) và (3) suy ra . c) Chứng minh CN = NH. Gọi K là giao điểm của BC và tia Ax. Ta có: (góc nội tiếp chắn nửa đường tròn(O)). AC BK , AC OM OM // BK. Tam giác ABK có: OA = OB, OM // BK MA = MK. Áp dụng hệ quả định lí Ta let cho có NH // AM (cùng AB) ta được: · ·AQI ACO= ⊥· 0 90MIA⇒ = · 0 90AQB = · 0 90MQA⇒ = · ·AQI ACO= · ·AQI AMI= ·MAC AOC∆· ·CAO ACO⇒ =· ·AQI ACO= · 0 90ACB =⊥⊥⇒⇒ ABM∆ ⊥
    4. 8. · · · · CDB CAB CAB CFA  =  = x F E D C B O A Từ (1) và (2) suy ra: chúng tôi = chúng tôi c) Chứng minh tứ giác CDEF nội tiếp: Ta có: (hai góc nội tiếp cùng chắn cung BC) ( cùng phụ ) Do đó tứ giác CDEF nội tiếp. Cách khác và có: chung và (suy từ chúng tôi = chúng tôi nên chúng đồng dạng (c.g.c). Suy ra: . Vậy tứ giác CDEF là tứ giác nội tiếp. d) Xác định số đo của góc ABC để tứ giác AOCD là hình thoi: Ta có: (do BD là phân giác ) . Tứ giác AOCD là hình thoi OA = AD = DC = OC AD = DC = R Vậy thì tứ giác AOCD là hình thoi. Tính diện tích hình thoi AOCD theo R: . Sthoi AOCD = (đvdt). Hình 8 Lời bàn 1. Với câu 1, từ gt BD là phân giác góc ABC kết hợp với tam giác cân ta nghĩ ngay đến cần chứng minh hai góc so le trong và bằng nhau. 2. Việc chú ý đến các góc nội tiếp chắn nửa đường tròn kết hợp với tam giác AEB, FAB vuông do Ax là tiếp tuyến gợi ý ngay đến hệ thức lượng trong tam giác vuông quen thuộc. Tuy nhiên vẫn có thể chứng minh hai tam giác BDC và BFE đồng dạng trước rồi suy ra chúng tôi = chúng tôi Với cách thực hiện này có ưu việc hơn là giải luôn được câu 3. Các em thử thực hiện xem sao? 3. Khi giải được câu 2 thì câu 3 có thể sử dụng câu 2 , hoặc có thể chứng minh như bài giải. 4. Câu 4 với đề yêu cầu xác định số đo của góc ABC để tứ giác AOCD trở thành hình thoi không phải là khó. Từ việc suy luận AD = CD = R nghĩ ngay đến cung AC bằng 1200 từ đó suy ra số đo góc ABC ·FAC· ·CDB CFA⇒ = ∆DBC∆FBE∆ µBBD BC BF BE = · ·EFBCDB = · ·ABD CBD=·ABC” “AD CD⇒ = ⇔ ⇔” ” 0 60AD DC⇔ = =” 0 120AC⇔ =· 0 60ABC⇔ = · 0 60ABC = ” 0 120 3AC AC R= ⇒ = 2 1 1 3 . . . 3 2 2 2 R OD AC R R= = ·ODB·OBD ” 0 120 3AC AC R= ⇒ =
    5. 9. H N F E CB A bằng 600 . Tính diện tích hình thoi chỉ cần nhớ công thức, nhớ các kiến thức đặc biệt mà trong quá trình ôn tập thầy cô giáo bổ sung như ,…….. các em sẽ tính được dễ dàng. Bài 6 Cho tam giác ABC có ba góc nhọn. Đường tròn đường kính BC cắt cạnh AB, AC lần lượt tại E và F ; BF cắt EC tại H. Tia AH cắt đường thẳng BC tại N. a) Chứng minh tứ giác HFCN nội tiếp. b) Chứng minh FB là phân giác của . c) Giả sử AH = BC . Tính số đo góc của ∆ABC. BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác HFCN nội tiếp: Ta có : (góc nội tiếp chắn nửa đường tròn đường kính BC) Tứ giác HFCN có nên nội tiếp được trong đường tròn đường kính HC) (đpcm). b) Chứng minh FB là tia phân giác của góc EFN: Ta có (hai góc nội tiếp cùng chắn của đường tròn đường kính BC). (hai góc nội tiếp cùng chắn của đường tròn đường kính HC). Suy ra: . Vậy FB là tia phân giác của góc EFN (đpcm) c) Giả sử AH = BC. Tính số đo góc BAC của tam giác ABC: FAH và FBC có: , AH = BC (gt), (cùng phụ ). Vậy FAH = FBC (cạnh huyền- góc nhọn). Suy ra: FA = FB. AFB vuông tại F; FA = FB nên vuông cân. Do đó . Bài 7 (Các em tự giải) Cho tam giác ABC nhọn, các đường cao BD và CE cát nhau tại H. a) Chứng minh tứ giác BCDE nội tiếp. b) Chứng minh AD. AC = AE. AB. c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh OA DE. ·EFN ·BAC · · 0 90BFC BEC= = · · 0 180HFC HNC+ = · ·EFB ECB=”BE · ·ECB BFN=¼HN · ·EFB BFN= ∆∆· · 0 AFH 90BFC= =· ·FAH FBC=·ACB∆∆ ∆· 0 45BAC = ⊥
    6. 10. = // O FE C DBA d) Cho biết OA = R , . Tính BH. BD + CH. CE theo R. Bài 8 Cho đường tròn (O) đường kính AB. Trên tia AB lấy điểm D nằm ngoài đoạn AB và kẻ tiếp tuyến DC với đường tròn (O) (C là tiếp điểm). Gọi E là chân đường vuông góc hạ từ A xuống đường thẳng CD và F là chân đường vuông góc hạ từ D xuống đường thẳng AC. Chứng minh: a) Tứ giác EFDA nội tiếp. b) AF là phân giác của . c) Tam giác EFA và tam giác BDC đồng dạng. d) Các tam giác ACD và ABF có cùng diện tích. (Trích đề thi tốt nghiệp và xét tuyển vào lớp 10- năm học 2000- 2001) BÀI GIẢI a) Chứng minh tứ giác EFDA nội tiếp: Ta có: (gt). Hai đỉnh E và F cùng nhìn AD dưới góc 900 nên tứ giác EFDA nội tiếp được trong một đường tròn. b) Chứng minh AF là phân giác của góc EAD: Ta có: . Vậy ( so le trong) Tam giác AOC cân ở O (vì OA = OC = R) nên . Do đó: . Vậy AF là phân giác của góc EAD (đpcm). c) Chứng minh tam giác EFA và tam giác BDC đồng dạng: EFA và BDC có: (hai góc nội tiếp cùng chắn của đường tròn ngoại tiếp tứ giác EFDA). . Vậy EFA và BDC đồng dạng (góc- góc). d) Chứng minh các tam giác ACD và ABF có cùng diện tích: SACD = và SABF = . (1) BC // DF (cùng AF) nên hay DF. AC = chúng tôi (2). Từ (1) và (2) suy ra : SACD = SABF (đpcm) (Lưu ý: có thể giải 2 cách khác nữa). · 0 60BAC = ·EAD · · 0 AFD 90AED = = // AE CD AE OC OC CD ⊥ ⇒ ⊥ · ·EAC CAD= · ·CAO OCA=· ·EAC CAD= ∆∆ · ·EFA CDB=”AE · · · · · ·EAC CAB EAF BCD CAB DCB  = ⇒ = = ∆∆ 1 . 2 DF AC 1 .AF 2 BC ⊥ AF BC AC DF =
    7. 11. O P K M H A C B Bài 9 Cho tam giác ABC ( ) nội tiếp trong nửa đường tròn tâm O đường kính AB. Dựng tiếp tuyến với đường tròn (O) tại C và gọi H là chân đường vuông góc kẻ từ A đến tiếp tuyến đó. AH cắt đường tròn (O) tại M (M ≠ A). Đường vuông góc với AC kẻ từ M cắt AC tại K và AB tại P. a) Chứng minh tứ giác MKCH nội tiếp. b) Chứng minh ∆MAP cân. c) Tìm điều kiện của ∆ABC để ba điểm M, K, O thẳng hàng. BÀI GIẢI a) Chứng minh tứ giác MKCH nội tiếp: Ta có : (gt), (gt) Tứ giác MKCH có tổng hai góc đối nhau bằng 1800 nên nội tiếp được trong một đường tròn. b) Chứng minh tam giác MAP cân: AH // OC (cùng vuông góc CH) nên (so le trong) AOC cân ở O (vì OA = OC = R) nên . Do đó: . Vậy AC là phân giác của . Tam giác MAP có AK là đường cao (do AC MP), đồng thời là đường phân giác nên tam giác MAP cân ở A (đpcm). Cách 2 Tứ giác MKCH nội tiếp nên (cùng bù ). (cùng bằng sđ), (hai góc đồng vị của MP// CB). Suy ra: . Vậy tam giác AMP cân tại A. c) Tìm điều kiện cho tam giác ABC để ba điểm M; K; O thẳng hàng: Ta có M; K; P thẳng hàng. Do đó M; K; O thẳng hàng nếu P O hay AP = PM. Kết hợp với câu b tam giác MAP cân ở A suy ra tam giác MAP đều. Do đó . Đảo lại: ta chứng minh P O: Khi (do AC là phân giác của ) . Tam giác MAO cân tại O có nên MAO đều. Do đó: AO = AM. Mà AM = AP (do MAP cân ở A) nên AO = AP. Vậy P O. Trả lời: Tam giác ABC cho trước có thì ba điểm M; K và O thẳng hàng. · 0 45BAC < · 0 90MHC =· 0 90MKC = · ·MAC ACO= ∆· ·ACO CAO=· ·MAC CAO=·MAB⊥ · ·AMP HCK=·HMK· ·HCA CBA=1 2 “AC· ·CBA MPA= · ·AMP APM= ≡ · 0 30CAB =· 0 30CAB = ≡ · 0 30CAB = ⇒· 0 60MAB =·MAB· 0 60MAO =∆∆≡ · 0 30CAB =
    8. 12. / / //// H QP I O N M CB A Bài 10 Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N ( A≠ M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh: a) b) Tứ giác BMNC nội tiếp. c) Điểm I là trực tâm tam giác APQ. BÀI GIẢI a) Chứng minh : (góc nội tiếp chắn nửa đường tròn (O)). Nên Tam giác ANH vuông tại N. (do AH là đường cao của ABC) nên tam giác AHC vuông ở H. Do đó (cùng phụ ). b) Chứng minh tứ giác BMNC nội tiếp: Ta có : (hai góc nội tiếp cùng chắn cung AN). (câu a). Vậy: . Do đó tứ giác BMNC là một tứ giác nội tiếp. c) Chứng minh I là trực tâm tam giác APQ: OA = OH và QH = QC (gt) nên QO là đường trung bình của tam giác AHC. Suy ra: OQ//AC, mà AC AB nên QO AB. Tam giác ABQ có AH BQ và QO AB nên O là trực tâm của tam giác. Vậy BO AQ. Mặt khác PI là đường trung bình của tam giác BHO nên PI // BO. Kết hợp với BO AQ ta được PI AQ. Tam giác APQ có AH PQ và PI AQ nên I là trực tâm tam giác APQ (đpcm). Bài 11 Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C≠ A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh: a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó. b) KN là tiếp tuyến của đường tròn (O; R). c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định. BÀI GIẢI · ·AHN ACB= · ·AHN ACB= · 0 90ANH = · 0 90AHC =∆· ·AHN ACB=·HAC · ·AMN AHN= · ·AHN ACB= · ·AMN ACB= ⊥⊥ ⊥⊥⊥⊥⊥⊥⊥
    9. 13. H / / = = P O K I N M C BA a) Chứng minh tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó: Ta có (góc nội tiếp chắn nửa đường tròn (O)). Do đó: Tứ giác ICPN có nên nội tiếp được trong một đường tròn. Tâm K của đường tròn ngoại tiếp tứ giác ICPN là trung điểm của đoạn thẳng IP. b) Chứng minh KN là tiếp tuyến của đường tròn (O). Tam giác INP vuông tại N, K là trung điểm IP nên . Vậy tam giác IKN cân ở K . Do đó (1). Mặt khác (hai góc nội tiếp cùng chắn cung PN đường tròn (K)) (2) N là trung điểm cung CB nên . Vậy NCB cân tại N. Do đó : (3). Từ (1), (2) và (3) suy ra , hai góc này ở vị trí đồng vị nên KN // BC. Mặt khác ON BC nên KN ON. Vậy KN là tiếp tuyến của đường tròn (O). Chú ý: * Có thể chứng minh * hoặc chứng minh . c) Chứng minh rằng khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định: Ta có (gt) nên . Vậy OM là phân giác của . Tương tự ON là phân giác của , mà và kề bù nên . Vậy tam giác MON vuông cân ở O. Kẻ OH MN, ta có OH = chúng tôi = R. = không đổi. Vậy khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định (O; ). · · 0 90ACB ANB= = · · 0 90ICP INP= = · · 0 180ICP INP+ = 1 2 KN KI IP= = · ·KIN KNI= · ·NKP NCP= ” “CN BN CN NB= ⇒ =∆ · ·NCB NBC=· ·INK IBC= ⊥⊥ · · ·0 0 90 90KNI ONB KNO+ = ⇒ = · · ·0 0 90 90KNA ANO KNO+ = ⇒ = ¼ ¼AM MC=· ·AOM MOC=·AOC ·COB·AOC·COB· 0 90MON = ⊥2 2 2 2 R 2 2 R
    10. 14. / / // // H O K E D C B A _ = = / / O K H E D C B A Bài 12 Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC tới đường tròn ( B, C là các tiếp điểm). Đường thẳng qua A cắt đường tròn (O) tại D và E (D nằm giữa A và E , dây DE không qua tâm O). Gọi H là trung điểm của DE, AE cắt BC tại K . a) Chứng minh tứ giác ABOC nội tiếp đường tròn . b) Chứng minh HA là tia phân giác của c) Chứng minh : . BÀI GIẢI a) Chứng minh tứ giác ABOC nội tiếp: (tính chất tiếp tuyến) Tứ giác ABOC có nên nội tiếp được trong một đường tròn. b) Chứng minh HA là tia phân giác của góc BHC: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra . Do đó . Vậy HA là tia phân giác của góc BHC. c) Chứng minh : ABD và AEB có: chung, (cùng bằng sđ ) Suy ra : ABD ~ AEB Do đó: (1) ABK và AHB có: chung, (do ) nên chúng đồng dạng. Suy ra: (2) Từ (1) và (2) suy ra: chúng tôi = AK. AH === = (do AD + DE = AE và DE = 2DH). Vậy: (đpcm). Bài 13 Cho đường tròn (O;R) có đường kính AB. Trên đường tròn (O;R) lấy điểm M sao cho . Vẽ đường tròn (B; BM) cắt đường tròn (O; R) tại điểm thứ hai là N. ·BHC 2 1 1 AK AD AE = + · · 0 90ABO ACO= = · · 0 180ABO ACO+ = ” “AB AC=· ·AHB AHC= 2 1 1 AK AD AE = + ∆∆ ·BAE· ·ABD AEB=1 2 “BD ∆∆ 2 . AB AD AB AD AE AE AB = ⇒ = ∆∆ ·BAH· ·ABK AHB=” “AB AC= 2 . AK AB AB AK AH AB AH = ⇒ = 1 . AH AK AE AD ⇒ = 2 2 . AH AK AE AD ⇒ =( )2 . AD DH AE AD +2 2 . AD DH AE AD + = . AD AD ED AE AD + + . AE AD AE AD +1 1 AD AE + 2 1 1 AK AD AE = + · 0 60MAB =
    11. 15. 60° O J IN M B A a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). b) Kẻ các đường kính MOI của đường tròn (O; R) và MBJ của đường tròn (B; BM). Chứng minh N, I và J thẳng hàng và JI . JN = 6R2 c) Tính phần diện tích của hình tròn (B; BM) nằm bên ngoài đường tròn (O; R) theo R. BÀI GIẢI a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). Ta có . (góc nội tiếp chắn nửa đường tròn(O)). Điểm M và N thuộc (B;BM); AM MB và AN NB. Nên AM; AN là các tiếp tuyến của (B; BM). b) Chứng minh N; I; J thẳng hàng và JI .JN = 6R2 . (các góc nội tiếp chắn nửa đường tròn tâm O và tâm B). Nên IN MN và JN MN . Vậy ba điểm N; I và J thẳng hàng. Tam giác MJI có BO là đường trung bình nên IJ = 2BO = 2R. Tam giác AMO cân ở O (vì OM = OA), nên tam giác MAO đều. AB MN tại H (tính chất dây chung của hai đường tròn (O) và (B) cắt nhau). Nên OH = . Vậy HB = HO + OB = . Vậy JI . JN = 2R . 3R = 6R2 c) Tính diện tích phần hình tròn (B; BM) nằm ngoài đường tròn (O; R) theo R: Gọi S là diện tích phần hình tròn nằm (B; BM) nằm bên ngoài hình tròn (O; R). S1 là diện tích hình tròn tâm (B; BM). S2 là diện tích hình quạt MBN. S3 ; S4 là diện tích hai viên phân cung MB và NB của đường tròn (O; R). Ta có : S = S1 – (S2 + S3 + S4). Tính S1: . Vậy: S1 = . Tính S2: S2 = = Tính S3: S3 = Squạt MOB – SMOB. Squạt MOB = . OA = OB SMOB = SAMB = = = Vậy S3 = = S4 (do tính chất đối xứng). Từ đó S = S1 – (S2 + 2S3) · · 0 90AMB ANB= = ⊥ ⊥ · · 0 90MNI MNJ= =⊥⊥ · 0 60MAO = ⊥ 1 1 2 2 OA R= 3 2 2 R R R+ = 3 2. 3 2 R NJ R⇒ = = · “0 0 60 120MAB MB= ⇒ =3MB R⇒ = ( ) 2 2 3 3R Rπ π= · 0 60MBN = ⇒ ( ) 2 0 0 3 60 360 Rπ 2 2 Rπ · 0 120MOB = ⇒2 0 2 0 .120 360 3 R Rπ π = ⇒1 2 1 1 . . . 2 2 AM MB 1 . 3 4 R R 2 3 4 R 2 3 Rπ 2 3 4 R −
    12. 16. _ // // = M O I H D C BA = – = (đvdt). Bài 14 Cho đường tròn (O; R) , đường kính AB . Trên tiếp tuyến kẻ từ A của đường tròn này lấy điểm C sao cho AC = AB . Từ C kẻ tiếp tuyến thứ hai CD của đường tròn (O; R), với D là tiếp điểm. a) Chứng minh rằng ACDO là một tứ giác nội tiếp. b) Gọi H là giao điểm của AD và OC. Tính theo R độ dài các đoạn thẳng AH; AD. c) Đường thẳng BC cắt đường tròn (O; R) tại điểm thứ hai M. Chứng minh . d) Đường tròn (I) ngoại tiếp tam giác MHB. Tính diện tích phần của hình tròn này nằm ngoài đường tròn (O; R). BÀI GIẢI a) Chứng minh tứ giác ACDO nội tiếp: (tính chất tiếp tuyến). Tứ giác ACDO có nên nội tiếp được trong một đường tròn. b) Tính theo R độ dài các đoạn thẳng AH; AD: CA = CD (tính chất hai tiếp tuyến cắt nhau); OA = OD =R và AH = HD Tam giác ACO vuông ở A, AH OC nên = =. Vậy AH = và AD = 2AH = . c) Chứng minh : (góc nội tiếp chắn nửa đường tròn) . Hai đỉnh H và M cùng nhìn AC dưới góc 900 nên ACMH là tứ giác nội tiếp. Suy ra: . Tam giác ACB vuông tại A, AC = AB(gt) nên vuông cân. Vậy . Do đó : . d) Tính diện tích hình tròn (I) nằm ngoài đường tròn (O) theo R: Từ và mà (do CAB vuông cân ở B). Nên Tứ giác HMBO nội tiếp . Do đó . Vậy tâm I đường tròn ngoại tiếp tam giác MHB là trung điểm MB. Gọi S là diện tích phần hình tròn (I) ở ngoài đường tròn (O). 2 3 Rπ2 2 2 2 3 2 3 2 R R Rπ π  + − ÷ ÷   2 2 11 3 3 6 R Rπ + · 0 45MHD = · · 0 90CAO CDO= = · · 0 180CAO CDO+ = OC AD⇒ ⊥ ⊥ 2 2 2 1 1 1 AH AO AC = + ( ) 22 1 1 2R R + 2 5 4R 2 5 5 R4 5 5 R · 0 45MHD = · 0 90AMB =· 0 90CMA⇒ =· ·ACM MHD= · 0 45ACB = · 0 45MHD = · 0 90CHD =· 0 45MHD =· 0 45CHM⇒ =· 0 45CBA =∆ · ·CHM CBA= ⇒· · 0 90MHB MOB= =
    13. 17. E I K H ON M D C BA S1 là diện tích nửa hình tròn đường kính MB. S2 là diện tích viên phân MDB. Ta có S = S1 – S2 . Tính S1: . Vậy S1 = . Tính S2: S2 = SquạtMOB – SMOB = = . S = ( ) = . Bài 15 Cho đường tròn (O) đường kính AB bằng 6cm . Gọi H làđiểm nằm giữa A và B sao cho AH = 1cm. Qua H vẽ đường thẳng vuông góc với AB , đường thẳng này cắt đường tròn (O) tại C và D. Hai đường thẳng BC và DA cắt nhau tại M. Từ M hạ đường vuông góc MN với đường thẳng AB ( N thuộc thẳng AB). a) Chứng minh MNAC là tứ giác nội tiếp. b) Tính độ dài đoạn thẳng CH và tính tg. c) Chứng minh NC là tiếp tuyến của đường tròn (O). d) Tiếp tuyến tại A của đường tròn (O) cắt NC ở E. Chứng minh đường thẳng EB đi qua trung điểm của đoạn thẳng CH. BÀI GIẢI a) Chứng minh tứ giác MNAC nội tiếp: (góc nội tiếp chắn nửa đường tròn) Suy ra . Tứ giác MNAC có nên nội tiếp được trong một đường tròn. b) Tính CH và tg ABC. AB = 6 (cm) ; AH = 1 (cm) HB = 5 (cm). Tam giác ACB vuông ở C, CH AB CH2 = AH . BH = 1 . 5 = 5 (cm). Do đó tg ABC = . c) Chứng minh NC là tiếp tuyến của đường tròn (O): Ta có (hai góc nội tiếp cùng chắn cung AN của đường tròn ngoại tiếp tứ giác MNAC). (so le trong của MN // CD) và (cùng chắn ) Nên . Do sđ sđ . Suy ra CN là tiếp tuyến của đường tròn (O). (xem lại bài tập 30 trang 79 SGK toán 9 tập 2). d) Chứng minh EB đi qua trung điểm của CH: ” 0 90 2MB MB R= ⇒ = 2 2 1 2 . 2 2 4 R Rπ π   = ÷ ÷  ∆2 0 2 0 .90 360 2 R Rπ − 2 2 4 2 R Rπ − ∗2 4 Rπ − 2 2 4 2 R Rπ − 2 2 R ·ABC · 0 90ACB = · 0 90MCA =µ µ 0 180N C+ = ⇒ ⊥⇒ 5CH⇒ = 5 5 CH BH = · ·NCA NMA=· ·NMA ADC=· ·ADC ABC=”AC· ·NCA ABC=· 1 2 ABC = “AC· 1 2 NCA⇒ = “AC
    14. 18. / /? _ αK E H M O D C B A Gọi K là giao điểm của AE và BC; I là giao điểm của CH và EB. KE//CD (cùngvới AB) (đồng vị). (cùng chắn cung BD). (đối đỉnh) và (cùng chắn ). Suy ra: cân ở E. Do đó EK = EC. Mà EC = EA (tính chất hai tiếp tuyến cắt nhau) nên EK = EA. có CI // KE và có IH // AE . Vậy mà KE = AE nên IC = IH (đpcm). Bài 16 Cho đường tròn tâm O, đường kính AC. Vẽ dây BD vuông góc với AC tại K (K nằm giữa A và O). Lấy điểm E trên cung nhỏ CD (E không trùng C và D), AE cắt BD tại H. a) Chứng minh tam giác CBD cân và tứ giác CEHK nội tiếp. b) Chứng minh AD2 = AH. AE. c) Cho BD = 24cm; BC = 20cm. Tính chu vi hình tròn (O). d) Cho . Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tam giác MBC cân tại M. Tính góc MBC theo để M thuộc đường tròn (O). Hướng dẫn c) Tính BK = 12 cm, CK = 16 cm, dùng hệ thức lượng tính được CA = 25 cm R = 12,5 cm. Từ đó tính được C = 25 d) M (O) ta cần có tứ giác ABMC nội tiếp. Từ đó tính được . Bài 17 Cho nửa đường tròn (O) đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax và dây AC bất kỳ. Tia phân giác của góc xAC cắt nửa đường tròn tại D, các tia AD và BC cắt nhau tại E. a) Chứng minh ∆ABE cân. b) Đường thẳng BD cắt AC tại K, cắt tia Ax tại F . Chứng minh tứ giác ABEF nội tiếp. c) Cho . Chứng minh AK = 2CK. Bài 18 Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB; AC và cát tuyến AMN không đi qua tâm O. Gọi I là trung điểm MN. ⊥· ·AKB DCB⇒ =· ·DAB DCB=· ·DAB MAN=· ·MAN MCN=¼MN · ·EKC ECK KEC= ⇒ ∆ KBE∆⇒CI BI KE BE = ABE∆⇒IH BI AE BE = CI IH KE AE = ·BCD α= α ⇒ π ∈ ⇔· · 0 180ABM ACM+ =·0 0 90 2 180 2 MBC α ⇔ + + = · 0 180 4 MBC α− = · 0 30CAB =

    --- Bài cũ hơn ---

  • Lời Giải Toán Lớp 9
  • Đáp Án Củng Cố Và Ôn Luyện Tiếng Anh 9 Tập 2
  • Củng Cố Và Ôn Luyện Toán 9 Tập 1
  • Củng Cố Và Ôn Luyện Toán 9
  • Skills Trang 10 Unit 6 Sgk Tiếng Anh 11 Mới
  • Tuyển Chọn Các Bài Toán Hay Về Hình Học Phẳng Có Lời Giải Hướng Dẫn

    --- Bài mới hơn ---

  • Tuyển Chọn Các Bài Toán Hay Về Hình Học Phẳng Có Lời Giải Hướng Dẫn (Tài Liệu Free)
  • Các Bài Toán Giải Bằng Phân Tích Cấu Tạo Số
  • Giải Toán 12 Bài 5. Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Của Hàm Số
  • Bài Tập Trắc Nghiệm Trang 32 Sbt Sinh Học 9: Trắc Nghiệm Trang 32 Chương Ii Nhiễm Sắc Thể Sbt Sbt Sinh Học 9
  • Soạn Bài : Những Câu Hát Than Thân
  • Các kì thi HSG tỉnh và thành phố nhằm chọn ra đội tuyển tham dự kỳ thi học sinh giỏi Quốc gia trong năm học 2010 – 2011 đã diễn ra sôi nổi vào những ngày cuối năm trước và đã để lại nhi ề u ấn tượng sâu sắc. Bên cạnh những bất đẳng thức, những hệ phương trình hay những bài toán số học, tổ hợp, ta không thể quên được dạng toán vô cùng quen thuộc, vô cùng thú vị và cũng xuất hiện thường trực hơn cả, đó chính là những bài toán hình học phẳng. Nhìn xuyên suốt qua các bài toán ấy, ta sẽ phát hiện ra sự xuất hiện của những đường tròn, những tam giác, tứ giác; cùng với những sự k ế t hợp đặc biệt, chúng đã tạo ra nhi ề u vấn đ ề thật đẹp và thật hấp dẫn. Có nhi ề u bài phát biểu thật đơn giản nhưng ẩn chứa đằng sau đó là những quan hệ khó và chỉ có thể giải được nhờ những định lý, những ki ế n thức ở mức độ nâng cao như: định lý Euler, đường tròn mixtilinear, định lý Desargues, điểm Miquel,… Rồi cũng có những bài phát biểu thật dài, hình vẽ thì phức tạp nhưng lại được giải quy ế t bằng một sự k ế t hợp ngắn gọn và khéo léo của những đi ề u quen thuộc để tạo nên lời giải ấn tượng.

    Nhằm tạo cho các bạn yêu Toán có một tài liệu tham khảo đầy đủ và hoàn chỉnh v ề những nội dung này, chúng tôi đã dành thời gian để tập hợp các bài toán, trình bày lời giải thật chi ti ế t và sắp x ế p chúng một cách tương đối theo mức độ dễ đ ế n khó v ề lượng ki ế n thức cần dùng cũng như hướng ti ế p cận. Với ề nội dung, mong rằng “ề u hơn nét đẹp cực kì quy ế n rũ của bộ môn này! hơn 50 bài toán đa dạng v hình thức và phong phú v Tuyển chọn các bài toán hình học phẳng trong đ thi học sinh giỏi các tỉnh, thành phố năm học 2010 – 2011” sẽ giúp cho các bạn có dịp thưởng thức, cảm nhận, ngắm nhìn nhi

    Xin chân thành cảm ơn các tác giả đ ề bài, các thành viên của diễn đàn http://forum.mathscope.org đã gửi các đ ề toán và trình bày lời giải lên diễn đàn.

    Cảm ơn các bạn.

    Phan Đức Minh – Lê Phúc Lữ

    --- Bài cũ hơn ---

  • Giải Bài Tập Sgk Công Nghệ Lớp 11 Bài 3: Thực Hành: Vẽ Các Hình Chiếu Của Vật Thể Đơn Giản
  • Giải Địa Lí 11 Bài 4: Thực Hành Tìm Hiểu Những Cơ Hội Và Thách Thức Của Toàn Cầu Hóa Đối Với Các Nước Đang Phát Triển
  • Địa Lí 11 Bài 4: Thực Hành Tìm Hiểu Những Cơ Hội Và Thách Thức Của Toàn Cầu Hóa Đối Với Các Nước Đang Phát Triển
  • Địa Lí 11 Bài 4 Ngắn Nhất: Thực Hành: Tìm Hiểu Những Cơ Hội Và Thách Thức Của Toàn Cầu Hóa Đối Với Các Nước Đang Phát Triển.
  • Soạn Văn Lớp 6 Bài Nghĩa Của Từ Ngắn Gọn Hay & Đúng Nhất
  • Các Bài Toán Về Hình Học Lớp 5 (Có Đáp Án)

    --- Bài mới hơn ---

  • 15 Đề Luyện Thi Học Sinh Giỏi Môn Toán Lớp 5
  • Đề Thi Cuối Học Kì 2 Môn Toán Lớp 5 Theo Thông Tư 22 Có Đáp Án
  • Top 20 Đề Thi Học Kì 2 Toán Lớp 5 Năm 2022
  • 300 Câu Hỏi Trắc Nghiệm Toán Lớp 5 Có Đáp Án
  • 8 Dạng Toán Về Chuyển Động Dành Cho Học Sinh Lớp 5 (Dạng 3)
  • CÁC BÀI TOÁN HÌNH HỌC LỚP 5

    : Hình bình hành ABCD có cạnh AB = BC. Biết cạnh AB dài hơn cạnh BC là 1dm. Hỏi chu vi hình bình hành là bao nhiêu xăng- ti-mét?

    Trả lời: Chu vi hình bình hành đó là … cm.

    A. 8 B. 80 C. 40 D. 16

    Câu 2: Một miếng bìa hình chữ nhật có chu vi gấp 5 lần chiều rộng. Nếu tăng chiều rộng thêm 9cm, tăng chiều dài thêm 4cm thì miếng bìa trở thành một hình vuông. Diện tích miếng bìa ban đầu là …

    A. 75 B. 150 C. 1242 D. 100

    : Một người rào xung quanh khu đất hình chữ nhật có chiều dài 28m, chiều rộng 15m hết 43 chiếc cọc. Hỏi người đó rào xung quanh khu đất hình vuông có cạnh 25m thì hết bao nhiêu chiếc cọc? Biết khoảng cách giữa 2 cọc là như nhau.

    Trả lời: Số cọc cần tìm là …

    A. 86 B. 50 C. 172 D. 25

    Câu 4: Một tấm bìa hình bình hành có chu vi 4dm. Chiều dài hơn chiều rộng 10cm và bằng chiều cao. Tính diện tích tấm bìa đó.

    Trả lời: Diện tích tấm bìa đó là … .

    A. 375 B. 144/5 C. 15 D. 135

    Câu 5: Tìm diện tích của 1/3 tấm bìa hình vuông có cạnh dài 1/2 m.

    Trả lời: Diện tích của 1/3 tấm bìa đó là … .

    A. 2/3 B. 1/12 C. 3/4 D.1/4

    : Một hình chữ nhật được chia thành 12 hình vuông bằng nhau và được xếp thành 3 hàng. Hỏi chu vi của hình chữ nhật là bao nhiêu nếu chu vi của mỗi hình vuông nhỏ là 12cm?

    Trả lời: Chu vi hình chữ nhật đó là … cm.

    A. 432 B. 42 C. 108 D. 14

    : Chiều rộng của khu đất hình chữ nhật A là 105m, bằng 7/12 chiều dài của nó. Hỏi chu vi của mảnh vườn B là bao nhiêu biết chu vi của mảnh vườn B bằng 5/6 chu vi khu đất A.

    Trả lời: Chu vi mảnh vườn B là ……… m. (475)

    : Một hình vuông có diện tích bằng 4/9 diện tích của một hình bình hành có đáy 25cm và chiều cao 9cm. Tính cạnh của hình vuông.

    Trả lời: Cạnh hình vuông đó dài ……… cm. (10)

    Câu 9: Một hình chữ nhật có chiều dài gấp rưỡi chiều rộng. Nếu mỗi chiều tăng 1m thì được hình chữ nhật mới có diện tích tăng thêm 26 . Tính chu vi hình chữ nhật ban đầu.

    A. 50m B 48m C. 54m D. 60m

    Câu 10: Một hình thoi có đường chéo thứ nhất là 3/5 m và bằng 2/3 đường chéo thứ hai. Tính diện tích hình thoi đó.

    Trả lời: Diện tích hình thoi đó là … .

    A. 6/25 B. 27/100 C. 27/50 D. 27/5

    Xem đầy đủ và tải về file word TẠI ĐÂ Y

    --- Bài cũ hơn ---

  • Đề Thi Học Sinh Giỏi Môn Toán Lớp 5 Có Đáp Án
  • Đề Thi Hsg Toán + Tv Lớp 5 Có Đáp Án
  • Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Môn Toán Lớp 5
  • Một Số Biện Pháp Rèn Kỹ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Hyip, Make Money Online, Crypto, Bitcoin,: Sáng Kiến Kinh Nghiệm Toán 5: Đổi Mới Phương Pháp Giảng Dạy Để Nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Tuyển Tập Các Lời Giải Hay Cho Các Bài Toán Hình Học Phẳng Khó

    --- Bài mới hơn ---

  • Soạn Bài Bài Ca Ngất Ngưởng (Chi Tiết)
  • Soạn Bài Bài Ca Ngất Ngưởng
  • Soạn Văn Lớp 11: Bài Ca Ngất Ngưởng
  • Soạn Bài: Bài Ca Ngất Ngưởng (Nguyễn Công Trứ)
  • Đọc Hiểu Bài Ca Ngất Ngưởng
  • Tuyển tập các lời giải hay cho các bài toán hình

    học phẳng khó(Số 1)(Tháng 9/2016)

    Đôi điều về chuyên mục: Trong tuyển tập lớn này, tôi sẽ mỗi tháng đưa ra năm

    lời giải cho năm bài toán khác nhau mà tôi cho là hay. Sau một tháng nhận email

    phản hồi của các bạn(các lời giải khác mà các bạn nghĩ là hay hơn,mở rộng các bài

    toán,…), tôi sẽ biên tập lại chúng để viết chúng trong phần phản hồi bạn đọc ở số

    tiếp theo. Cuối mỗi tháng sẽ có list bài của tháng sau để các bạn tiện theo dõi.

    Bài toán 1(Nguyễn Văn Linh): Cho tam giác ABC nội tiếp đường tròn (O) có

    trực tâm H. P là một điểm thuộc cung BC không chứa A của (O)(P 6= B, C).P 0 đối

    xứng P qua BC. (OP P 0 ) cắt AP tại G. Chứng minh rằng trực tâm tam giác AGO

    nằm trên HP 0 .

    Lời giải(Nguyễn Duy Khương): Gọi AH cắt (AGO) tại điểm J khác A. Thế thì:

    ∠JOG = ∠HAG = ∠GP P 0 (do AH//P P 0 )=180◦ − ∠GOP 0 do đó O, P 0 , J thẳng

    hàng. Lại có: ∠GJO = ∠P AO = ∠GP O = ∠GP 0 O do đó tam giác GJP 0 cân tại

    G. Lại có: ∠JGP 0 = ∠AOP = 2∠ACP . Lại có: ∠AHP 0 = ∠HP P 0 = ∠ACP (do

    1

    nếu gọi AH cắt lại (O) tại D thì HDP P 0 là hình thang cân nên dĩ nhiên ∠HP P 0 =

    ∠ACP ) do đó G là tâm (JHP 0 ). Ta gọi K là giao (JHP 0 ) cắt (AGO) tại điểm K

    khác J.

    Lại có: ∠GKO = ∠OAG = ∠GP O = ∠GP 0 O do đó ∠OP 0 K = ∠OKP 0 nên

    OK = OP 0 vậy khi đó dĩ nhiên K đối xứng P 0 qua GO từ đó GK = GH = GP 0 mà

    ∠GHJ = ∠GJH = 180◦ − ∠AJG = ∠AOG = ∠AKG vậy thì K cũng đối xứng H

    qua AG. Vậy theo định lí về đường thẳng Steiner thì trực tâm tam giác AGO nằm

    trên HP 0 (đpcm).

    Nhận xét: Ở lời giải trên tác giả đã có một lời giải khác với lời giải gốc của người ra

    đề. Điểm thú vị của lời giải trên chính là việc không cần nhất thiết chỉ ra trực tâm

    của tam giác đó.

    Bài toán 2(Kiểm tra trường hè Titan tháng 8/2016): Cho tam giác ABC nội

    tiếp đường tròn (O) có: H là trực tâm và AM là trung tuyến tam giác ABC. AM

    cắt lại (O) tại điểm N . Ba đường thẳng: qua H vuông góc AN, BC, KN cắt nhau

    tạo thành tam giác XY Z. Chứng minh rằng: (XY Z) tiếp xúc (O).

    Lời giải(Nguyễn Duy Khương):

    Gọi tia M H cắt (O) tại điểm J, gọi AD là đường cao của tam giác ABC. Hiển nhiên

    ta có: AJ, HP, M D là các đường cao của tam giác AHM suy ra AJ, HP, BC đồng

    quy tại điểm Y . Hay là A, J, Y thẳng hàng.

    Ta đi chứng minh rằng J thuộc (XY Z). Ta có: HDY J nội tiếp do đó XY JZ nội

    tiếp khi và chỉ khi:

    2

    (JX, KX) ≡ (AH, JH)(modπ) hay là tứ giác JHKX nội tiếp.

    Lại có: (JK, XK) ≡ (JA, N A) ≡ (JD, Y D) ≡ (JH, Y H)(modπ) vậy ta có: JHKX

    nội tiếp hay là J thuộc (XY Z). Vậy tức là J thuộc (XY Z) và (O). Vì J thuộc (O) và

    (XY Z) mà A, J, Y thẳng hàng nên khi gọi Y G, AL là các đường kính (XY Z) và (O)

    thì GJL ⊥ Y A, ta có: ∠JGY = ∠JXY = ∠JKA = ∠JLA do đó GY kAL vậy hiển

    nhiên 4GJY ∼ 4AJL do I, O lần lượt là trung điểm GY và AL nên ∠IJY = ∠OJA

    hay là thu được I, J, O thẳng hàng hay (XY Z) tiếp xúc (O)(đpcm).

    Nhận xét: Bài toán này hay nhưng không quá khó rất phù hợp để lấy làm bài thi

    trong 1 đề kiểm tra định kì. Ở bài toán trên ta thấy được tiếp điểm J sinh ra cực kì

    hay và hợp lí. Cách giải trên tuy dài hơn lời giải gốc xong lại thể hiện tư duy chứng

    minh tiếp xúc rất hay đó là sử dụng vị tự.

    Độc giả có thể tham khảo lời giải gốc và của bài toán mở rộng ở đây .

    Lời giải trên được tác giả đề nghị không phải là ngắn gọn nhất. Có thể kể đến ý

    tưởng biến đổi tỉ số phương tích của tác giả Mẫn Bá Tuấn-học sinh chuyên Toán

    THPT chuyên ĐHSP Hà Nội. Ở đây xin nêu cách này bởi sự khai thác triệt để

    giả thiết tiếp xúc trong đề bài.

    Các bài toán đề nghị tháng sau

    :

    7

    Bài toán 6(Hà Nội TST 2022-2016): Cho đường tròn đường kính AB. Lấy điểm

    C trên nửa đường tròn này sao cho 90◦ < ∠AOC < 180◦ . Lấy K là 1 điểm thay đổi

    trên đoạn OC. Vẽ các tiếp tuyến AD, AE đến đường tròn (K; KC). Chứng minh

    rằng DE, AC, BK đồng quy tại 1 điểm.

    Bài toán 7(Trần Quang Hùng-T12/466-THTT): Cho tam giác ABC nhọn

    không cân nội tiếp đường tròn (O). Lấy P là 1 điểm thuộc tam giác ABC sao

    cho AP vuông góc BC. Kẻ P E, P F lần lượt vuông góc AB, AC( E, F thuộc AB

    và AC). Đường tròn ngoại tiếp tam giác AEF cắt lại (O) tại G. Chứng minh rằng

    GP, BE, CF đồng quy tại 1 điểm.

    Bài toán 8(Trích HNEU TST 2014-2015): Cho tam giác ABC có các đường

    cao AD, BE, CF . Các đường tròn đường kính AB và AC cắt các tia DF và DE

    tại các điểm Q và P . Gọi N là tâm ngoại tiếp tam giác DEF . Chứng minh rằng:

    AN ⊥ P Q.

    Bài toán 9(Đề thi chọn HSG khối 10,chuyên ĐHSP,2015-2016):Cho tứ giác

    ABCD nội tiếp đường tròn (O). M, N lần lượt là trung điểm AB và CD. Giả sử

    AD cắt BC tại E và 2 đường chéo cắt nhau tại điểm F . EF cắt AB và CD lần lượt

    tại các điểm P và Q.

    a) Chứng minh rằng M, N, P, Q nội tiếp đường tròn tâm T .

    b) Chứng minh rằng OT, N P, M Q đồng quy.

    Bài toán 10(Nguyễn Duy Khương): Cho tam giác ABC sao cho AB + AC =

    2BC. Tam giác nội tiếp trong đường tròn (O) và ngoại tiếp đường tròn (I). (I) tiếp

    xúc BC, CA, AB tại D, E, F . AI cắt lại đường tròn (O) tại J khác A. Một đường

    thẳng d qua A song song với BC cắt EF tại M .Chứng minh rằng:∠JDM = 90◦ .

    8

    1

    Lời giải 1(Nguyễn Duy Khương): Gọi BK cắt lại (O) tại điểm thứ hai J. Gọi

    JA cắt DE tại điểm N . Do ∠KJA = ∠KDA = 90◦ do đó tứ giác JADE nội tiếp.

    Do (O) tiếp xúc (K) nên áp dụng tính chất trục đẳng phương thì tiếp tuyến chung

    tại C của (O), (K),DE và JA đồng quy tại 1 điểm N . Gọi DE cắt BK tại điểm M .

    Kẻ tiếp tuyến thứ hai N S tới (K) thế thì do N C đã là tiếp tuyến tới (K) nên ta có:

    DSCE là 1 tứ giác điều hoà do đó hiển nhiên là ta có: A, S, C thẳng hàng. Gọi M

    là giao điểm của BK và DE. Gọi I là trung điểm DE.

    Do M là trực tâm tam giác AN K nên: M N.M I = M J.M K = M D.M E(do

    A, J, K, D, E đồng viên). Vậy ta thu được: (N M, DE) = −1(theo hệ thức M aclaurin)

    suy ra: C(N M, DE) = −1 mà ở trên ta đã chỉ ra được: C(N S, DE) = −1. Do đó:

    S, C, M thẳng hàng. Vậy AC, BK, DE đồng quy tại điểm M (đpcm).

    2

    --- Bài cũ hơn ---

  • Công Nghệ 11 Bài 3: Thực Hành Vẽ Các Hình Chiếu Của Vật Thể Đơn Giản
  • Lý Thuyết Công Nghệ 10 Bài 52: Thực Hành: Lựa Chọn Cơ Hội Kinh Doanh (Hay, Chi Tiết).
  • Thực Hành: Lực Chọn Cơ Hội Kinh Doanh Trang 161 Sgk Công Nghệ 10
  • Bài 4: Thực Hành: Tìm Hiểu Những Cơ Hội Và Thách Thức Tòan Cầu Hóa Đối Với Các Nước Đang Phát Triển
  • Soạn Bài Ý Nghĩa Văn Chương (Chi Tiết)
  • Các Bài Toán Có Lời Giải

    --- Bài mới hơn ---

  • Giải Toán Lớp 6 Bài 5: Phép Cộng Và Phép Nhân
  • Các Dạng Toán Về Phép Cộng Và Phép Nhân
  • Tóm Tắt Kiến Thức Toán Lớp 6 Bài 5: Phép Cộng Vàphép Nhân
  • Đáp Án Sách Mai Lan Hương Lớp 8
  • Đáp Án Sách Mai Lan Hương Lớp 10
  • Bài 4: Cuối năm học tại một trường THCS có 1200 đội viên đạt danh hiệu Cháu ngoan Bác Hồ thuộc bốn khối 6, 7, 8, 9 . Trong đó số đội viên khối 6 chiếm tổng số ; số đội viên khối 7 chiếm 25% tổng số ; số đội viên khối 9 bằng số đội viên khối 8. Tìm số đội viên đạt danh hiệu Cháu ngoan Bác Hồ của mỗi khối.

    Bài 5: Một lớp có 50 học sinh. số học sinh giỏi chiếm số học sinh cả lớp. Số học sinh trung bình bằng 40% số học sinh giỏi. Còn lại là học sinh khá.

    a. Tính số học sinh mỗi loại của lớp.

    b. Tính tỉ số phầm trăm của số học sinh khá, giỏi, trung bình so với học sinh cả lớp.

    CÁC BÀI TOÁN CÓ LỜI GIẢI – LỚP 6 Bài 1: Lớp 6A có 40 học sinh.Cuối năm số học sinh loại giỏi chiếm 10% tổng số học sinh cả lớp.Số học sinh khá bằng số học sinh loại giỏi. Còn lại là học sinh trung bình. Tính số học sinh mỗi loại? HD: Số học sinh giỏi là: – Số học sinh khá là: – Số học sinh trung bình là: Đáp số: Giỏi: 4 hs Khá: 6 hs Trung Bình: 30 hs Bài 2: Khối 6 của một trường có tổng cộng 90 học sinh. Trong dịp tổng kết cuối năm thống kê được: Số học sinh giỏi bằng số học sinh cả khối, số học sinh khá bằng 40% số học sinh cả khối. Số học sinh trung bình bằng số học sinh cả khối, còn lại là học sinh yếu kém. Tính số học sinh mỗi loại. Số học sinh giỏi của trường là: (học sinh) – Số học sinh khá của trường là: (học sinh) – Số học sinh trung bình của trường là: (học sinh) – Số học sinh yếu của trường là:90 – (15 + 36 + 30) = 9 (học sinh) Bài 3: Ở lớp 6B số HS giỏi học kì I bằng số HS cả lớp. Cuối năm học có thêm 5 HS đạt loại giỏi nên số HS giỏi bằng số HS cả lớp. Tính số HS của lớp 6A? Bài 4: Cuối năm học tại một trường THCS có 1200 đội viên đạt danh hiệu Cháu ngoan Bác Hồ thuộc bốn khối 6, 7, 8, 9 . Trong đó số đội viên khối 6 chiếm tổng số ; số đội viên khối 7 chiếm 25% tổng số ; số đội viên khối 9 bằng số đội viên khối 8. Tìm số đội viên đạt danh hiệu Cháu ngoan Bác Hồ của mỗi khối. Bài 5: Một lớp có 50 học sinh. số học sinh giỏi chiếm số học sinh cả lớp. Số học sinh trung bình bằng 40% số học sinh giỏi. Còn lại là học sinh khá. a. Tính số học sinh mỗi loại của lớp. b. Tính tỉ số phầm trăm của số học sinh khá, giỏi, trung bình so với học sinh cả lớp. Bài 6: Một đội công nhân sửa chữa một đoạn đường trong ba ngày. Ngày thứ nhất sửa 59 đoạn đường, ngày thứ hai sửa 14 đoạn đường. Ngày thứ ba sửa 7m còn lại. Hỏi đoạn đường cần sửa dài bao nhiêu mét. Bài 7: Lớp 6A có 40 học sinh gồm 3 loại: Giỏi, khá và trung bình. Số học sinh giỏi chiếm số học sinh cả lớp. Số học sinh trung bình bằng số học sinh còn lại a) Tính số học sinh giỏi, khá, trung bình của lớp 6A b) Tính tỷ số phần trăm của số học sinh trung bình so với học sinh cả lớp Giải a) – Số học sinh giỏi của lớp 6A là: (học sinh) số học sinh còn lại là 40 – 5 = 35 (học sinh) – Số học sinh trung bình của lớp 6A là: (học sinh) – Số học sinh khá của lớp 6A là: 35 -15 = 10 (học sinh) b) % = 35% Bài 8: Kết quả học lực cuối học kỳ I năm học 2012 – 2013 cuả lớp 6A xếp thành ba loại: Giỏi; Khá; Trung bình. Biết số học sinh khá bằng số học sinh giỏi; số học sinh trung bình bằng số học sinh giỏi. Hỏi lớp 6A có bao nhiêu học sinh; biết rằng lớp 6A có 12 học sinh khá? HD: Số học sinh giỏi của lớp 6A là: (học sinh) Số học sinh trung bình của lớp 6A là: (học sinh) Tổng số học sinh của lớp 6A là: (học sinh) Đáp số: 36 học sinh Bài 9: Biết diện tích của một khu vườn là 250m2. Trên khu vườn đó người ta trồng các loại cây cam, chuối và bưởi. Diện tích trồng cam chiếm 40% diện tích khu vườn. Diện tích trồng chuối bằng diện tích trồng cam. Phần diện tích còn lại là trồng bưởi. Hãy tính: Diện tích trồng mỗi loại cây ; Tỉ số diện tích trồng cam và diện tích trồng bưởi ; Tỉ số phần trăm của diện tích trồng cam và diện tích trồng chuối. Bài 10: Một mãnh vườn hình chữ nhật có chiều rộng là 20 m và chiều dài bằng 1,5 lần chiều rộng . a) Tính diện tích mãnh vườn. b) Người ta lấy một phần đất vườn để trồng cây ăn quả, biết rằng diện tích trồng cây ăn quả là 180m2 . Tính diện tích trồng cây ăn quả. c) Phần diện tích còn lại người ta trồng hoa. Hỏi diện tích trồng hoa chiếm bao nhiêu phần trăm diện tích mãnh vườn. Bài 11: Một trường học có 120 học sinh khối 6 gồm ba lớp : lớp 6A1 chiếm số học sinh khối 6. Số học sinh lớp 6A2 chiếm số học sinh khối 6. Số còn lại là học sinh lớp 6A3 .Tính số học sinh mỗi lớp. Bài 12 : Một lớp học có 44 học sinh gồm ba loại : giỏi, khá và trung bình. Số học sinh trung bình chiếm số học sinh cả lớp. Số học sinh khá bằng số học sinh còn lại. Tính số học sinh giỏi của lớp đó ? Bài 13 : Lớp 6A có 45 học sinh. Trong đó, số học sinh trung bình chiếm số học sinh cả lớp. Tổng số học sinh khá và giỏi chiếm số học sinh trung bình, còn lại là học sinh yếu kém. Tính số học sinh yếu kém của lớp 6A? Bài 14 : Tuấn có tất cả 54 viên bi gồm ba màu là xanh, cam, tím. Trong đó, số viên bi xanh chiếm tổng số viên bi, số viên bi cam chiếm số viên bi còn lại. Tính xem Tuấn có bao nhiêu viên bi màu tím ? Bài 15 : Một lớp học có 40 học sinh gồm ba loại : giỏi, khá và trung bình. Số học sinh khá chiếm số học sinh cả lớp. Số học sinh giỏi chiếm số học sinh còn lại. Tính số học sinh trung bình của lớp đó ? Bài 16: Lớp 6A có 40 học sinh. Điểm kiểm tra Toán gồm 4 loại: Giỏi, khá, trung bình và yếu. Trong đó số bài đạt điểm giỏi chiếm tổng số bài, số bài đạt điểm khá chiếm số bài đạt điểm giỏi. Loại yếu chiếm số bài còn lại. a) Tính số bài kiểm tra mỗi loại của lớp. b) Tính tỉ số phần trăm học sinh đạt điểm trung bình, yếu so với học sinh cả lớp

    --- Bài cũ hơn ---

  • Đáp Án Ngữ Văn Lớp 6 Tập 2
  • Đề Thi Học Kì 1 Lớp 6 Môn Văn Có Đáp Án Năm Học 2014
  • Tham Khảo Đề Thi Học Kì 1 Lớp 6 Môn Văn Có Đáp Án Tuyển Chọn Hay Nhất 2022
  • Đáp Án Lưu Hoằng Trí Unit 1 Lớp 6
  • Lưu Hoằng Trí Lớp 6 Có Đáp Án
  • Các Bước Giúp Học Sinh Lớp 1 Học Tốt Dạng Toán “giải Toán Có Lời Văn”

    --- Bài mới hơn ---

  • Giáo Án Toán Lớp 1: Giải Toán Có Lời Văn
  • Hướng Dẫn Học Sinh Giải Toán Có Lời Văn
  • Bài Tập Phần Tìm Hai Số Khi Biết Tổng Và Hiệu Hai Số Đó
  • Hướng Dẫn Và Bài Tập Toán Lớp 4 Tìm Hai Số Khi Biết Tổng Và Hiệu
  • Trọn Bộ Bài Tập Toán Cơ Bản Lớp 4
  • Như chúng ta đã biết môn toán ở bậc tiểu học trang bị cho hs những tri thức, kĩ năng toán học cơ bản, cần thiết cho việc học tập và bước vào cs lao động sau này .

    Môn toán có vị trí đặc biệt quan trọng, nó thiết thực góp phần thực hiện mục tiêu giáo dục tiểu học theo đặc trưng và khả năng.Học toán, hs được nắm vững những kiến thức toán và luyện tập thành thạo các thao tác , kĩ năng tính toán , các em sẽ áp dụng trong cs hàng ngày.

    Đối với hs lớp 1 môn học có vị trí là nền tảng, là cái gốc, là điểm xuất phát của một bộ môn khoa học. Môn toán mở đường cho các em đi vào thế giới kì diệu của toán học. Bắt đầu học đếm, nhận biết các số 1,2,3….các phép cộng, trừ…càng ngày các em sẽ được mở rộng hơn lên những kiến thức cao hơn…Những phép tính, con số đơn giản ấy vẫn theo các em cho đến suốt cuộc đời.

    Trong mạch kiến thức toán lớp 1 thì việc giúp các em làm quen, học tốt với dạng ” giải toán có lời văn” là một việc làm đòi hỏi thời gian. Bởi với các em lớp 1 ngôn ngữ và khả năng tư duy còn hạn chế, kỉ năng tính toán, trình bày còn thiếu tính chính xác, vốn hiểu biết và khả năng đọc hiểu của các em chưa nhiều, vì vậy : Làm thế nào để giúp các em học tốt dạng ” Giải toán có lời văn ” luôn là điều mà các Gv lớp 1 trăn trở .

    Là gv dạy lớp 1 đã mấy năm nay, bản thân tôi nhận thấy : Khả năng giải toán phản ánh năng lực vận dụng kiến thức toán của hs. Giải toán có lời văn là cách giải quyết vấn đề của môn toán. Từ đề toán là ngôn ngữ thông thường đưa ra các phép tính, kèm lời giải và cuối cùng là đáp số .Từ đó ta thấy rằng: giải toán có lời văn góp phần rèn luyện khả năng diễn đạt, tích cực phát triển tư duy cho hs . Vì vậy để hướng dẫn hs học tốt dạng ” Giải toán co lời văn ” Gv cần dạy hs làm tốt 5 bước sau :

    a. Đọc kĩ đề bài : Đề bài cho biết gì ? đề bài yêu cầu tìm gì ?

    Muốn hs hiểu và giải được bài toán điều quan trọng đầu tiên là giúp các em đọc và hiểu được nội dung bài toán và để hs hiểu đề bài gv cần đọc và nhấn mạnh các từ ngữ trong bài …

    b. Tóm tắt bài toán : Trong giai đoạn đầu gv cần hướng dẫn hs tóm tắt bai toán bằng cách đàm thoại và đưa vào câu trả lời của hs , gv viết tóm tắt lên bảng rồi dựa vào tóm tắt giúp hs đọc lại bài toán. Đối với những bài toán bằng hình ảnh hay các em gặp khó khăn trong khi đọc, gv nên cho các em nhìn tranh để trả lời câu hỏi hoặc gv có thể dùng mẫu vật gắn lên bảng thay tranh( hoặc tóm tăt bằng sơ đồ đoạn thẳng) để hỗ trợ hs đọc đề bài vì tư duy của các em hs lớp 1 là tư duy cụ thể ….

    c. Tìm ra cách giải bài toán : Sau khi giúp các em nhận biết tìm hiểu kĩ đề toán gv hướng dẫn các em tìm ra cách giải bài toán, xác định phép tính, đáp số từ đó hướng dẫn hs nêu lời giải. GV nên hướng dẫn giúp các em hs nêu nhiều lời giải khác nhau sau đó chọn lời giải phù hợp nhất. ( Không yêu cầu các em viết theo 1 lời giải nhất định).

    d. Trình bày bài giải : Đây là một khâu quan trọng, vì vậy gv cần rèn cho hs kĩ năng trình bày bài giải chính xác, khoa học. Để làm được điều đó trước khi hs làm bài gv cần nêu môt số câu hỏi định hướng như :

    + Cách trình bày bài giải như thế nào ?

    + Trước hết các em phải viết gì và viết như thế nào ? vv…

    đ. Kiểm tra lời giải và đáp số : Đây là khâu cuối cùng trong trình bày bài toán. Và đây là giai đoạn giúp rèn cho các em tính cẩn thận ,vì vậy gv cần tạo cho hs có thói quen này .đối với dạng toán này gv cần giúp các em phát triển tư duy, trí tuệ, phất huy tính tích cực chủ động và sáng tạo trong học tập, gv có thể cho các em làm quen với việc tự đặt đề toán, giải toán hay từ tóm tắt, từ sơ đồ phân tích bài toán và giải, có thể viết tiếp nội dung đề toán vào chỗ chấm (…) , tự đặt câu hỏi cho bài toán rồi giải,( ở bước này gv không nên rập khuôn, máy móc) vì ở mỗi bài toán có nhiều cách đặt lời giải khác nhau ,làm sao cho phù hợp với trình độ nhận thức của hs ở lớp mình phụ trách và tùy vào từng loại bài gv củng cố, khắc sâu cho các em những kiến thức đã học một cách có hệ thống để từ đó giúp các em nắm vững kiến thức và áp dụng vào thực hành một cách thành thạo .

    TÓM LẠI : để dạy tốt môn toán nói chung và giúp các em nắm vững kiến thức “Giải toán có lời văn”cho hs lớp 1 nói riêng, người gv phải biết nắm bắt và hệ thống hóa nội dung, chương trình, sgk để xác định đúng đặc trưng cho mỗi tiết học.

    Con đường nhận thức của hs tiểu học là từ trực quan sinh động đến tư duy trừu tượng, từ tư duy trừu tượng đến thực tiễn.Vì vậy,đồ dùng, thiết bị dạy học là phương tiện hữu ích cực kì cần thiết khi dạy ” Giải toán có lời văn “.gv cần coi trọng việc sử dụng đồ trực quan trong giảng dạy ( sử dụng nhưng không lạm dụng).

    – Dạy : Giải toán có lời văn đòi hỏi phải có thời gian,sự tỉ mỉ, kiên nhẫn,nhẹ nhàng nhưng cần cương quyết để giúp các em làm quen và tiếp cận dần từ đó hình thành kĩ năng thực hành tốt .

    – Không có phương pháp dạy học nào là tối ưu mà chỉ có lòng nhiệt tình, đam mê tận tụy với nghề của gv. Đó mới là cách tốt nhát giúp cho việc dạy học có hiệu quả. Bởi một người gv yêu nghề mến trẻ sẽ biết làm thế nào và dạy học bằng hình thức, phương pháp nào phù hợp với các em. Biết phát huy năng lực, sở trường và tính tích cực chủ dộng trong học tập của các em.Ngoài ra, người gv cần biết tạo không khí lớp học sôi nổi, gây hứng thú cho các em để mỗi tiết học trên lớp luôn nhẹ nhàng và đạt hiệu quả cao.

    Và để làm được điểu đó người gv phải không ngừng học tập nâng cao trình độ chuyên môn, thường xuyên học hỏi trao đổi kinh nghiệm với đồng nghiệp, biết gắn kiến thức với thực tiễn cuộc sống có như vậy kiến thức các em tiếp thu và lĩnh hội được sẽ đọng lại mãi trong trí nhớ của các em, nhờ đó góp phần nâng cao hiệu quả giảng dạy .

    Sơn Tây, ngày 25 tháng 4 năm 2022 Phan Thị Hương Giáo viên Trường Tiểu học Sơn Tây

    Nguyễn Thị Thúy Vân @ 23:33 25/04/2017

    Số lượt xem: 2780

    --- Bài cũ hơn ---

  • Gia Sư Toán Hướng Dẫn Học Sinh Tiểu Học Giải Toán Có Lời Văn
  • Đề Tài: Một Số Biện Pháp Giúp Học Sinh Lớp 4 Giải Toán Có Lời Văn
  • Bài Giải Của Lớp 4
  • Một Số Giải Pháp Giải Bài Toán Có Lời Văn Cho Học Sinh Lớp 5 2022
  • Giải Phiếu Bài Tập Cuối Tuần Toán Lớp 5 Tuần 22
  • Tuyển Chọn Các Bài Toán Hay Về Hình Học Phẳng Có Lời Giải Hướng Dẫn (Tài Liệu Free)

    --- Bài mới hơn ---

  • Các Bài Toán Giải Bằng Phân Tích Cấu Tạo Số
  • Giải Toán 12 Bài 5. Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Của Hàm Số
  • Bài Tập Trắc Nghiệm Trang 32 Sbt Sinh Học 9: Trắc Nghiệm Trang 32 Chương Ii Nhiễm Sắc Thể Sbt Sbt Sinh Học 9
  • Soạn Bài : Những Câu Hát Than Thân
  • Soạn Bài Những Câu Hát Than Thân (Ngắn Gọn)
  • Lời nói đầu Các kì thi HSG tỉnh và thành phố nhằm chọn ra đội tuyển tham dự kỳ thi học sinh giỏi Quốc gia trong

    năm học 2010 – 2011 đã diễn ra sôi nổi vào những ngày cuối năm trước và đã để lại nhiều ấn tượng sâu

    sắc. Bên cạnh những bất đẳng thức, những hệ phương trình hay những bài toán số học, tổ hợp, ta không

    thể quên được dạng toán vô cùng quen thuộc, vô cùng thú vị và cũng xuất hiện thường trực hơn cả, đó

    chính là những bài toán hình học phẳng. Nhìn xuyên suốt qua các bài toán ấy, ta sẽ phát hiện ra sự xuất

    hiện của những đường tròn, những tam giác, tứ giác; cùng với những sự kết hợp đặc biệt, chúng đã tạo

    ra nhiều vấn đề thật đẹp và thật hấp dẫn. Có nhiều bài phát biểu thật đơn giản nhưng ẩn chứa đằng sau

    đó là những quan hệ khó và chỉ có thể giải được nhờ những định lý, những kiến thức ở mức độ nâng

    cao như: định lý Euler, đường tròn mixtilinear, định lý Desargues, điểm Miquel,… Rồi cũng có những

    bài phát biểu thật dài, hình vẽ thì phức tạp nhưng lại được giải quyết bằng một sự kết hợp ngắn gọn và

    khéo léo của những điều quen thuộc để tạo nên lời giải ấn tượng.

    Nhằm tạo cho các bạn yêu Toán có một tài liệu tham khảo đầy đủ và hoàn chỉnh về những nội dung

    này, chúng tôi đã dành thời gian để tập hợp các bài toán, trình bày lời giải thật chi tiết và sắp xếp chúng

    một cách tương đối theo mức độ dễ đến khó về lượng kiến thức cần dùng cũng như hướng tiếp cận. Với

    hơn 50 bài toán đa dạng về hình thức và phong phú về nội dung, mong rằng “Tuyển chọn các bài toán

    hình học phẳng trong đề thi học sinh giỏi các tỉnh, thành phố năm học 2010 – 2011″ sẽ giúp cho các

    bạn có dịp thưởng thức, cảm nhận, ngắm nhìn nhiều hơn nét đẹp cực kì quyến rũ của bộ môn này!

    Xin chân thành cảm ơn các tác giả đề bài, các thành viên của diễn đàn http://forum.mathscope.org đã

    gửi các đề toán và trình bày lời giải lên diễn đàn.

    Tài liệu với dung lượng lớn có thể còn nhiều thiếu sót, rất mong bạn đọc góp thêm ý kiến để tiếp tục

    hoàn thiện cuốn tài liệu này. Các ý kiến đóng góp xin gửi vào hai hòm thư

    Cảm ơn các bạn.

    Phan Đức Minh – Lê Phúc Lữ

    3

    Các kí hiệu và từ viết tắt sử dụng trong tài liệu

    ,

    R r

    Bán kính đường tròn ngoại tiếp, nội tiếp tam giác

    đpcm Điều phải chứng minh

    4

    Phần một: Đề bài

    Bài 2.

    Cho tam giác

    ABC

    ACBC

    . Gọi

    21

    , RR lần lượt là bán kính đường tròn ngoại tiếp các tam giác

    GACGBC, , trong đó

    G

    là trọng tâm tam giác

    ABC

    . Hãy so sánh

    21

    , RR .

    (Đề thi chọn đội tuyển THPT chuyên Bến Tre, Bến Tre)

    (Đề thi HSG Đồng Tháp, vòng 2)

    BD

    . Chứng minh rằng bán kính đường tròn ngoại tiếp các tam giác OPQOMQOMP ,, bằng nhau.

    (Đề thi chọn đội tuyển toán lớp 11 THPT Cao Lãnh, Đồng Tháp)

    BP

    . Chứng minh rằng

    MK BP

    .

    (Đề chọn đội tuyển THPT chuyên Lê Quý Đôn, Bình Định)

    Bài 20.

    Gọi IG, là trọng tâm, tâm nội tiếp tam giác

    ABC

    . Đường thẳng qua

    G

    và song song với

    BC

    cắt

    ACAB, theo thứ tự tại

    bc

    CB , . Các điểm

    abca

    BAAC ,,, được xác định tương tự. Các điểm

    cba

    III ,,

    theo thứ tự là tâm nội tiếp các tam giác

    ccbbaa

    BGAAGCCGB ,, . Chứng minh rằng

    cba

    CIBIAI ,, đồng

    quy tại một điểm trên

    GI

    .

    (Đề thi chọn đội tuyển THPT chuyên ĐHSP HN)

    7

    đồng quy.

    (Đề kiểm tra đội tuyển toán THPT chuyên ĐHSP HN)

    2.

    , ,

    M N P

    thẳng hàng.

    (Đề thi chọn đội tuyển toán lớp 11, THPT chuyên Lương Văn Tụy, Ninh Bình) 8

    (Đề thi chọn đội tuyển THPT chuyên ĐHSP HN)

    10

    11

    đồng quy.

    (Đề chi chọn đội tuyển Hải Phòng)

    Bài 49.

    Cho hình thang

    ABCD

    (Đề thi chọn đội tuyển THPT chuyên Đại học Vinh)

    Phần hai: Lời giải

    BD

    . Chứng minh rằng bán kính đường tròn ngoại tiếp các tam giác OPQOMQOMP ,, bằng nhau.

    (Đề thi chọn đội tuyển toán lớp 11 THPT Cao Lãnh, Đồng Tháp)

    Lời giải.

    M

    Q

    P

    O

    A

    B

    D

    C

    15

    Tương tự, ta suy ra đpcm.

    18

    19

    20

    22

    chuyển động trên một tia bất kì có gốc

    A

    và không nằm trên đường thẳng

    AB

    thì

    MN

    đi qua điểm

    D

    được xác định như trên.

    23

    24

    đồng quy.

    (Đề kiểm tra đội tuyển toán THPT chuyên ĐHSP HN)

    25

    --- Bài cũ hơn ---

  • Tuyển Chọn Các Bài Toán Hay Về Hình Học Phẳng Có Lời Giải Hướng Dẫn
  • Giải Bài Tập Sgk Công Nghệ Lớp 11 Bài 3: Thực Hành: Vẽ Các Hình Chiếu Của Vật Thể Đơn Giản
  • Giải Địa Lí 11 Bài 4: Thực Hành Tìm Hiểu Những Cơ Hội Và Thách Thức Của Toàn Cầu Hóa Đối Với Các Nước Đang Phát Triển
  • Địa Lí 11 Bài 4: Thực Hành Tìm Hiểu Những Cơ Hội Và Thách Thức Của Toàn Cầu Hóa Đối Với Các Nước Đang Phát Triển
  • Địa Lí 11 Bài 4 Ngắn Nhất: Thực Hành: Tìm Hiểu Những Cơ Hội Và Thách Thức Của Toàn Cầu Hóa Đối Với Các Nước Đang Phát Triển.
  • Một Số Kinh Nghiệm Giúp Học Sinh Lớp 3/3 Trường Tiểu Học Trần Bình Trọng Giải Các Bài Toán Có Lời Văn

    --- Bài mới hơn ---

  • Sang Kien Kinh Nghiem Lop 3
  • Sáng Kiến Kinh Nghiệm: Một Số Biện Pháp Giúp Học Sinh Giải Toán Có Lời Văn Ở Lớp 3
  • Sáng Kiến Kinh Nghiệm Giải Toán Có Lời Văn Cho Hs Lớp 1
  • Skkn: Nâng Cao Chất Lượng Giải Toán Có Lời Văn Lớp 1
  • Đề Thi Hk1 Môn Toán Lớp 3 Có Lời Giải
  • A. PHẦN MỞ ĐẦU

    2

    I. LÝ DO CHỌN ĐỀ TÀI:

    2

    II. MỤC ĐÍCH ĐỀ TÀI:

    3

    1 / Về tình hình học sinh lớp 3/3

    5

    2/ Kết quả thống kê bài làm của học sinh

    5

    3/ Thực trạng về giải toán có lời văn hiện nay đối với học sinh lớp 3/3:

    6

    II. GIẢI QUYẾT VẤN ĐỀ:

    7

    1. Các biện pháp giúp học sinh năm vững phương pháp giải toán

    7

    1.1/ Giáo viên và học sinh

    1.2/ Đối với phụ huynh học sinh

    7

    9

    2. Hướng dẫn học sinh nắm chắc phương pháp chung về các bước giải các bài toán có lời văn.

    9

    * Bước 1: Hướng dẫn học sinh đọc đề kĩ toán.

    9

    * Bước2: Hướng dẫn học sinh đọc tóm tắt đề toán.

    10

    *Bước 3 : Phân tích bài toán

    14

    *Bước 4: Viết và trình bày bài giải

    18

    *Bước 5: kiểm tra lại bài làm(lời giải và kiểm tra kết quả)

    20

    III. KẾT QUẢ ĐẠT ĐƯỢC:

    21

    IV. BÀI HỌC KINH NGHIỆM

    24

    V. KẾT LUẬN:

    25

    A. PHẦN MỞ ĐẦU

    I. LÝ DO CHỌN ĐỀ TÀI:

    Song song với việc dạy và học môn Tiếng Việt, việc dạy và học Toán ở trường Tiểu học có vai trò vô cùng quan trọng trong việc hình thành và phát triển khả năng toán học cho học sinh. Bởi từ đây, những bài học đơn giản đầu tiên sẽ là nền móng đưa các em đi vào thế giới toán học bao la sau này. Để phát triển tốt khả năng toán học cho học sinh, hơn đâu hết, việc học toán ở trường Tiểu học phải đặc biệt được chú trọng. Chúng ta đã và đang thực hiện tốt nội dung này.

    Trong môn toán ở bậc Tiểu học, các bài giải toán có lời văn có một vị trí hết sức quan trọng, chiếm phần lớn lượng thời gian trong học toán của học sinh. Việc giải thành thạo các bài toán là một trong những tiêu chuẩn để đánh giá khả năng học toán của mỗi học sinh. Việc giải toán được chú trọng như thế có lẽ vì những tác dụng thiết thực mà nó đạt được trên cả 2 mặt lí thuyết và thực tế với học sinh tiểu học:

    – Trước hết giải toán tốt là một bước củng cố tốt trong việc khắc sâu kiến thức số học, đo lường, các yếu tố đại số, hình học ở học sinh.

    – Bên cạnh đó thông qua nội dung thực tế nhiều hình, nhiều vẻ của các đề toán, học sinh sẽ tiếp nhận được những kiến thức phong phú về cuộc sống và có điều kiện để rèn luyện khả năng áp dụng các kiến thức toán học vào đời sống. Thực hiện tốt lời dạy “Học đi đôi với hành” của Bác Hồ.

    – Ngoài ra việc giái toán sẽ giúp phát triển trí thông minh, óc sáng tạo, thói quen làm việc một cách khoa học cho các em, bởi giải toán là quá trình đòi hỏi nhiều nhất sự tư duy, suy luận khả năng phân tích chọn lựa của học sinh.

    – Cuối cùng, giải toán là cách tốt nhất để rèn luyện tính kiên trì, tự lực vượt khó, cẩn thận chu đáo, yêu thích sự chặt chẽ, chính xác cho học sinh, bởi khi giải toán bắt buộc các em phải tự mình xem xét vấn đề, tự mình giải quyết vấn đề, tự mình kiểm tra lại kết quả.

    Vì những tác dụng thiết thực như thế, việc giải toán không chỉ giúp các em học giỏi môn toán mà còn giúp các em học giỏi tất cả các môn học khác. Muốn giải toán giỏi các em cần phải xác định hướng đi chung trong hoạt động giải toán và việc dẫn dắt các em vào đúng lối đi đó là vai trò không thể thiểu của người giáo viên.

    Qua thực tế nhiều năm giảng dạy khối Ba, tôi nhận thấy trong các kiến thức toán ở chương trình thì mạch kiến thức “Giải toán có lời văn” là mạch kiến thức khó khăn nhất đối với học sinh bởi vì đối với một số học sinh vốn từ, vốn hiểu biết, khả năng đọc hiểu, khả năng tư duy lôgic của các em còn rất hạn chế. Các em chưa biết cách tự học, chưa học tập một cách tích cực. Học sinh khi giải toán có lời văn thường rất chậm so với các dạng bài tập khác. Nhiều khi với một bài toán có lời văn các em có thể đặt và tính đúng phép

    --- Bài cũ hơn ---

  • Cách Học Toán Lớp 3 Hiệu Quả Để Phát Huy Khả Năng Của Trẻ
  • 252 Bài Toán Luyện Thi Violympic Lớp 3
  • Sáng Kiến Kinh Nghiệm Hướng Dẫn Học Sinh Giải Bài Toán Có Lời Văn Lớp 1
  • Đề Tài Phương Pháp Giải Toán Có Lời Văn Lớp 1
  • Giáo Án Toán Lớp 1: Giải Toán Có Lời Văn (Tiếp Theo)
  • Kinh Nghiệm Dạy Học Giải Toán Có Lời Văn Lớp 3

    --- Bài mới hơn ---

  • Tuần 2. Ai Có Lỗi?
  • Sáng Kiến Kinh Nghiệm Rèn Kĩ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 3
  • Sáng Kiến Kinh Nghiệm Nâng Cao Chất Lượng Dạy Giải Toán Có Lời Văn Lớp 3
  • Sáng Kiến: Giải Toán Có Lời Văn Lớp 3 Skkn Giai Toan Co Loi Van Lop 3 Doc
  • Sáng Kiến Kinh Nghiệm Toán Lớp 3 Một Số Biện Pháp Nhằm Giúp Học Biết Giải Toán Có Lời Văn
  • A. đặt vấn đề

    I. Lời mở đầu:

    Trong giai đoạn hiện nay, đất nước ta đang tiến nhanh trên con đường công nghiệp hoá, hiện đại hoá đất nước. Để đáp ứng được yêu cầu đổi mới đó, đòi hỏi phải có những lao động mới có bản lĩnh, có năng lực, chủ động, sáng tạo, dám nghĩ, dám làm… Từ nhu cầu này mà mục tiêu giáo dục cũng đã được điều chỉnh, đó là: giáo dục nhằm đào tạo ra những con người phát triển toàn diện. Từ đó dẫn đến việc đổi mới về nội dung phương pháp dạy học là tất yếu.

    Trong hệ thống giáo dục tiểu học là bậc học nền tảng, đặt cơ sở ban đầu cho việc hình thành và phát triển toàn diện con người, đặt nền tảng vững chắc cho giáo dục phổ thông và toàn hệ thống giáo dục quốc dân.

    Chất lương giáo dục là vấn đề số một trong nội dung công tác của ngành giáo dục, vì vậy việc lựa chọn và sử dụng phương pháp dạy học là một vấn đề quan trọng mang tính quyết định đối với chất lượng dạy và học.

    Trong thực tế, những năm gần đây dạy toán trong nhà trường tiểu học đã có những bước cố gắng cải tiến, phương pháp, nội dung và hình thức nhằm nâng cao chất lượng môn học. Việc đưa ra các phương pháp dạng giải toán có văn, các bài toán điểm hình… được đặc biệt quan tâm, nhất là ở lớp 1, 2 và lớp 3 chương trình mới.

    Chúng ta đều biết giải toán có văn là một trong những mạch kiến thức cơ bản trong môn toán ở tiểu học. Nó có vai trò rất lớn đối với học sinh. Giải toán có văn không chỉ giúp học sinh có điều kiện thâm nhập vào cuộc sống thực tế mà còn giup học sinh thực hành vận dụng các kiến thức đã học, rèn luyện khả năng diễn đạt ngôn ngữ (thông qua việc trình bày lời giải một cách rõ ràng, chính xác và khoa học). Thông qua giải các bài toán có lời văn học sinh được giáo dục nhiều mặt trong đó có ý thức đạo đức xã hội.

    Xuất phát từ những lý do trên nên qua thực tiễn, tôi thấy việc đổi mới phương pháp dạy học môn toán, đặc biệt là dạng giải toán có lời văn là một vấn đề quan trọng. Bản thân tôi là một giáo viên tiểu học, tôi nhận thấy muốn nâng cao chất lượng giáo dục nói chung và dạy tốt chương trình môn toán lớp 3 (chương trình phải năng động, sáng tạo để vận dụng linh hoạt những hình thức tổ chức dạy sao cho phù hợp nhằm nâng cao hiệu quả dạy học. Chính vì vậy tôi chọn đề tài:

    p dụng phương pháp tích cực để giải toán đơn có lời văn cho học sinh lớp 3″ với mong muốn nâng cao chất lượng dạy học góp phần nhỏ vào việc thực hiện mục tiêu giáo dục tiểu học hiện nay.

    II. Thực trạng dạy toán ở lớp 3 hiện nay

    1) Phương pháp dạy học của giáo viên:

    Qua thời gian công tác giảng dạy,

    --- Bài cũ hơn ---

  • Giải Toán Có Lời Văn Lớp 3(Có Đáp Án)
  • Giải Toán Có Lời Văn Cho Học Sinh Lớp 3
  • Chuyên Đề Toán Có Lời Văn
  • Rèn Kĩ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Quy Trình Hướng Dẫn Học Sinh Tiểu Học Giải Toán Có Lời Văn
  • Dạy Học Về Giải Toán Có Lời Văn Ở Lớp 3

    --- Bài mới hơn ---

  • Giải Lưu Hoằng Trí Lớp 8 Unit 12
  • Giải Lưu Hoằng Trí Lớp 8 Unit 1
  • Sách Giải Lưu Hoằng Trí Lớp 8
  • Bài Tập Tiếng Anh Lớp 8 Thí Điểm Lưu Hoằng Trí (Bản Word)
  • Giải Bài Tập Tiếng Anh Lưu Hoằng Trí Lớp 8
  • MỤC LỤC Trang

    A. PHẦN MỞ ĐẦU : 2

    I. Lời nói đầu. 2

    II. Ý nghĩa và tác dụng của đề tài. 2

    III. Lý do chọn đề tài. 4

    IV. Phạm vi và đối tượng nghiên cứu. 5

    V. Phương pháp nghiên cứu. 5

    VI. Cấu trúc đề tài. 6

    B. PHẦN NỘI DUNG : 8

    I. Hệ thống và phân loại các kiểu dạng toán có lời văn trong khung

    chương trình SGK lớp 3. 8

    Chương trình toán lớp 3. 8

    Nội dung và kiến thức về bài toán có lời văn lớp 3. 8

    2.1) Nội dung. 8

    2.2) Mức yêu cầu. 9

    2.3) Cấu trúc. 17

    II. Dạy học về giải toán có lời văn lớp 3. 17

    Phương pháp chung để giải toán có lời văn thông qua 4 bước. 17

    1.1) Dạy học giải toán đơn ở lớp 3. 17

    1.2) Một số vấn đề giải toán hợp ở lớp 3. 20

    2) Yêu cầu học sinh. 23

    2.1) Đọc kĩ đề toán. 23

    2.2) Tóm tắt đề toán. 23

    2.3) Phân tích đề toán để tìm cách giải. 23

    2.4) Thực hiện chính xác các phép tính và hình thành cách giải. 23

    3) Yêu cầu giáo viên. 23

    3.1) Gợi ý để HS tự làm. 23

    3.2) Các hoạt động để hướng dẫn HS. 23

    III. Những nguyên nhân và biện pháp khắc phục. 50

    Nguyên nhân từ phía HS. 50

    Nguyên nhân từ phía GV. 51

    Biện pháp khắc phục hoặc hạn chế bớt những sai sót của HS khi học

    giải toán có lời văn ở lớp 3. 50

    C. PHẦN KẾT LUẬN. 53

    I. Kết luận đề tài. 53

    II. Đề xuất kiến nghị. 54

    D. TÀI LIỆU THAM KHẢO. 55

    PHẦN MỞ ĐẦU

    I. LỜI NÓI ĐẦU :

    Tiểu học là bậc học nền tảng, đặt cơ sở ban đầu rất cơ bản và thiết yếu nhằm đào tạo con người XHCN toàn diện có lòng yêu nước, có tri thức, có nhân cách, năng động, sáng tạo để phục vụ cho công cuộc xây dựng, đổi mới đất nước trong thời kỳ CN hóa, hiện đại hóa, hội nhập kinh tế thế giới hiện nay. Đồng thời, nó cũng đặt nền móng vững chắc cho giáo dục phổ thông và toàn bộ hệ thống giáo dục quốc dân. Việc đổi mới SGK và đổi mới phương pháp dạy học theo hướng tích cực hóa, lấy HS làm trung tâm nhằm mục đích nâng cao chất lượng giáo dục trong nhà trường, đưa giáo dục nước nhà phát triển kịp với đà phát triển của nền khoa học tiên tiến hiện đại. Toán học là một trong những môn học quan trọng nhất vì nó xâm nhập vào mọi lĩnh vực trong cuộc sống chúng ta.

    Chương trình toán học ở lớp Ba bao gồm các nội dung : số học, đại lượng và đo đại lượng, các yếu tố hình học, các yếu tố thống kê, giải toán có lời văn. Trong 5 mạch kiến thức đó, giải toán có lời văn là nội dung rất quan trọng đối với HS tiểu học. Nó giúp HS phát triển năng lực tư duy, óc sáng tạo, biết suy luận lôgich, phân tích vấn đề, giải quyết vấn đề một cách thấu đáo; làm cơ sở cho sự phát triển năng lực trí tuệ ở các lớp học trên tiếp theo. Nó giúp HS củng cố lí thuyết, vận dụng lí thuyết vào thực tế cuộc sống, vận dụng công thức toán vào bài tập thực hành. Nó cũng giúp cho HS học tập các môn học khác tốt hơn. Với đề tài nghiên cứu này sẽ giúp tôi nắm được toàn bộ nội dung cấu trúc cũng như phương pháp giải toán có lời văn ở lớp Ba. Qua đó, tôi sẽ có thêm nhiều kinh nghiệm trong việc dạy học về giải toán có lời văn, nhằm giúp HS tiếp thu tốt về phương pháp giải toán có lời văn để các em học tốt hơn, đạt hiệu quả cao hơn trong học tập. GV sẽ tìm ra những khó khăn, vướng mắc khi các em giải toán và biện pháp khắc phục để giúp HS có những kinh nghiệm quí báu để giải toán có lời văn ở lớp Ba được

    --- Bài cũ hơn ---

  • Skkn Giải Toán Có Lời Văn Lớp 1
  • Sáng Kiến Kinh Nghiệm Toán Lớp 3 Một Số Biện Pháp Nhằm Giúp Học Biết Giải Toán Có Lời Văn
  • Sáng Kiến: Giải Toán Có Lời Văn Lớp 3 Skkn Giai Toan Co Loi Van Lop 3 Doc
  • Sáng Kiến Kinh Nghiệm Nâng Cao Chất Lượng Dạy Giải Toán Có Lời Văn Lớp 3
  • Sáng Kiến Kinh Nghiệm Rèn Kĩ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 3
  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100