Chuyên Đề Giải Toán Có Lời Văn Lớp 2

--- Bài mới hơn ---

  • Hàm Số Bậc Hai Toán Lớp 10 Bài 3 Giải Bài Tập
  • Bản Mềm: Bài Tập Ôn Luyện Các Dạng Toán Lớp 3
  • 51 Bài Tập Cuối Tuần Toán Lớp 3 Học Kì 2 Chọn Lọc, Có Đáp Án
  • 71 Bài Toán Bồi Dưỡng Học Sinh Giỏi Lớp 3
  • 3 Dạng Toán Quan Trọng Của Bài Toán Lớp 3 Có 2 Lời Giải
  • Chương trình toán lớp 2 không có kiến thức quá nặng nhưng rất quan trọng. Xây dựng nền tảng cho lớp học tiếp theo. Tuy không khó nhưng toán lớp 2 đã hình thành kiến thức rõ nét hơn ở lớp 1.

    Đối với một số học sinh cần cố gắng có thể gặp khó khăn. Nhất là dạng toán có lời văn. Việc tóm tắt bài giải, tìm dữ liệu chính từ bài toán cũng cần có phương pháp hợp lý.

    Thế nào là dạng toán có lời văn

    Chuyên đề giải toán có lời văn lớp 2 là dạng toán chắc chắn sẽ xuất hiện trong đề thi cuối kì 2 các lớp.

    Do đó, đây là dạng toán vô cùng quan trọng. Dạng toán có lời văn là dạng toán bài cho dữ liệu dưới dạng lời văn. Từ đó, học sinh sẽ tìm cách tìm giá trị bài toán yêu cầu.

    Dạng toán này sẽ giúp học sinh khai thác khả năng đọc hiểu của học sinh. Ngoài ra, nó cũng giúp học sinh ôn tập toàn bộ những dạng toán được học và vận dụng chúng vào giải toán.

    Nội dung của chuyên đề giải toán có lời văn lớp 2

    Giới thiệu một số phương pháp hướng dẫn học sinh giải toán có lời văn. Trước tiên là xác định các bước.

    Bước 1:Tìm hiểu nội dung bài toán

    Bước 2: Tìm cách giải bài toán

    – Chọn phép tính giải thích hợp

    – Đặt câu lời giải thích hợp

    – Trình bày bài giải

    Tài liệu hữu ích cho giáo viên đang cần soạn thảo sáng kiến kinh nghiệm. Đầy đủ các chia sẻ về kinh nghiệm hướng dẫn giải toán có lời văn cho học sinh lớp 2. Để học sinh học tốt, giáo viên cần thường xuyên trau dồi kiến thức. Tìm kiếm tài liệu tìm ra phương pháp tối ưu để giúp học sinh của mình hiểu bài. Đạt kết quả như mong muốn của mỗi cá nhân.

    Cần kết hợp với các phương pháp khác trong quá trình giảng dạy để tăng hiệu quả. Đối với học sinh hiểu chậm, nên sử dụng thêm giáo cụ trực quan. Để các em hình dung ra được các yếu tố trong bài toán. Sử dụng tranh ảnh, đồ vật, que tính để hỗ trợ trong quá trình học tập.

    Cách đặt lời giải sao cho đúng chuẩn

    Hỏi Lan cần bao nhiêu tiền mua sách ?

    Lời giải: Lan cần số tiền mua sách là:

    Hỏi Hoa có tất cả bao nhiêu quả táo ?

    Lời giải: Hoa có tất cả số quả táo là:

    Tải tài liệu miễn phí ở đây

    --- Bài cũ hơn ---

  • Rèn Luyện Kĩ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 3
  • Bản Mềm: Tuyển Tập 30 Bài Toán Có Lời Văn Lớp 3 Có Hướng Dẫn
  • 30 Bài Toán Có Lời Văn Lớp 3 (Có Đáp Án)
  • 300 Bài Toán Có Lời Văn Cơ Bản Lớp 3
  • Giải Vở Bài Tập Toán 5 Bài 76: Luyện Tập Trang 92,93
  • Chuyên Đề Giải Toán Có Lời Văn Lớp 3

    --- Bài mới hơn ---

  • Chuyên Đề Giải Toán Có Lời Văn Lớp 4&5
  • Những Bài Giải Toán Lớp 5
  • Phương Pháp Hướng Dẫn Học Sinh Lớp 5 Giải Toán Có Lời Văn
  • Skkn Biện Pháp Rèn Kỹ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Quy Trình Hướng Dẫn Học Sinh Tiểu Học Giải Toán Có Lời Văn
  • QUY MỘT TIẾT DẠY GIẢI TOÁN CÓ LỜI VĂN

    1. Hình thành kiến thức mới

    – GV nêu ví dụ 1:

    – HS đọc bài toán

    – Hướng dẫn học sinh phân tích đề toán

    – Hướng dẫn học sinh tóm tắt bài toán ( bằng hình vẽ, bằng sơ đồ hoặc bằng lời).

    – Hướng dẫn học sinh giải bài toán.

    – Học sinh giải bài toán.

    – GV hướng dẫn học sinh nhận xét, bổ sung, sửa chữa.

    – Kiểm tra và thử lại kết quả tính.

    – Rút ra phương pháp giải toán có lời văn kiểu bài Rút về đơn vị.

    * GV nêu ví dụ 2:

    (Hướng dẫn học sinh giải bài toán 2 tương tự bài toán 1)

    2. Hướng dẫn học sinh thực hành luyện tập

    * Yêu cầu HS làm bài 1

    – HS đọc bài toán (3 – 5 HS, nếu HS đọc yếu giáo viên đọc mẫu).

    – Hướng dẫn học sinh phân tích và tóm tắt bài toán

    – Yêu cầu HS xác định dạng toán.

    – HS nhắc lại các cách giải bài toán (như ví dụ 1 và 2).

    – Hướng dẫn học sinh tìm hiểu và khai thác nội dung bài toán.

    – Yêu cầu tự tóm tắt bài toán (học sinh yếu giáo viên gợi ý và hướng dẫn).

    – GV Hướng dẫn để học sinh tự nêu miệng các bước giải, tự nêu câu lời giải và phép tính.

    – Học sinh trình bày bài giải.

    – GV và học sinh nhận xét, bổ sung sửa chữa.

    – Kiểm tra và thử lại kết quả.

    – Yêu cầu học sinh nhắc lại phương pháp giải bài toán có lời văn kiểu bài rút về đơn vị.

    * Hướng dẫn học sinh làm những bài tập còn lại tương tự bài tập 1.

    1. Giới thiệu bài (Trực tiếp) Ghi bảng

    2. Dạy bài mới

    a. Bài toán 1

    – GV nêu bài toán 1

    – Giáo viên hướng dẫn học sinh phân tích bài toán:

    ? Bài toán cho biết gì?

    ? Bài toán hỏi gì?

    – GV đưa hình vẽ minh họa tóm tắt bài toán. Yêu cầu học sinh đọc lại đề toán, nêu lại tóm tắt các dữ kiện đã cho và yêu cầu cần phải tìm?

    ? Muốn biết mỗi can có mấy lít mật ong ta thực hiện phép tính ?

    ? Ta lấy bao nhiêu chia cho bao nhiêu? Vì sao?

    ? Để tìm số mật ong trong mỗi can ta viết câu lời giải thế nào?

    – Yêu cầu vài học sinh nêu lại cách giải bài toán.

    – Gọi 1 HS lên bảng trình bày bài giải, dưới lớp cho HS làm vào giấy nháp.

    – Nhận xét:

    – Cho HS nhắc lại: Biết số mật ong của 7 can, muốn tìm số mật ong của 1 can ta làm thế nào?

    * GV kết luận: Bước này gọi là bước rút về đơn vị, tức là tính giá trị của một

    --- Bài cũ hơn ---

  • Đề Tài Một Số Biện Pháp Nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • “nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5”
  • Nâng Cao Chất Lượng Giải Toán Có Lời Văn Lớp 5 Thhoasonahoabinh2Edu Doc
  • Sáng Kiến Kinh Nghiệm Nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Đề Tài Nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Chuyên Đề Toán Có Lời Văn

    --- Bài mới hơn ---

  • Giải Toán Có Lời Văn Cho Học Sinh Lớp 3
  • Giải Toán Có Lời Văn Lớp 3(Có Đáp Án)
  • Kinh Nghiệm Dạy Học Giải Toán Có Lời Văn Lớp 3
  • Tuần 2. Ai Có Lỗi?
  • Sáng Kiến Kinh Nghiệm Rèn Kĩ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 3
  • Đề tài “Nâng cao chất lượng Giải toán có lời văn” – bậc tiểu học.

    Lời nói đầu

    Xuất phát từ thực tiễn triển khai thực hiện chương trình và các môn học khác theo chương trình Bộ trưởng Bộ GD & ĐT ban hành mà hiện nay đang được toàn xã hội quan tâm ở mức cao nhất về nội dung, chương trình, chất lượng dạy học.

    Chất lượng giáo dục ở trong các nhà trường đã được nâng cao song vẫn còn hạn chế: Còn không ít thầy cô chưa khuyến khích học sinh học tập một cách chủ động, sáng tạo. Đặc biệt là vận dụng kiến thức đã học vào đời sống. Học sinh chưa khai thác hết khả năng tiềm ẩn trong nội dung bài học để từ đó tìm ra chìa khoá giải quyết vấn đề.

    Mục tiêu của chuyên đề nhằm giúp cho giáo viên hiểu và thực hiện việc dạy học sinh giải toán có lời văn ở bậc Tiểu học nói chung có chất lượng. Mặt khác giúp cho công tác quản lý, công tác chỉ đạo hoạt động dạy- học. Tuy nhiên đè tài xây dựng không tránh khỏi thiếu sót, rất mong được sự góp ý kiến của BGH, của các đồng nghiệp để đề tài được hoàn thiện hơn.

    Cấu trúc đề tài

    Mở đầu

    I- Lý do chọn đề tài.

    II- Cơ sở lý luận.

    III- Cơ sở thực tiễn

    Nội dung đề tài

    I – ND chương trình, yêu cầu KT,KN giải toán có lời văn – bậc tiểu học.

    II- Quy trình dạy tiết toán bậc tiểu học.

    III- Các phương pháp dạy giải toán có lời văn bậc tiểu học.

    IV- Biện pháp dạy giải toán có lời văn bậc tiểu học.

    Kết luận

    I- Kết quả.

    II- Bài học kinh nghiệm.

    A- Phần mở đầu

    I- Lý do chọn đề tài:

    Trong môn học toán ở bậc Tiểu học, các bài toán đố có một vị trí quan trọng. Một phần lớn thời gian học sinh giành cho việc học giải các bài toán đố. Kết quả học toán của học sinh cũng được đánh giá trước hết qua khả năng giải toán, biết giải thành thạo các bài toán là tiêu chuẩn chủ yếu để đánh giá trình độ học toán của mỗi học sinh. Việc giải toán giúp học sinh củng cố, vận dụng và hiểu sâu sắc thêm tất cả các kiến thức về số học, về đo lường, về các yếu tố đại số, về các yếu tố hình học,… đã được học trong môn toán ở trường Tiểu học đều được học sinh tiếp thu qua con đường giải toán, chứ không phải qua con đường lý luận.

    Thông qua nội dung thực tế nhiều hình nhiều vẻ của các đề toán, học sinh sẽ tiếp nhận được những kiến thức phong phú về cuộc sống và có điều kiện để rèn luyện khả năng áp dụng các kiến thức toán học vào cuộc sống; làm tốt điều Bác Hồ căn dặn: “Học đi đôi với hành”.

    Mỗi đề toán là một bức tranh nhỏ của cuộc sống. Khi giải bài toán học sinh phải biết rút ra từ bức tranh ấy các bản chất toán học của nó, phải biết lựa chọn những phép tính thích hợp, biết làm đúng các phép tính đố, biết đặt lời giải chính xác… Vì thế quá

    --- Bài cũ hơn ---

  • Rèn Kĩ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Quy Trình Hướng Dẫn Học Sinh Tiểu Học Giải Toán Có Lời Văn
  • Skkn Biện Pháp Rèn Kỹ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Phương Pháp Hướng Dẫn Học Sinh Lớp 5 Giải Toán Có Lời Văn
  • Những Bài Giải Toán Lớp 5
  • Chuyên Đề Giải Toán Có Lời Văn Lớp 4&5

    --- Bài mới hơn ---

  • Những Bài Giải Toán Lớp 5
  • Phương Pháp Hướng Dẫn Học Sinh Lớp 5 Giải Toán Có Lời Văn
  • Skkn Biện Pháp Rèn Kỹ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Quy Trình Hướng Dẫn Học Sinh Tiểu Học Giải Toán Có Lời Văn
  • Rèn Kĩ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • ********** **********

    CHUYÊN ĐỀ

    MỘT SỐ BIỆN PHÁP GIẢI TOÁN CÓ LỜI VĂN Ở KHỐI 4&5

    Người thực hiện: Phạm Thanh Điền

    TRƯỜNG TIỂU HỌC MINH THUẬN 5

    A. Tầm quan trọng của việc giải toán có lời văn:

    Chương trình toán của tiểu học có vị trí và tầm quan trọng rất lớn. Toán học góp phần quan trọng trong việc đặt nền móng cho việc hình thành và phát triển nhân cách học sinh. Trên cơ sở cung cấp những tri thức khoa học ban đầu về số học, các số tự nhiên, các số thập phân, các đại lượng cơ bản, giải toán có lời văn ứng dụng thiết thực trong đời sống và một số yếu tố hình học đơn giản.

    Môn toán ở tiểu học bước đầu hình thành và phát triển năng lực trừu tượng hoá, khái quán hoá, kích thích trí tưởng tượng, gây hứng thú học tập toán, phát triển hợp lý khả năng suy luận và biết diễn đạt đúng bằng lời, bằng viết, các, suy luận đơn giản, góp phần rèn luyện phương pháp học tập và làm việc khoa học, linh hoạt sáng tạo.

    Mục tiêu nói trên được thông qua việc dạy học các môn học, đặc biệt là môn toán. Môn này có tầm quan trọng vì toán học với tư cách là một bộ phận khoa học nghiên cứu hệ thống kiến thức cơ bản và sự nhận thức cần thiết trong đời sống sinh hoạt và lao động của con người. Môn toán là “chìa khoá“ mở của cho tất cả các ngành khoa học khác, nó là công cụ cần thiết của người lao động trong thời đại mới.

    Trong dạy – học toán ở tiểu học, việc giải toán có lời văn chiếm một vị trí quan trọng. Có thể coi việc dạy – học và giải toán là “ hòn đá thử vàng“ của dạy – học toán. Trong giải toán, học sinh phải tư duy một cách tích cực và linh hoạt, huy động tích cực các kiến thức và khả năng đã có vào tình huống khác nhau, trong nhiều trường hợp phải biết phát hiện những dữ kiện hay điều kiện chưa được nêu ra một cách tường minh và trong chừng mực nào đó, phải biết suy nghĩ năng động, sáng tạo. Vì vậy có thể coi giải toán có lời văn là một trong những biểu hiện năng động nhất của hoạt động trí tuệ của học sinh.

    Dạy học giải toán có lời văn ở bậc tiểu học nhằm mục đích chủ yếu sau:

    -Giúp học sinh luyện tập, củng cố, vận dụng các kiến thức và thao tác thực hành đã học, rèn luyện kỹ năng tính toán bước luyện tập vận dụng kiến thức và rèn luyện kỹ năng thực hành vào thực tiễn.

    -Giúp học sinh từng bước phát triển năng lực tư duy, rèn luyện phương pháp và kỹ năng suy luận, tập dượt khả năng quan sát, phỏng đoán, tìm tòi, tuyệt đối không sỉ nhục học sinh trước lớp.

    -Để giúp học sinh có một số kiến thức về phương pháp giải toán có lời văn giáo viên cần hướng dẫn học sinh như sau: cần chủ động, sáng tạo, tránh sao chép. Điều cần thiết là phải có khả năng suy luận hợp lý,diễn đạt đúng, phát hiện và giải quyết vấn đề đơn giản,gần gũi với cuộc sống, chăm chú và hứng thú học toán. Từ đó chủ động, linh hoạt và sáng tạo hơn trong việc học toán.

    – Nội dung giải toán có lời văn là mảng kiến thức mang tính thực tiễn cao, áp dụng kiến thức đã học vào giải quyết những vấn đề thực tiễn. Vì thế nội dung dạng toán này đã có từ xưa. Nhưng trong quá trình dạy đối với mỗi người nó luôn mới mẻ và luôn thúc đẩy người giáo viên suy nghĩ tìm tòi để rút ra phương pháp dạy phù hợp hơn với từng đối tượng kiến thức, học sinh, phù hợp với sự phát triển đòi hỏi của xã hội hiện tại và tương lai. Vấn đề mang tính thực tiễn nên luôn mới mẻ, hấp dẫn đối với người giáo viên có tâm huyết.

    Việc giải toán góp phần quan trọng vào việc rèn luyện cho học sinh năng lực tư duy và những đức tính tốt của con người lao động mới. Khi giải một bài toán, tư duy của học sinh phải hoạt động một cách tích cực vì các em cần phân biệt cái gì đã cho và caí gì cần tìm, thiết lập các mối liên hệ giữa các dữ kiện giữa cái đã cho và cái phải tìm; Suy luận, nêu nên những phán đoán, rút ra những kết luận, thực hiện những phép tính cần thiết để giải quyết vấn đề đặt ra v.v… Hoạt động trí tuệ có trong việc giải toán góp phần giáo dục cho các em ý trí vượt khó khăn, đức tính cẩn thận, chu đáo làm việc có kế hoạch, thói quen xem xét có căn cứ, thói quen tự kiểm tra kết quả công việc mình làm, óc độc lập suy nghĩ, óc sáng tạo v.v…

    a. Thuận lợi:

    – Đa số các em đều ngoan, có ý thức ham học.

    – Một số gia đình đã quan tâm đến đến việc học tập của con em mình.

    – Đồ dùng học tập, sách giáo khoa đầy đủ.

    b. Khó khăn:

    * Chủ quan : + Đối với học sinh

    – Nhận thức của HS chưa đồng đều.

    – Việc xác định đề toán của các em chưa thành thạo.

    – Một số em còn chủ quan , chưa đọc kĩ đề bài.

    + Đối với giáo viên :

    – Việc giảng dạy của GV đôi khi chưa phát huy hết được tính tích cực, chủ động sáng tạo của các em.

    – Trong quá trình tổ chức cho HS thực hành giải toán có những lúc chưa thật sự linh hoạt.

    – Thiếu trang thiết bị dạy học.

    * Khách quan :

    – Vốn Tiếng Việt của một số em dân tộc còn hạn chế nên nhiều khi việc hiểu nghĩa của từ trong toán học đối với các em là rất khó, dẫn đến học sinh trả lời không chính xác.

    – Một số phụ huynh không quan tâm đến việc học hành của con cái, phó thác cho giáo viên

    – Đó là những nguyên nhân ảnh hưởng trực tiếp đến chất lượng hướng dẫn HS giải các bài toán ở dạng có lời văn.:

    – Do quên kiến thức cơ bản, kĩ năng tính toán yếu.

    – Do thiếu điều kiện học tập hoặc do điều kiện khách quan tác động như: Gia đình xảy ra sự cố đột ngột, hoàn cảnh éo le…

    – Vốn kiến thức cơ bản ở các lớp dưới còn yếu hoặc thiếu. Dẫn tới tình trạng mà chúng ta quen gọi là bị hổng kiến thức hoặc mất căn bản.

    – Một phần do thói quen học vẹt, ghi nhớ máy móc không chủ định của học sinh, tiếp thu thụ động, chỉ tiếp nhận được cái đã có sẵn.

    – Khả năng kết hợp giữa tri thức đã học với kiến thức vốn có trong cuộc sống chưa cao.

    – Sự kết hợp các loại kiến thức của các môn học để vận dụng vào học toán chưa sâu.

    B. CÁC PHƯƠNG PHÁP DÙNG ĐỂ DẠY GIẢI BÀI TOÁN CÓ LỜI VĂN:

    1/ Phương pháp trực quan:

    Nhận thức của trẻ từ 6 đến 11 tuổi còn mang tính cụ thể, gắn với các hình ảnh và hiện tượng cụ thể, trong khi đó kiến thức của môn toán lại có tính trừu tượng và khái quát cao. Sử dụng phương pháp này giúp học sinh có chỗ dựa cho hoạt động tư duy, bổ xung vốn hiểu biết, phát triển tư duy trừu tượng và vốn hiểu biết. Ví dụ: khi dạy giải toán ở lớp Năm, giáo viên có thể cho học sinh quan sát mô hình hoặc hình vẽ, sau dó lập tóm tắt đề bài qua, rồi mới đến bước chọn phép tính.

    2/ Phương pháp thực hành luyện tập:

    Sử dụng phương pháp này để thực hành luyện tập kiến thức, kỹ năng giải toán từ đơn giản đến phức tạp ( Chủ yếu ở các tiết luyện tập ). Trong quá trình học sinh luyện tập, giáo viên có thể phối hợp các phương pháp như: gợi mở – vấn đáp và cả giảng giải – minh hoạ.

    3/ Phương pháp gợi mở – vấn đáp:

    Đây là phương pháp rất cần thiết và thích hợp với học sinh tiểu học, rèn cho học sinh cách suy nghĩ, cách diễn đạt bằng lời, tạo niềm tin và khả năng học tập của từng học sinh.

    4/ Phương pháp giảng giải – minh hoạ:

    Giáo viên hạn chế dùng phương pháp này. Khi cần giảng giải – minh hoạ thì giáo viên nói gọn, rõ và kết hợp với gợi mở – vấn đáp. Giáo viên nên phối hợp giảng giải với hoạt động thực hành của học sinh ( Ví dụ: Bằng hình vẽ, mô hình, vật thật…) để học sinh phối hợp nghe, nhìn và làm.

    5/ Phương pháp sơ đồ đoạn thẳng:

    Giáo viên sử dụng sơ đồ đoạn thẳng để biểu diễn các đại lượng đã cho ở trong bài và mối liên hệ phụ thuộc giữa các đại lượng đó. Giáo viên phải chọn độ dài các đoạn thẳng một cách thích hợp để học sinh dễ dàng thấy được mối liên hệ phụ thuộc giữa các đại lượng tạo ra hình ảnh cụ thể để giúp học sinh suy nghĩ tìm tòi giải toán.

    C. MỘT SỐ BIỆN PHÁP ĐỂ NÂNG CAO CHẤT LƯỢNG GIẢI CÁC BÀI TOÁN CÓ LỜI VĂN Ở LỚP 4&5:

    1. Về phía giáo viên:

    – Cần trau dồi thêm kiến thức. Dành nhiều thời gian cho việc nghiên cứu, tìm hiểu, học hỏi ở đồng nghiệp, ở tài liệu để nâng cao nghiệp vụ. Đặc biệt là nghiên cứu sâu việc giảng dạy theo phương pháp mới.

    Song song với nhiệm vụ vừa nêu thì giáo viên cũng cần thực hiện tốt như chương trình tăng cường tiếng Việt cho các em. Đồng thời giúp các em phát triển phong phú thên ngôn ngữ tiếng Việt đặc biệt là đối với đối tượng các em là người dân tộc thiểu số.

    Phân chia nhỏ từng đơn vị kiến thức để có những phương pháp, hình thức phù hợp.

    Chuẩn bị đồ dùng dạy học một cách chu đáo. Cố gắng tận dụng những trang thiết bị một cách tối đa vào việc dạy và học.

    Cùng với những tích luỹ về kiến thức nêu trên tôi đã thực hiện cụ thể những việc sau:

    Hướng dẫn học sinh nhận biết các yếu tố của bài toán.

    Học sinh nhận biết nguồn gốc thực tế của bài toán và tác dụng phục vụ thực tiễn cuộc sống của bài toán chẳng hạn: Cần tính năng suất lúa trên một diện tích đất trồng – tính bình quân thu nhập hàng tháng theo đầu người trong gia đình em…

    Cho học sinh nhận rõ mối quan hệ chặt chẽ giữa các đại lượng trong bài toán. Như khi giải bài toán chuyển động đều, học sinh dựa vào “cái đã cho “, “cái phải tìm ” mà xác định mối quan hệ giữa các đại lượng: Vân tốc – quãng đường – thời gian để tìm đại lượng chưa biết.

    “cái đã cho “, “cái phải tìm ” mà xác định mối quan hệ giữa các đại lượng: Vân tốc – quãng đường – thời gian để tìm đại lượng chưa biết.

    – Tập cho học sinh xem xét các đối tượng toán học dưới nhiều hình thức khác nhau thậm chí ngược nhau và tập diễn đạt các kết luận dưới nhiều hình thức khác nhau. Chẳng hạn: “Số bạn gái bằng 1/3 số bạn trai” cũng có nghĩa là “số bạn trai gấp 3 lần số bạn gái” hay “đáy nhỏ bằng 2/3 đáy lớn ” cũng có nghĩa là “đáy lớn gấp rưỡi đáy nhỏ” hay “đáy lớn gấp 1,5 lần đáy nhỏ”.

    – Ngoài ra hệ thống câu hỏi giáo viên đặt ra cho học sinh cũng cần hợp lý và logic. Bên cạnh đó có những câu hỏi gợi mở giúp học sinh xác định hướng giải quyết vấn đề.

    2. Phân loại bài toán có lời văn.

    Để giải được bài toán thì học sinh phải hiểu đề bài, hiểu các thành phần của nó. những cái đã cho và những cái cần tìm thường là những số đo đại lượng nào đấy được biểu thị bởi các phép tính và các quan hệ giữa các số đo. Dựa vào đó mà có thể phân loại các bài toán:

    3. Nâng cao chất lượng giờ dạy trên lớp:

    Đây là biện pháp trọng tâm, để HS nắm chắc cách giải toán có lời văn, người GV cần hướng dẫn HS nắm được các bước chung trước khi làm bài.

    + Đọc kĩ đề toán để xác định yêu cầu của đề ( những điều đã cho và những cái phải tìm)

    + Tóm tắt đề toán bằng sơ đồ, hình vẽ, ngôn ngữ, kí hiệu ngắn gọn.

    + Phân tích đề toán để tìm cách giải.

    + Giải bài toán và thử lại.

    4. Phân loại theo số các phép tính:

    Bài toán đơn: là bài toán mà khi giải chỉ cần 1 phép tính. Ở lớp 5 loại toán này thừơng được dùng để nêu ý nghĩa thực tế của phép tính, nó phù hợp với quá trình nhận thức: Thực tiễn – tư duy trừu tượng – thực tiễn.

    Ví dụ : Để dạy trừ số đo thời gian có bài toán “Một ô tô đi từ Huế lúc 13 giờ 10 phút và đến Đà Nẵng lúc 15 giờ 55 phút. Hỏi ô tô đó đi từ Huế đến Đà Nẵng hết bao nhiêu thời gian? ” (Ví dụ sách giáo khoa trang 132) . Từ bản chất của bài toán học sinh hình thành phép trừ.

    15 giờ 55 phút – 13 giờ 10 phút = 2 giờ 45 phút.

    Bài toán hợp: là bài toán mà khi giải cần ít nhất 2 phép tính. Loại bài toán này thường dùng để luyện tập, củng cố kiến thức đã học. Ở lớp 5, dạng toán này có mặt ở hầu hết các tiết học toán.

    5. Phân loại theo phương pháp giải:

    Trong thực tế, nhiều bài toán có nội dung khác khau nhưng có thể sử dụng cùng một phương pháp suy luận để giải.

    Từ những việc đã được phân tích rất cụ thể trên thì chúng ta cũng cần hình thành cho học sinh các bước chung khi giải toán.

    Bước 1: Phân tích ý nghĩa bài toán .

    Đây là bước đầu tiên trong các yêu cầu giải toán. Trước hết các em cần đọc đề bài nhiều lần, suy nghĩ về ý nghĩa của từng chữ, từng câu, từng số của bài toán và đăt biệt chú ý tới câu hỏi của bài toán hỏi gì? -Từ đó cần biết những gì bài toán đã cho biết? Trong bước này cần nhắc nhở học sinh chớ vội vàng tính toán khi chưa nghiên cứu kỹ đề bài.

    Bước 2: Tóm tắt đề bài toán

    Đây là bước thiết lập mối quan hệ giữa các yêu cầu đã chovà cho học sinh diễn đạt nội dung bài toán bằng ngôn ngữ, kí hiệu ngắn gọn, có thể tóm tắt đề toán bằng chữ hoặc minh họa bằng sơ đồ, doạn thẳng, hình vẽ.

    Bước 3: Suy nghĩ để thiết lập khi giải toán

    Bước này yêu cầu học sinh phải suy nghĩ, tư duy xem muốn trả lời câu hỏi của bài toán thì phải biết đề toán đã cho biết những gì? Làm tính gì? Và phép tính đó cần thiết cho việc trả lời câu hỏi của bài toán không? Từ đó học sinh suy nghĩ để có thể thiết lập trình tự giải bài toán.

    Bước 4: Thực hiện phép tính kèm lời văn:

    Đây là bước quan trọng mà học sinh phải thực hiện đầy đủ trong bài làm, các em phép tính nào cũng cần tự kiểm tra phép tính đúng hay nhầm lẫn và lời văn phải phù hợp với phép tính đó.

    Bước 5: Thử lại kết quả

    Đây là bước cuối cùng yêu cầu học sinh xem đáp số tìm được có trả lời đúng câu hỏi của bài toán, có phù hợp với nội dung bài toán không? Nếu có thể nên tìm cách nào ngắn gọn hơn

    Ví dụ 1 : Bài 1 ( Tr 151- Toán 4)

    Hiệu của 2 số là 85. Tỉ số của 2 số đó là 3/8. Tìm 2 số đó?

    Với bài toán trên tôi hướng dẫn HS giải theo các bước sau:

    + Bước 1: Yêu cầu HS đọc kĩ đề bài, xác định được tổng và tỉ số của 2 số. Tự dự kiến cách tóm tắt bài toán theo dữ liệu của đề bài.

    + Bước 2: HS trao đổi theo nhóm đôi để tự tóm tắt bài toán bằng sơ đồ đoan thẳng như sau:

    Số lớn:

    ?

    85

    ?

    + Bước 3: Dựa vào sơ đồ để phân tích bài toán, tìm phương án giải.

    GV hướng dẫn HS phân tích bài toán theo các câu hỏi sau:

    – Nhìn vào sơ đồ em thấy : Giá trị của số bé gồm mấy phần? Giá trị của số lớn gồm mấy phần như thế?

    – Hiệu của 2 số là bao nhiêu?

    – Muốn tìm giá trị một phần em làm thế nào?

    – Khi tìm được giá trị 1 phần, ta cần đi tìm những gì tiếp theo?

    + Bước 4: Giải bài toán

    Bài giải

    Hiệu số phần bằng nhau là: 8 – 3 = 5 ( Phần )

    Giá trị một phần là: 85 : 5 = 17

    Số bé là: 17 X 3 = 51

    Số lớn là: 51 + 85 = 136

    Đáp số: Số bé: 51

    Số lớn: 136

    + Bước 5: Thử lại tính hiệu của 2 số: 136 – 51 = 85 ( Đúng theo dữ liệu đầu bài )

    Ví dụ 2 :Cho hình thang vuông ABCD có D 30 em A

    kích thước như hình vẽ. Tính :

    a, Tính diện tíc hình thang ABCD

    b, Tính diện tích tam giác ABC. 25 em

    C B

    50 em

    + Bước 3: Giải bài toán.

    Bài giải :

    a, Diện tích hình thang ABCD là :

    ( 50 + 30 ) x 25 : 2 = 1000 ( cm2 )

    b, Diện tích hình tam giác ADC là :

    25 x 50 : 2 = 625 ( cm2 )

    Diện tích hình tam giác ABC là :

    1000 – 625 = 375 ( cm2 )

    Đáp số : a, 1000 cm2

    b, 375 cm2

    + Bước 4 : Thử lại:

    Lấy diện tích tam giac ABC + diện tích tam giác ADC = diện tích hình thang ABCD là đúng với dữ kiện đầu bài.

    5. Tăng cường công tác kiểm tra, đánh giá kết quả học tập của HS:

    – GV làm tốt công tác kiểm tra đánh giá thường xuyên và định kỳ về kết quả học tập của HS để nắm bắt kịp thời việc vận dụng,

    rèn kỹ năng giải toán có lời văn của HS cả lớp, từ đó phân loại HS theo các trình độ để tự điều chỉnh về mục tiêu đối với từng bài dạy cụ thể cho phù hợp với các nhóm đối tượng HS lớp phụ trách. Bên cạnh, công tác kiểm tra, đánh giá HS còn giúp cho GV tự điều chỉnh về hình thức tổ chức dạy học, điều chỉnh về phương pháp dạy học sao cho kết quả các tiết dạy đạt được mục tiêu đã đề ra. GV luôn quan tâm, giúp đỡ những em HS có kết quả học tập môn toán nói chung và giải toán có lời văn đạt kết quả chưa cao để các em có hướng vươn lên

    6. Tự tin và quyết tâm thực hiện việc đổi mới phương pháp dạy học:

    Để phát huy tính tích cực, chủ động, say mê học tập môn Toán nói chung và giải bài toán có lời văn nói riêng cho các em học sinh, giáo viên phải tự tin và quyết tâm trong việc thực hiện đổi mới phương pháp dạy học. Phải kết hợp nhuần nhuyễn và linh hoạt các phương pháp dạy học truyền thống và hiện đại như: Phương pháp thuyết trình, giảng giải và minh họa, gợi mở vấn đáp, trực quan, thực hành luyện tập. Tăng cường tổ chức các hoạt động học tập cá thể phối hợp với học tập hợp tác

    7. Tổ chức các trò chơi toán học:

    Tổ chức cho HS tham gia các trò chơi học tập kết hợp trong các tiết dạy. GV phải xác định rõ kiến thức và kỹ năng của trò chơi. Chuẩn bị chu đáo, hướng dẫn rõ ràng cách chơi, luật chơi, thực hiện đúng lúc với các trò chơi hợp lý, cân đối với các hoạt động của tiết dạy. Tổ chức các trò chơi trong toán học như: Tiếp sức, ai đúng ai nhanh, …..

    Thông qua việc tổ chức thành công các trò chơi, GV đã tạo không khí thoải mái, nhẹ nhàng, kích thích các hoạt động học tập của HS. Củng cố chắc chắn các kiến thức, kỹ năng cần đạt trong tiết dạy cho HS.

    * Tóm lại: Việc dạy giải toán có lời văn là một bộ phận quan trọng trong chương trình toán tiểu học, là một công việc hàng ngày của GV và HS. Những bài toán được giải theo những yêu cầu riêng của đề bài, tạo điều kiện cho HS suy nghĩ để giải đúng. Thông qua việc dạy giải toán có lời văn sẽ giúp các em phát triển trí thông minh, óc sáng tạo và làm việc một cách khoa học. Bởi vì khi giải toán HS phải biết tập trung chú ý vào bản chất của đề toán, phải biết gạn bỏ những cái thứ

    yếu, biết phân biệt cái đã cho và cái phải tìm, phải biết phân tích để tìm ra những đường dây liên hệ giữa các số liệu…. Nhờ đó mà đầu óc các em sáng suốt hơn, tinh tế hơn, tư duy của các em sẽ linh hoạt hơn, chính xác hơn. Cách suy nghĩ và làm việc của các em sẽ khoa học hơn. Việc giải toán còn đòi hỏi HS phải tự mình xem xét vấn đề, tự mình tìm tòi cách giải quyết vấn đề, tự mình thực hiện các phép tính và kiểm tra lại kết quả. Do đó giải các bài toán có lời văn là cách tốt nhất để rèn luyện đức tính kiên trì, tự lực vượt khó, cẩn thận chu đáo, tính chính xác cho HS.

    Vì những tác dụng to lớn nói trên mà mỗi HS đều phải ra sức rèn luyện để giải toán cho giỏi. Điều đó không những giúp các em học giỏi toán mà nó còn giúp các em học giỏi tất cả các môn học khác.

    Bản thân luôn áp dụng đổi mơi phương pháp giảng dạy, chọn phương pháp tối ưu nhất giúp học sinh học tốt ở trường cũng như ở nhà. Vì thế khi gặp bất kỳ bài toán nào các em cũng mạnh dạn và tự tin để làm toán. Các em sẽ phấn khởi học tập, tiếp thu sẽ tốt hơn, thích thú học toán hơn và có khả năng học tốt môn toán. Giáo viên thấy được hiệu quả của mình trong giảng dạy, càng thêm yêu trường, yêu lớp.

    CÁN BỘ GIÁO VIÊN TRƯỜNG TIỂU HỌC MINH THUẬN 5

    QUYẾT TÂM THỰC HIỆN NGHỊ QUYẾT

    NĂM HỌC 2011- 2012 TRỞ THÀNH HIỆN THỰC VÀ GÓP

    PHẦN NÂNG CAO CHẤT LƯỢNG GIÁO DỤC

    Kính chào quý thầy cô

    dồi dào sức khỏe, hạnh phúc, thành đạt

    và hoàn thành xuất sắc

    nhiệm vụ được giao

    --- Bài cũ hơn ---

  • Chuyên Đề Giải Toán Có Lời Văn Lớp 3
  • Đề Tài Một Số Biện Pháp Nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • “nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5”
  • Nâng Cao Chất Lượng Giải Toán Có Lời Văn Lớp 5 Thhoasonahoabinh2Edu Doc
  • Sáng Kiến Kinh Nghiệm Nâng Cao Chất Lượng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5
  • Đề Tài Phương Pháp Giải Toán Có Lời Văn Lớp 1

    --- Bài mới hơn ---

  • Sáng Kiến Kinh Nghiệm Hướng Dẫn Học Sinh Giải Bài Toán Có Lời Văn Lớp 1
  • 252 Bài Toán Luyện Thi Violympic Lớp 3
  • Cách Học Toán Lớp 3 Hiệu Quả Để Phát Huy Khả Năng Của Trẻ
  • Một Số Kinh Nghiệm Giúp Học Sinh Lớp 3/3 Trường Tiểu Học Trần Bình Trọng Giải Các Bài Toán Có Lời Văn
  • Sang Kien Kinh Nghiem Lop 3
  • Phương pháp giải toán có lời văn lớp 1 Tác giả: đặng thị phượng Trình độ chuyên môn: Cao đẳng sư phạm Nơi công tác: Trường Tiểu học A Xuân Tân Đơn vị áp dụng sáng kiến: Lớp 1 Trường Tiểu học A Xuân Tân I. Phần mở đầu. 1. Lý do chọn đề bài. Môn Toán lớp 1 mở đường cho trẻ đi vào thế giới kỳ diệu của toán học, rồi mai đây các em lớn lên trở thành anh hùng, nhà giáo, nhà khoa học, nhà thơ… trở thành những người lao động sáng tạo trên mọi lĩnh vực đời sống và sản xuất, trên tay có máy tính xách tay… nhưng không bao giờ các em quên được những ngày đầu tiên đến trường học đếm và tạp viết 1,2,3… học các phép tính cộng,trừ… các em không thể quên được vì đó là kỉ niệm đẹp đẽ nhất của đời người và hơn thế nữa những con số, những phép tính đơn giản ấy cần thiết cho suốt cuộc đời. Đó cũng là vinh dự và trách nhiệm của người giáo viên nói chung và giáo viên lớp 1 nói riêng. Người thầy giáo từ khi chuẩn bị cho tiết dạy đầu tiên đến khi nghỉ hưu không lúc nào dứt nổi chăn trở về những điều mình dạy và nhất là môn toán lớp 1 là một bộ phận của chương trình môn toán ở tiểu học. Chương tình này nó kế thừa và phát triển những thành tựu về dạy toán lớp 1, nên nó có vai rò vô cùng quan trọng không thể thiếu được trong mọi cấp học. Dạy học môn toán ở lớp 1 nhằm giúp học sinh: a. Bước đầu có một số kiến thức cơ bản, đơn giản, thiết thực về phép đếm, về các số tự nhiên trong phạm vi 100, về độ dài và đo độ dài trong phạm vi 20, về tuần lễ và ngày trong tuần, về giờ đọc đúng trên mặt đồng hồ; về một số hình học (Đoạn thẳng, điểm, hình vuông, hình tam giác, hình tròn); về bài toán có lời văn… b. Hình thành và rèn luyện các kĩ năng thực hành đọc, viết, đếm, so sánh các số trong phạm vi 100; cộng trừ và không nhớ trong phạm vi 100; đo và ước lượng độ dài đoạnh thẳng( với các số đo là số tự nhiên trong phạm vi 20 cm). Nhận biết hình vuông, hình tam giác, hình tròn, đoạn thẳng, điểm, vẽ điểm, đoạn thẳng).giải một số dạng bài toán đơn về cộng trừ bước đầu biết điểm đạt bằng lời, bằng kí hiệu một số nội dung đơn giản của bài học và bài thực hành, tập so sánh, phân tích, tổng hợp, trừu tượng hoá, khái quát hoá trong phạm vi của những nội dung có nhiều quan hệ với đời sống thực tế cuả học sinh. c. Chăm chỉ, tự tin, cẩn thận ham hiểu biết và học sinh có hứng thú học toán. Là một người giáo viên trực tiếp dạy lớp 1 và đặc bệt là dạy môn toán, thực hiện chương trình đổi mới giáo dục toán học lớp 1 nói riêng ở tiểu học nói chung. Tôi rất trăn trở và suy nghĩ niều để học sinh làm sao làm được các phép tỉnh cộng, trừ mà viẹc giải toán có lời văn thì càng khó hơn đối với học sinh lớp 1 nên tôi đi sâu về nghiên cứu dạy ” giải toán có lời văn” ở lớp 1. 2. Mục đích nghiên cứu: Đề bài: “Giải toán có lời văn” ở lớp 1. Tôi muốn cho học sinh thấy được: Biết cách giải các baìi toá đơn về thêm bớt một số đơn vị (giải bằng một phép cộng hoặc một phép trừ). Biết trình bày bài giải gồm câu trả lời, phép tính và đáp số. Góp phần bước đầu phát triển tư duy, khả năng diễn đạt đúng cho học sinh. II. Phần nội dung. Tôi thấy việc dạy học sinh: ” Giải toán có lời văn” với học sinh lớp 1 là vô cùng khó. Mặc dù đến tận tuần 23, học sinh mới chính thức học cách giải toán có lời văn song tôi đã phải có ý thức chuẩn bị từ xa cho việc làm ngay từ bài: Phép cộng trong phạm vi 3 tiết luyện tập ở tuần 7. Mặc dù học sinh lớp tôi lúc này chưa đọc thông viết thạo nhưng tôi đã rèn cho học sinh làm các bài tập: ” Nhìn tranh nêu phép tính” – Xem tranh vẽ. – Nêu bài toán bằng lời. – Nêu câu trả lời. – Điền phép tính thích hợp với tình huống trong tranh. Ví dụ: ở tiết luyện tập bài 5 trang 46. Sau khi cho học sinh xem tranh. Tôi cho học sinh nêu bằng lời: ” Có một quả bóng trắng và 2 quả bóng xanh. Hỏi có tất cả mấy quả bóng”. Sau đó học sinh tập nêu câu trả lời: ” Có tất cả 3 quả bóng” Từ đó học sinh viết vào dãy 5 ô trống để có phép tính. 1 + 2 = 3 Tiếp đó cứ như thế đến tuần 17. Học sinh lớp tôi đã được làm quen với việc đọc tóm tắt, rồi nêu đề toán bằng lời, sau đó nêu bài giải và tự điền số vào phép tính thích hợp vào dãy 5 ô trống. Nhưng ở đây đã không còn tranh vẽ nữa. Ví dụ: ở tiết: bảng cộng và trừ trong phạm vi 10. Tôi đã cho HS tiếp cận với giải toán ở học kỳ II. Bài 3 ( b) trang 87: Có: 10 quả bóng. Cho: 3 quả bóng. Còn: …. qủa bóng. Ở bài này không có tranh vẽ, tôi cho học sinh đọc kỹ tóm tắt. Dựa vào tóm tắt học sinh có thể nêu đề toán bằng lời “Lan có 10 quả bóng, Lan cho bạn 3 quả bóng. Hỏi lan còn mấy quả bóng…” HS nêu được câu trả lời bằng lời : “Lan còn 7 quả bóng” 10 – 3 = 7 Ngoài ra tôi còn cho học sinh làm các bài tập mở có rất nhiều cách giải quyết dẫn đến nhiều đáp số hoặc câu trả lời khác nhau. Ví dụ: ở bài 5 (b) trang 50. Viết phép tính thích hợp: Nhìn tranh: Có 4 con chim đang đậu, 1 con nữa bay đến. Hỏi có tất cả mấy con chim? Học sinh có thể nêu bài toán nhiều cách khác nhau: Cách 1: Có 4 con chim đang đậu, 1 con nữa bay đến. Hỏi có tất cả mấy con chim? Giải: 4 + 1 = 5 Cách 2: Có 1 con chim đang bay và 4 con chim đậu trên cành. Hỏi có tất cả mấy con chim? Giải: 4 + 1 = 5 Cách 3: Có 5 con chim, bay mất 1 con . Hỏi còn lại mấy con? Giải: 5 – 1 = 4 Cách 4: Có tất cả 5 con chim, trong đó có 4 con đậu trên cành. Hỏi có mấy con đang bay? Giải: 5 – 4 = 1 Qua bài này học sinh có rất nhiều cách giải nên tôi không áp đặt cho học sinh mà khuyến khích cho học sinh nêu bài toán, dẫn đến nhiều đáp số đều đúng, nhưng tôi hướng cho học sinh với bài này thì cách 1 là thích hợp nhất. Từ bài này cứ làm như vậy học sinh sẽ quen dần với cách nêu bài toán, lời giải bài toán bằng miệng các em sẽ dễ dàng viết được câu lời giải sau này. Như vậy ở học kì I: Chủ yếu giúp học sinh thực hiện các thao tác xem tranh vẽ, tập phát biểu bài toán bằng lời, tập nêu câu trả lời và điền phép tính thích hợp. ( Với tình huống trong tranh). Tiếp theo sang học kì II chính thức học: “Giải toán có lời văn” . Học sinh được học bài nói về cấu tạo của một bài toán có lời văn (gồm 2 thành phần chính là những cái đã cho (đã biết) và cái phải tìm (chưa biết) vì khó có thể giải thích cho học sinh bài toán là gì? Nên ở tiết này tôi chỉ giới thiệu 2 bộ phận của 1 bài toán. – Những cái đã cho (dữ kiện). – Cái phải tìm (câu hỏi). Ví dụ: Bài 1 trang 115: Viết số thích hợp vào chỗ chấm để có bài toán. Bài toán: có… bạn, có thêm… bạn đang đi tới. Hỏi có tất cả bao nhiêu bạn? Trước tiên tôi nêu yêu cầu, học sinh tự nêu nhiệm vụ cần thực hiện (viết số thích hợp vào chỗ chấm). Sau đó tôi cho học sinh quan sát tranh vẽ. Gọi học sinh nêu miệng đề toán và cho học sinh điền số vào chỗ các dữ kiện để được bài toán. “Có 1 bạn có thêm 3 bạn đang đi tới. Hỏi có tất cả bao nhiêu bạn”. Gọi vài học sinh đọc lại bài toán. Tôi hỏi – Học sinh trả lời: Bài toán cho biết gì? ( Có 1 bạn, thêm 3 bạn nữa). – Cho học sinh nêu câu hỏi của bài toán: ( Hỏi có tất cả bao nhiêu bạn?) – Theo câu hỏi này con phải làm gì?( Tìm xem có tất cả bao nhiêu bạn?) Hay ở bài 4 (trang 116) lại thiếu cả dữ kiện và câu hỏi). Bài 4: Nhìn tranh vẽ viết tiếp vào chỗ chấm để có bài toán: Bài toán: Có… con chim đậu trên cành, có thêm… con chim bay đến. Hỏi …? ở bài này tôi cũng cho học sinh quan sát tranh. Gọi học sinh nêu miệng đề toán và cho học sinh điền số vào dữ kiện và điền từ vào chỗ chấm của câu hỏi. Sau đó tôi tập cho học sinh nêu nhận xét. Tôi có thể nêu câu hỏi: Bài toán thường có những gì? (Bài toán thường có các số liệu) và có câu hỏi. Nếu học sinh không trả lời được thì tôi hướng dẫn học sinh trả lời. Qua các hoạt động này tôi đã giới thiệu tóm tắt một cách chặt chẽ bài toán gồm có 2 phần. Những số đã cho, số phải tìm (câu hỏi) để cho học sinh hiểu sâu hơn cấu tạo của bài toán. Đến tiết tiếp theo: Giải bài toán có lời văn, bài toán đã có đầy đủ dữ kiện và câu hỏi. Lúc này tôi cần chú ý hướng dẫn học sinh phải tìm hiểu đề toán. Học sinh phải đọc kỹ đề toán, hiểu rõ một số từ khóa quan trọng như: “thêm”; “tất cả”; hoặc bớt hay bớt đi; ăn mất, còn lại… có thể học sinh quan sát tranh vẽ hỗ trợ thêm. Phần không kém quan trọng vẫn là tóm tắt bài toán như thế nào cho học sinh dễ hiểu là vấn đề tôi phải suy nghĩ rất nhiều. Tôi giúp học sinh tóm tắt đề toánbằng cách đàm thoại, bài toán cho biết gì? bài toán hỏi gì? và dựa vào câu trả lời của học sinh để viết tóm tắt và dựa vào tóm tắt để nêu lại được bài toán. Đây cũng là cách tốt nhất đẻ giúp học sinh biết phân tích đề toán. Học sinh xác định rõ cái đã cho và cái phải tìm. Học sinh viết thẳng theo cột để dễ hiểu và có thể lựa chọn phép tính giải. Nhưng dòng cuối phần tóm tắt là một câu hỏi (viết gọn lại) cần phải đặt dấu? ở cuối câu. Ví dụ: An có 4 quả bóng, Bình có 3 quả bóng. Hỏi cả 2 bạn có mấy quả bóng? Tóm tắt: An có: 4 quả bóng. Bình có: 3 quả bóng. Cả 2 bạn có … quả bóng? Sau khi học sinh tóm tắt, có rất nhiều cách để viết câu lời giải. ở bài toán trên có thể dựa vào câu hỏicủa bài toán để trả lời: cả 2 bạn có số quả bóng là. Có thể lồng cốt câu lời giải vào trong tóm tắt để dựa vào đó học sinh dễ viết câu lời giải hơn chẳng hạn dựa vào dòng cuối tóm tắt học sinh có thể viết ngay câu lời giải với nhiều cách khác nhau chứ không bắt buộc học sinh phải viết theo một kiểu. “Cả 2 bạn có là: Hoặc số quả bóng ảc 2 bạn có là hoặc cả 2 bạn có số quả bóng là…” Việc đặt câu lời giải còn vất vả hơn dạy trẻ lựa chọn các phép tính và thực hiện các phép tính ấy để tìm ra đáp số. Vì vậy từ tuần 23 lúc này học sinh lớp tôi đã đọc thông viết thạo tôi chỉ chọn câu hỏi trong đề toán sao cho chỉ cần chỉnh sửa một chút thôi là được ngay câu lời giải. Còn khi viết phép tính, giáo viên phải bắt buộc học sinh viết bằng chữ số (kèm theo là đơn vị đặt trong dấu ngoặc sau kết quả) mà thôi. Ví dụ giáo viên hỏi: Cả 2 bạn có mấy quả bóng? Con làm tính gì?(tính cộng) mấy cộng mấy? (3 + 4); 3+ 4 bằng mấy(3 + 4 = 7) hoạc muốn biết cả 2 bạn có mấy quả bóng?(7) con tính thế nào để được 7?( 3 + 4 = 7) . Tới đây để học sinh nêu tiếp 7 là 7 quả bóng? Ta viết: “quả bóng” vào trong dấu ngoặc đơn. 3 + 4 = 7 (quả bóng). Còn với đáp số thì không cần viết đơn vị trong dấu ngoặc đơn nữa. Đáp số: 7 quả bóng. Khi gặp bài toán về số đo độ dài tôi cũng hướng dẫn học sinh viết các phép tính dưới dạng hư số. Đoạn thẳng AB dài 3 cm và đoạn thẳng BC dài 6 cm. Hỏi đoạn thẳng AC dài mấy xăng ti mét? A 3cm B 6cm C Nhìn vào sơ đồ đoạn thẳng( hình vẽ) nên học sinh có thể tự làm bài và viết được lời giải: Độ dài đoạn thẳng AC là. 3 + 6 = 9 (cm). Đáp số: 9 cm. Tiếp theo đến tuần 28 học sinh lại được học: Giải toán có lời văn để giúp học sinh củng cố kỹ năng giải các bài toán về bớt (bằng một phép trừ) và biết trình bày bài giải gồm: Câu lời giải, phép tính, đáp số. Qua các phương pháp tôi đã dùng để dạy môn toán về: “Giải toán có lời văn” tôi thấy học sinh lớp tôi đã nhận biết được bước đầu về giải toán có lời văn. Các em đã biết giải các bài toán về ( thêm, bớt) giải bằng 1 phép cộng hoặc 1 phép trừ và biết trình bày bài giải gồm: Câu trả lời, phép tính, đáp số. Trong những năm học trước, lớp tôi 100% học sinh đều làm thành thạo các bài toán đơn về: “Giải toán có lời văn”. Còn năm học: 2008 – 2009 này, qua các bài tập kiểm tra ở lớp và bài buổi 2. Học sinh lớp tôi đều làm tốt các bài tập: ” Giải toán có lời văn”. Đó cùng là sự thành công ban đầu của bản thân tôi. III. Kết luận 1. Qua nhiều năm dạy chương trình đổi mới môn toán lớp 1 và nhất là tôi đi sâu nghiên cứu về giải toán có lời văn, tôi cũng rút ra được một số kinh nghiệm như sau: – Khi soạn giáo án cần lưu ý kiến thức phải chuẩn xác đầy đủ nội dung của bài. – Nếu gặp khó khăn trong khi đặt đề toán thì cho học sinh nhìn tranh để trả lời câu hỏi hoặc có vật mẫu (gà,vịt,…) gắn lên bảng từ hoặc dùng tóm tắt để hỗ trợ học sinh đặt đề toán. -Tăng cường kỹ năng thực hành phiếu học tập. – Chuyển một số bài thành trò chơi để thay đổi hình thức học tập giúp học sinh củng cố kỹ năng thực hành, gây hứng thú học tập. – Cần nhấn mạnh hơn đến việc cung cấp cho học sinh những kiến thức, kỹ năng cơ bản, thiết thực, có hệ thống trong sự hoàn chỉnh tương đối của các kiến thức và kỹ năng đó. – Quan tâm đúng mức đến việc rèn kĩ năng diễn đạt, ứng xử, giải quyết các tình huống có vấn đề. – Phát triển năng lực tư duy cho trẻ. – Xây dựng được phương pháp, hình thức học toán theo hướng tập trung vào HS, giúp các em biết tự học toán có hiệu quả. – Không nên vội vàng yêu cầu HS phải đọc thông, viết thạo đề toán ngày từ bài đầu, giáo viên luôn luôn bình tĩnh rèn cho HS sẽ đạt được yêu cầu. 2. Dự định tiếp theo của tôi là: Tôi sẽ đi sâu nghiên cứu học hỏi trau dồi kiến thức để giảng dạy ngày một tốt hơn. Phấn đấu HS học xong lớp 1; 100% HS đọc thông viết thạo, làm thành thạo tất cả các bài tập trong chương trình môn Toán lớp 1 đó là điều mong ước của tôi Xuân Tân, ngày 12 tháng 4 năm 2009 Đánh giá xếp loại Tác giả sáng kiến Của cơ quan đơn vị Đặng Thị Phượng

    --- Bài cũ hơn ---

  • Giáo Án Toán Lớp 1: Giải Toán Có Lời Văn (Tiếp Theo)
  • Gia Sư Lớp 2 Hướng Dẫn Cách Giải Toán Đố
  • Lớp 2 Hướng Dẫn Cách Giải Toán Đố
  • Giải Bài Tập Trang 52 Sgk Toán 3: Luyện Tập Bài Toán Giải Bằng Hai Phép Tính Giải Bài Tập Toán Lớp 3
  • Bài Giải Toán Lớp 3
  • Đề Toán Lớp 5 Nâng Cao Có Lời Giải Chi Tiết

    --- Bài mới hơn ---

  • Đáp Án Sách Lưu Hoằng Trí Lớp 8
  • Đáp Án Lưu Hoằng Trí Lớp 8 Unit 6
  • Đề Thi Học Sinh Giỏi Môn Toán Lớp 2 Có Đáp Án
  • Đáp Án Market Leader Intermediate 3Rd Edition
  • Câu Hỏi Trắc Nghiệm Market Leader 3 Intermediate Có Đáp Án
  • Timgiasuhanoi.com gửi tới các em Đề Toán lớp 5 nâng cao với lời giải chi tiết. Giúp các em học chương trình Toán nâng cao được tốt hơn.

    Bài 1: Có 87 lít dầu đựng trong hai thùng. Nếu đổ 10 lít dầu từ thùng I sang thùng II thì lúc đó thùng II sẽ nhiều hơn thùng I là 3 lít dầu. Hỏi lúc đầu mỗi thùng chứa bao nhiêu lít dầu ?

    Nếu đổ 10 lít dầu từ thùng I sang thùng II thì số dầu ở cả hai thùng vẫn là 87 lít.

    Ta có sơ đồ số dầu ở mỗi thùng sau khi đổ :

    Số dầu lúc đầu ở thùng I là : 42 + 10 = 52 (lít)

    Số dầu lúc đầu ở thùng II là :

    87 – 52 = 35 (lít)

    Thùng II : 35 lít.

    Bài 2: Mẹ hơn con 26 tuổi. Sau hai năm nữa thì tổng số tuổi của hai mẹ con là 50 tuổi. Tính tuổi của mỗi người hiện nay.

    Hiệu số tuổi của hai người không thay đổi theo thời gian

    Tổng số tuổi hiện nay của hai mẹ con là :

    50 – 2 x 2 = 46 (tuổi)

    Ta có sơ đồ:

    (46 – 26 ) : 2 = 10 (tuổi)

    Tuổi mẹ hiện nay là :

    10 + 26 = 36 (tuổi)

    Đáp số : Con : 10 tuổi ;

    Bài 3: Tổng của hai số lẽ bằng 84. Tìm hai số đó, biết rằng giữa chúng có 7 số chẵn liên tiếp.

    Mẹ : 36 tuổi.

    Bài 4: Tổng của hai số bằng 536. Tìm hai số đó, biết rằng số bé có hai chữ số, nếu viết thêm chữ số 4 vào bên trái số bé thì được số lớn.

    Bài 5: Cho một số có hai chữ số, tổng của hai chữ số bằng 15. Tìm số đó, biết rằng nếu đổi chỗ các chữ số của số đã cho thì số đó tăng thêm 27 đơn vị.

    Đáp số : 68; 468.

    Bài 6: Tìm một số biết rằng lấy số đó trừ đi 3 , rồi nhân với 5 rồi cộng với 7 thì được 13.

    Bài 7: Trung bình cộng của 2 số bằng 25. Hiệu của 2 số đó là 8 . Tìm 2 số đó.

    Bài 8: Ba người trong 5 giờ thì đốn xong một ruộng mía .Hỏi với 5 người thì đốn xong ruộng mía đó trong bao lâu ?

    Đáp Số : 29, 21

    Bài 9: Tổng hai số hai số liên tiếp bằng 75. Tìm hai số đó.

    Đáp số : 37; 38.

    --- Bài cũ hơn ---

  • Bản Mềm: 150 Bài Toán Nâng Cao Có Đáp Án Lớp 3 4 5
  • Đáp Án Sách Giáo Khoa Toán Lớp 6
  • Đáp Án Sách Giáo Khoa Toán Lớp 5
  • Sách Giáo Khoa Toán 7 Tập 1
  • Đề Kiểm Tra Học Kì 2 Môn Khoa Học Lớp 4 Có Đáp Án
  • Bản Mềm: Chuyên Đề Giải Toán Có Lời Văn Lớp 4

    --- Bài mới hơn ---

  • Skkn Giải Toán Có Lời Văn Lớp 5
  • Bài Tập Phần Giải Bài Toán Có Lời Văn
  • Sáng Kiến Kinh Nghiệm Rèn Kỹ Năng Giải Bài Toán Có Lời Văn Liên Quan Đến Tỷ Số Cho Học Sinh Lớp 4
  • Hướng Dẫn Học Sinh Giải Toán Có Lời Văn Ở Lớp 4, 5 Với Dạng Bài Toán Tìm Hai Số Khi Biết Tổng Và Tỉ Số Của Hai Số Đó
  • Hướng Dẫn Giải Một Bài Toán Có Lời Văn
  • Bản mềm: Chuyên đề giải toán có lời văn lớp 4

    Bản mềm: Chuyên đề giải toán có lời văn lớp 4 được biên soạn có hệ thống. Phân loại khoa học theo từng dạng bài cụ thể. Quá trình luyện tập học sinh có thể hệ thống hóa lời giải một cách chi tiết. Quý thầy cô giáo có thể tải về dựa theo đối tượng học sinh của mình. Để sửa đổi cho phù hợp.

    Ngoài ra với phương pháp dạy học tích cực. thầy cô có thể đưa những ví dụ trực quan hơn vào câu hỏi. Qua đó kích thích sự sáng tạo của học sinh Qua Bản mềm: Chuyên đề giải toán có lời văn lớp 4. Tải thêm tài liệu tiểu học

    Bí quyết giải toán có lời văn trong chương trình Toán lớp 4.

    Các bài toán có lời văn các bé bắt đầu được làm quen từ chương trình Toán lớp 2. Và các bài toán này sẽ xuyên suốt với các bé trong chương trình Toán tiểu học. Bài toán bằng lời văn là bài toán được biến hoá từ những phép tính toán. Do vậy, các bé phải nắm vững được các kiến thức cơ bản để vận dụng vào bài giải.

    Trong chương trình Toán lớp 4, để học tốt bài toán có lời văn, các bé hãy download chuyên đề giải toán có lời văn lớp 4 được chúng tôi sưu tầm ở đây. Chuyên đề giải toán có lời văn lớp 4 sẽ có những chuyên đề và bài tập từ cơ bản đến nâng cao. Các bé hãy rèn luyện các bài tập trong chuyên đề thật chăm chỉ để nâng cao trình độ.

    Ngoài ra, dạng toán này luôn luôn có trong các đề thi học kì Toán lớp 4 và đề thi học sinh giỏi. Vì vậy, các bé nên chú ý để phần học này.

    Hình ảnh bản mềm

    Để giải được các bài toán có lời văn, ban đầu các bạn phải có những bước giải bài cụ thể. Các bước giải bài toán cụ thể đó là:

    • Tóm tắt đề bài.
    • Định hướng cách giải bài toán.
    • Giải bài toán.

    Sau khi các bé làm thuần thục các bài toán có lời giải thì các bạn có thể bỏ qua bước tóm tắt đề bài mà bắt đầu định hướng cách giải và giải bài toán. Nhưng đối với những đề bài dài, các bé nên tóm tắt để dễ hiểu hơn. Đây là những kinh nghiệm của chúng tôi khi giải toán có lời văn, các bạn có thể tham khảo.

    Tải tài liệu miễn phí ở đây

    --- Bài cũ hơn ---

  • Bản Mềm: Giải Bài Toán Có Lời Văn
  • Bài Tập Định Khoản Kế Toán Hàng Tồn Kho Có Đáp Án
  • Bài Tập Nghiệp Vụ Kế Toán Bán Hàng Có Lời Giải Rất Chi Tiết
  • Bài Tập Kế Toán Nhà Hàng Có Lời Giải
  • Bài Tập Xstk Có Lời Giải Chi Tiết
  • Đề Thi Hk1 Môn Toán Lớp 3 Có Lời Giải

    --- Bài mới hơn ---

  • 9 Đề Thi Học Kỳ 1 Môn Toán Lớp 3 Có Đáp Án Năm Học 2022
  • Tuyển Tập Đề Thi Học Sinh Giỏi Toán Lớp 3
  • Giải Sách Lưu Hoằng Trí 8
  • Giải Unit 6 Sách Bài Tập Lưu Hoằng Trí 8
  • Giải Bài Tập Lưu Hoằng Trí 8
  • Đề thi học kì 1 môn Toán lớp 3 có lời giải giúp các em học sinh ôn tập chuẩn bị tốt cho bài kiểm tra HK1 Toán lớp 3.

    – Sắp xếp theo thứ tự của đề bài.

    Cách giải :

    a) Đ – S

    b) S – Đ

    Câu 2. Phương pháp giải :

    – Đặt tính : Viết các số theo cách đặt tính cột dọc, chữ số cùng hàng thẳng cột với nhau.

    – Tính : Cộng các số lần lượt từ phải sang trái.

    – Điền Đ hoặc S vào ô trống thích hợp.

    Cách giải :

    a) S; Đ; S

    b) Đ; S; S

    c) S; S; Đ.

    Câu 3. Phương pháp giải :

    Đội A : 417m

    Đội B : 435m

    Cả hai : …m?

    Muốn tìm lời giải ta lấy số mét đường đội A làm được cộng với số mét đường đội B đã làm được.

    Cách giải :

    Cả hai đội làm được số mét đường là :

    417 + 435 = 852 (m)

    Đáp số : 852 m.

    Đáp án cần chọn là B.

    Câu 4. Phương pháp giải :

    – Muốn tìm số hạng ta lấy tổng trừ đi số hạng kia.

    – Muốn tìm số bị trừ ta lấy hiệu cộng số trừ.

    – Điền Đ hoặc S vào ô trống thích hợp.

    Cách giải :

    Phương pháp giải :

    – Muốn tìm số hạng ta lấy tổng trừ đi số hạng kia.

    – Muốn tìm số bị trừ ta lấy hiệu cộng số trừ.

    – Điền Đ hoặc S vào ô trống thích hợp.

    Cách giải :

    a)

    $ displaystyle begin{array}{l}x+132=454,,,,,,,,,,,,x=454-132,,,,,,,,,,,,x=322end{array}$

    Vậy điền vào các ô trống lần lượt là : Đ; S; S.

    b)

    $ displaystyle begin{array}{l}x-213=326,,,,,,,,,,,,x=326+213,,,,,,,,,,,,x=539end{array}$

    Cần điền vào ô trống lần lượt là : Đ; S; S.

    Câu 5. Phương pháp giải :

    Muốn tìm số bị trừ thì ta lấy hiệu cộng số trừ.

    – So sánh rồi điền dấu thích hợp vào chỗ trống.

    Cách giải :

    a) 400 + 8 = 408

    c) 120 − 20 < 100 + 1

    d) 998 = 900 + 90 + 8

    Câu 7. Phương pháp giải :

    – Đặt tính : Viết các chữ số cùng hàng thẳng cột với nhau.

    – Tính : Cộng hoặc trừ lần lượt từ phải sang trái.

    Khối Ba : 352 học sinh

    Khối Ba ít hơn khối Hai : 28 học sinh

    Khối Hai : … học sinh ?

    Muốn tìm số học sinh của khối Hai ta lấy 352 cộng với 28.

    Cách giải :

    Khối lớp Hai có số học sinh là:

    352 + 28 = 380 (học sinh)

    Đáp số: 380 học sinh.

    Câu 9. Phương pháp giải :

    – Muốn tìm số bị trừ ta lấy hiệu cộng số trừ.

    – Muốn tìm số hạng ta lấy tổng trừ đi số hạng kia.

    Cách giải :

    a)

    $ displaystyle begin{array}{l}x-132=368,,,,,,,,,,,,x=368+132,,,,,,,,,,,,x=500end{array}$

    b)

    $ displaystyle begin{array}{l}x+208=539,,,,,,,,,,,,x=539-208,,,,,,,,,,,,x=331end{array}$

    Câu 10. Phương pháp giải :

    – Xác định các đại lượng trong bài toán, giá trị đã biết và yêu cầu của bài toán.

    – Tìm độ dài của mảnh vải trắng : Lấy độ dài của mảnh vải xanh cộng với 32m.

    – Tìm độ dài của cả hai mảnh vải : Lấy độ dài mảnh vải xanh cộng với độ dài mảnh vải trắng vừa tìm được.

    Cách giải :

    Vải trắng dài số mét là:

    208 + 32 = 240 (m)

    Có tất cả số mét vải là:

    208 + 248 = 448 (m)

    Đáp số: 448 m.

    --- Bài cũ hơn ---

  • Skkn: Nâng Cao Chất Lượng Giải Toán Có Lời Văn Lớp 1
  • Sáng Kiến Kinh Nghiệm Giải Toán Có Lời Văn Cho Hs Lớp 1
  • Sáng Kiến Kinh Nghiệm: Một Số Biện Pháp Giúp Học Sinh Giải Toán Có Lời Văn Ở Lớp 3
  • Sang Kien Kinh Nghiem Lop 3
  • Một Số Kinh Nghiệm Giúp Học Sinh Lớp 3/3 Trường Tiểu Học Trần Bình Trọng Giải Các Bài Toán Có Lời Văn
  • Đề Thi Có Lời Giải Môn Toán Vmo 2022

    --- Bài mới hơn ---

  • Bình Luận Về Đề Thi Imo 2022
  • Tiến Sĩ Lê Bá Khánh Trình Hội Ngộ Người Chấm Giải Đặc Biệt Cho Mình Sau 40 Năm
  • Ts Lê Bá Khánh Trình Nói Về Thành Tích Của Đội Imo Việt Nam
  • Ts Lê Bá Khánh Trình: Học Sinh Thi Olympic Toán Biết Học Và Chơi
  • Olympic Toán Quốc Tế 2022, Việt Nam Bị Loại Khỏi Top 10
  • LỜI GIẢI VÀ BÌNH LUẬN ĐỀ THI VMO 2022

    Trần Nam Dũng – Võ Quốc Bá Cẩn – Trần Quang Hùng

    aff

    Lê Phúc Lữ – Nguyễn Văn Huyện

    1. Lờinóiđầu

    st

    Vậy là đã 7 năm chúng tôi đồng hành cùng các cuộc thi toán với những bài Giải và bình

    thi VMO và TST như một cố gắng đóng góp cho cộng đồng những tài liệu chất lượng, bổ

    n

    2. Thông tin bản quyền

    Ep

    Bản quyền thuộc về tất cả các thành viên trong nhóm biên soạn (Trần Nam Dũng, Võ Q

    Cẩn, Trần Quang Hùng, Lê Phúc Lữ, Nguyễn Văn Huyện).

    Đây là thành quả của quá trình lao động miệt mài của nhóm để chia sẻ đến cộng đồng. M

    đều có thể xem tài liệu MIỄN PHÍ. Tuy nhiên, vui lòng ghi rõ nguồn khi chia sẻ.

    3. Đề thi

    3.1. Ngày thithứ nhất (05/01/2017)

    Bài 1 (5.0 điểm).

    Cho a là một số thực và xét dãy

    số .u

    định bởi

    n / xác

    u1 D a;

    unC1

    r

    8n 2 N :

    2

    Bài 2 (5.0 điểm).

    Tồn tại hay không đa thức P .x/ với hệ số nguyên thỏa mãn

    p3

    p3

    p

    p

    P 1 C 2 D 1 C 2 và P 1 C 5 D 1 C 3 5‹

    aff

    Bài 3 (5.0 điểm).

    Cho tam giác

    ABC nhọn, không cân nội tiếp đường

    .O/:tròn

    GọiH là trực

    tâm của tam giác

    ABC vàE; F lần lượt là chân các đường cao hạ từB;

    các

    C Iđỉnh

    AH cắt

    .O/ tại D (D khác A).

    a) Gọi I là trung điểm của

    AH I E I cắtBD tạiM vàF I cắtCD tạiN :Chứng minh

    rằng M N ? OH :

    st

    b) Các đường thẳng

    DE ; DF cắt.O / lần lượt tại

    P ; Q (P vàQ khácD ). Đường tròn

    ngoại tiếp tam giác

    AEF cắt.O / vàAO lần lượt tại

    R vàS (R vàS khácA). Chứng

    minh rằng BPC; Q và RS đồng quy.

    n

    ii) Nếu một hàng và một cột giao nhau tại ô đen thì tập các số nguyên dương được đi

    hàng đó và tập các số nguyên dương được điền trên cột đó không giao nhau; nếu mộ

    và một cột giao nhau tại ô trắng thì tập các số nguyên âm được điền trên hàng đ

    các số nguyên âm được điền trên cột đó không giao nhau.

    Ep

    a) Với n D 5; tìm giá trị nhỏ nhấtkcủa

    để tồn tại cách điền

    k sốcân đối cho cách tô màu

    đối xứng ở hình bên dưới.

    A

    B

    D

    C

    b) Vớin D 2022;tìm giá trị nhỏ nhấtkcủa

    để với mọi cách tô màu đối xứng, luôn tồn tại

    cách điền số kcân đối.

    3

    3.2. Ngày thithứ hai(06/01/2017)

    Bài 5 (6.0 điểm).

    Tìm tất cả các hàm số f W R ! R thỏa mãn hệ thức

    f xf .y/

    f .x/ D 2f .x/ C xy

    với mọi số thực x; y:

    a)

    aff

    kD1

    b)

    2016

    st

    kD1

    n

    Ep

    Về cấu trúc, đề thi gồm 7 bài toán. Ngày đầu có 4 bài, mỗi bài được 5 điểm thuộc 4 phâ

    Giải tích, đại số, hình học, tổ hợp. Ngày thứ hai có ba bài thuộc ba phân môn: Đại số, số

    hợp với số điểm tương ứng là 6, 7, 7.

    Đề thi ngày thứ nhất, trừ bài cuối là khá cơ bản và quen thuộc.

    Bài 1 là bài giải tích yêu cầu khảo sát sự hội tụ của một x

    dãy

    D f .n

    hồi; dạng

    xn / :

    nC1 truy

    Về nguyên tắc, dạng dãy số này khó khảo sát hơn dạng

    x nC1

    dãyDtruy

    f .x hồi

    n / vì

    2 nC3

    các hệ số của hàm

    f không hằng mà biến thiên

    n theo

    :Tuy nhiên, nếu để

    ý dần đến

    q nC1

    1

    2 khin dần đến vô cùng thì ta có thể “quy về” dãy

    x nC1sốDdạng

    C x n C 14 và dự

    2

    đoán được giới hạn bằng

    3 :Từ đó dùng bổ đề quen thuộc: “Nếu tồn qtại2 số

    . 0thực

    ;1 /

    sao cho

    x nC1 q x n C bn vớilim bn D 0 thì ta có

    lim xn D 0″, thì từ đánh giá đơn giản

    j unC1

    3j

    3j C

    ta sẽ suy ra kết luận bài toán. Ở đây, chú ý là câu b) cũng làm hoàn toàn tương t

    kiện đối với

    a chẳng qua là uđể

    2 xác định. Chú ý là dạng bài dãy số này đã xuất hiện ở

    hai kỳ VMO gần đây (2012 và 2022) với cùng cách giải tương tự thông qua bổ đề nói

    4

    aff

    Bài 2 là một bài toán về xác định đa thức thoả mãn một điều kiện cho trước. Bài nà

    học sinh nắm vững lý thuyết về đa thức tối thiểu của số đại số thì sẽ giải rất nhanh.

    ta có định lý rất cơ bản sau:

    P .Nếu

    x /vàQ.x / là các đa thức đơn khởi, hệ số nguyên có

    chung nghiệm ˛ và Q . x / là bất khả quy thì P . x / chia hết cho Q . x / :

    p3

    p

    Ta đặtQ.x / D P .x C 1/

    1 thì 2 và 5 tương ứng sẽ là nghiệm của đa thức

    Q.x / x vàQ.x / 3x 1 :Vì các đa thức

    x 3 2 vàx 2 5 bất khả quy trên

    Z nên từ

    3

    2

    đây sẽ suy ra ngay

    Q.x / x D .x

    2 / S . xvàQ.x

    /

    / 3x 1 D .x

    5/T.x/:

    3

    2

    Từ đây sẽ 2x

    ra C 1 D .x

    2 / S . x /. x

    5 / T . x /Đến

    : đây, chọn

    x D 7 sẽ suy

    ra điều mâu thuẫn vì vế phải chia hết cho 1 1 ; còn vế trái thì không.

    st

    n

    Ý tưởng dạng này đã xuất hiện trong các kỳ VMO, nhưng từ rất lâu, cụ thể là VMO 1

    Trước đó nhiều

    năm,

    VMO 1984 có bài tìm đa thức đơn khởi hệ số nguyên bậc nhỏ

    p

    p3

    có nghiệm là2 C 3 :Chính qua những bài toán như vậy khái niệm đa thức tối thiểu

    (và sau này là mở rộng trường) được giới thiệu.

    Bài 3 là một bài toán hình khá nhẹ nhàng, câu a) quy về việc

    Mchứng

    N là trục

    minh

    đẳng phương của hai đường

    .ABtròn

    C / và.DEF /: Câu b) cũng là một cấu hình rất

    quen thuộc mà trong đó có cả điểm Miquel, tứ giác điều hoà, đường đối trung, đường

    giác, định lý Pascal.

    Tuy

    . . nhiên, cách tiếp cận chân phương nhất là dùng đồng dạng, m

    kiến thức hoàn toán lớp 9.

    Ep

    Bài 4, bài toán tổ hợp là bài khó nhất của ngày thi thứ nhất, cũng là bài toán lạ nhất.

    việc đọc hiểu được đề bài cũng đã tốn khá nhiều thời gian, vì vậy, việc cho câu a), m

    huống rất cụ thể với bảng kích thước nhỏ là hết sức cần thiết, vừa tạo cơ hội cho h

    kiếm điểm, vừa để học sinh “làm quen và cảm nhận” bài toán. Với câu a), chỉ cần q

    lý luận đơn giản (chú ý đến tính đối xứng, do

    i và

    đócột

    hàng

    i là giống nhau) là ta thấy

    k D 2 không thoả mãn yêu cầu bài toán. Như vậy, chỉ còn cần chỉ

    k Dra3ví

    làdụ với

    hoàn thành được câu này.

    Với phần b) thì khó khăn hơn. Riêng việc đoán ra đáp số đã là không đơn giản. Thực

    nhiều lời giải sai (với đánh

    kD

    giá2007) đã được đưa ra (trong đó có những lời giải của

    người ở bên ngoài, trong điều kiện thoải mái về thời gian). Với câu này, cần tiếp tục

    tính đối xứng để chỉ ra một cấu hình tốn nhiều số nhất. Và cấu hình này chính là cấu

    đen trắng xen kẽ. Với cấu hình này, ta có thể suy ra ra tất cả các số dương ở nửa tam

    2022 2 1

    đôi một khác nhau. Suy

    k 1008C1008C1006C1006C

    ra

    C2C2 D

    :

    4

    Để chứng minh điều kiện đủ, ta có thể sử dụng quy nạp Toán học 2

    với

    :Điều

    bước nhảy là

    này có thể giải thích được vì nếu tinh ý, chúng ta có thể đưa bài toán về mô hình đ

    sử dụng định lý Mantel-Turan để giải quyết.

    Ngày thi thứ hai:

    5

    Tìm tất cả các hàm sốRf !WR thỏa mãn

    f

    xf .y / C f .x /

    D 2f .x / C xy

    Ep

    n

    st

    với mọi số thực yx :;

    aff

    Bài 5là một bài toán phương trình hàm có hai biến tự do vàxy

    cóởbiểu

    ngoài

    thức

    dấu

    hàm số:

    f xf . y / f . x / D 2f .x / C x y :Với những phương trình hàm như vậy,

    điều đầu tiên mà ta cần để ý khai thác, đó là tính song ánh của hàm số. Sau đó ta

    xảy ra trường hợp

    f .0/ D 0 hay không, hayf là

    .0/ D c ¤ 0 và tồn tại

    u ¤ 0 để

    f . u / D 0 :Từ đây tiếp tục thế một cách thích hợp sẽ

    f .x

    tìm

    /D

    được

    1 x là hàm số

    duy nhất thoả mãn yêu cầu bài toán. Đáng chú ý, bài toán này có hình thức khá gi

    đề Olympic của Brazil năm 2006. Cách giải của hai bài toán cũng khá giống nhau. Đ

    Brazil 2006 như sau

    6

    k D1

    p

    k Cpk D

    X2

    1

    p

    p Cpk

    Dp

    k D1

    0

    3

    C pk

    1

    1

    2

    1

    1

    1

    A:

    C pk

    p

    Cp

    1

    2

    1

    1

    2

    st

    X2

    1

    aff

    p

    X2

    A

    Tiếp theo là nhiệm vụ của số học với định lý nhỏ Fermat và

    C pktính

    chấtp(cụ

    của

    1 mod

    k

    k

    thể ta có

    Cp 1 .

    1 / .mod p )/. Ở câu b), ta cũng thực hiện phép rút gọn tổng bằng

    p

    1

    p

    1

    n

    Bài 7 là một bài hình học khó có tính phân loại cao, đặc biệt là ở câu b). Ở câu a)

    toán vẫn khai thác các vấn đề quen thuộc như điểm Miquel, trục đẳng phương và tâm

    phương, và đa số thí sinh đã giải quyết được vấn đề nhưng sang đến câu b) thì dườ

    chỉ có các cao thủ hình học mới đủ sức xử lý. Có lẽ bài toán được lấy ý tưởng dựa tr

    phương pháp điều hoà và xạ ảnh.

    Ep

    Tóm tắt lại, nếu đánh giá về độ khó thì đề năm nay khá dễ chịu, có nhiều câu thí sinh c

    được như câu 1, 2, 3, 5. Ngay cả với những bài khó hơn như 4, 6, 7 cũng có ý để ăn điểm

    4a, ý điều kiện cần của câu 4b), câu 6a, ý rút gọn của câu 6b), câu 7a. Về độ mới và ha

    bài 1, 2, 5 có ý khá cũ. Sự lặp đi lặp lại của ý tưởng bài 1 cho thấy lối mòn trong việc kh

    đề tài giải tích. Tại sao lại phải là dãy số và giới hạn mà không phải là những vấn đề r

    như sự liên tục, ứng dụng của đạo hàm bậc2?nhất,

    Bài 3bậc

    không mới nhưng đặt vấn đề đẹp

    và phù hợp trong bối cảnh ngày thi có 4 bài. Bài 6 cũng là một bài không mới, với ý rút

    tổng. Phần số học của bài này sẽ tạo thuận lợi cho các đội mạnh, nơi các học sinh được

    kiến thức đầy đủ hơn về các tính chất của số nguyên tố (như các định lý nêu trên trong p

    luận về bài 6 cùng các phương pháp chứng minh của chúng). Hai bài toán đẹp nhất và c

    nhất của đề thi là bài số 4 và số 7, trong đó bài 4 khai thác cách phát biểu thú vị về dạn

    lưỡng phân, còn bài 7 là các tính chất xạ ảnh đẹp đẽ và sâu sắc.

    Với những nhận xét và đánh giá trên, theo chúng tôi, sẽ rất khó dự đoán điểm chuẩn chín

    vì khu vực 15 đến 20 điểm sẽ rất dày đặc. Trong 7 bài toán, có đến 5 bài có hai ý a), b) và

    số sẽ hết sức phụ thuộc vào sự phân bố điểm ở các câu này. Dù vậy, qua khảo sát sơ bộ

    dự thi, chúng tôi tạm đưa ra dự đoán bộ điểm chuẩn rất chẵn của năm nay như sau: Khuy

    15 điểm (1, 2, 5), giải 3: 20 điểm (1, 2, 3, 5), giải nhì 25 điểm: (1, 2, 3, 5) + (4a + 6a +

    nhất 30 điểm: phải giải quyết được các vấn đề xương xẩu hơn như 4b, 6b, 7b hoặc làm

    bài trên rất chuẩn.

    7

    .1/

    aff

    a) Khi a D 5 ; chứng minh rằng dãynsố

    / có. ugiới hạn hữu hạn và tìm giới hạn đó.

    b) Tìm tất cả các giá trị của số a để dãy

    số .định

    u và có giới hạn hữu hạn.

    n / xác

    a

    st

    Lờigiải.Ta sẽ giải trực tiếp ý b), từqđó suy ra kết quả cho ý a). Có

    . uthể

    thấy

    định

    dãy

    n / xác

    1

    5

    1

    khi và chỉ khi2 uxác định. Mà2 uD 2 C

    a C 4 nên u2 xác định khi và chỉ khi

    2

    n

    Ep

    17

    4C

    17

    với mọin 2 : Vậy dãy

    . un / tăng ngặt và

    bị chặn trên bởi2 nên có giới hạn hữu hạn. Đến đây, bằng cách chuyển phương trình

    sang giới hạn, ta cũng thu được

    lim

    3: u

    n D

    Tóm lại, với mọi a

    thì dãy . nu/ xác định và hội tụ về 3 :

    8

    un C

    C

    j un

    3j C q

    st

    q

    aff

    un C

    C

    un C

    q

    un C

    C

    C

    C

    <

    D

    n

    q

    <

    C

    D

    Do đó, kết hợp với đánh giá ở trên, ta thu được

    j unC1

    3j

    3j C

    8n 2 :

    Ep

    Đến đây, bằng cách sử dụng bổ đề quen thuộc (có thể chứng minh bằng định nghĩa giới h

    Cho số thực

    q 2 . 0 ;1 / :Xét hai dãy không. âm

    an / ; . bn / thỏa mãn

    anC1 q a n C b n với

    mọi n 2 N và lim nb D 0 : Khi đó, ta có lim

    D

    a

    0:

    n

    Ta dễ dàng suy ra lim

    3 và hoàn tất lời giải cho bài toán.

    n Du

    9

    a) Với a D 0 ; chứng minh rằng dãy số có giới hạn hữu hạn và tìm giới hạn đó.

    b) Với mọi a 2 Œ 10 ; chứng minh rằng dãy số có giới hạn hữu hạn.

    Bài 2 (5.0 điểm).

    Tồn tại hay không đa thức P . x / với hệ số nguyên thỏa mãn

    1C

    p3

    2 D1C

    p3

    2 và P

    1C

    p

    5 D1C3

    p

    5‹

    aff

    P

    Lờigiải.Giả sử đa thức

    P . x /nói trên tồn tại. Đặt

    Q.x / D P .1 C x /

    1 thìQ.x / cũng

    p3

    p3

    p

    p

    là đa thức với hệ số nguyên. Từ giả thiết, ta2cóDQ 2 và Q

    5 D3 5:

    Q.x /

    x D .x

    3

    st

    n

    p

    p

    Do R .x / có các hệ số đều nguyênRnên 5 có dạnga C b 5 với a ;b 2 Z: Thay

    p

    x D 5 vào đẳng thức trên, ta được

    p

    p

    2 5D 5 5

    2

    aCb

    p

    5 D 25b

    2 a C .5a

    suy ra5a 2 b D 2và2 a D 25b :Tuy nhiên, không có cặp số nguyên nào thỏa mãn đồng

    thời hai tính chất này. Mâu thuẫn nhận được chứng

    P .tỏ

    x đa

    /thỏa

    thức

    mãn đồng thời các tính

    chất ở đề bài không tồn tại.

    Ep

    3. (International Zhautykov Olympiad, 2014) Tồn tại không

    P . xđa

    /với

    thức

    các hệ số

    p

    p

    p

    p

    nguyên thỏa mãn 1P C 3 D 2 C 3 và P 3 C 5 D 3 C 5?

    10

    Bài 3 (5.0 điểm).

    Cho tam giác

    AB C nhọn, không cân nội tiếp đường

    . Otròn

    / :Gọi

    H là trực tâm của tamAB

    giác

    C vàE ; F lần lượt là chân các đường cao hạ từ các đỉnh

    B ; C I A H cắt . O / tại D (D khác A).

    a) Gọi I là trung điểm của

    AH I E I cắtBD tạiM vàF I cắtCD tạiN :Chứng minh

    rằng M N ? OH :

    aff

    b) Các đường thẳng

    DE ; DF cắt.O / lần lượt tại

    P ; Q (P vàQ khácD ). Đường

    tròn ngoại tiếp tam AEF

    giác cắt.O / vàAO lần lượt tại

    R vàS (R vàS khácA).

    Chứng minh rằng BP

    C ;Q và RS đồng quy.

    st

    Lờigiải.a)Gọi J là đường tròn Euler của tam

    ABgiác

    C thì. J / đi quaE ; I ; F đồng thời

    J là trung điểm

    OH . Dễ thấy

    D đối xứngH quaB C nên tam giác

    BDH cân tạiB . Cũng dễ

    thấy tam giác

    IEH cân tạiI nên∠IEH D ∠IHE D ∠BHD D ∠BDH;

    suy ra tứ giác

    BDE I nội tiếp. Mà DB cắt E I tại M nên

    MD:

    n

    ME MIDMB

    Từ đó phương tích của

    M đối với đường tròn

    . J / và.O / bằng nhau. Tương tự phương tích

    củaN đối với đường tròn

    . J / và.O / bằng nhau. Vậy

    M N là trục đẳng phương .O

    của

    /

    và .J / nên M N ? OJ . Do J là trung điểm OH nên M N ? OH .

    A

    I

    Ep

    M

    J

    E

    O

    C

    N

    b)Gọi X là trung điểm

    EF . AH cắtB C tạiK . Dễ thấy các tam BF

    giác

    E vàKHE đồng

    dạng (g-g).

    X là trung điểm

    EF vàK là trung điểm

    HD nên hai tam giác

    BF X vàDHE

    đồng dạng (c-g-c), suy

    ∠FraBX D ∠HDE D ∠F BP . Từ đó suy ra ba điểm

    B ;X ;P

    thẳng hàng. Tương tự ba điểm

    X ;Q

    C cũng

    ;

    thẳng hàng.

    A

    O

    K

    D

    R

    C

    aff

    F

    st

    S

    n

    Gọi AL là đường kính của

    .O / thì dễ thấy

    SH đi quaL và tứ giác

    HBLC là hình bình hành

    nênH L đi qua trung điểm

    M củaB C. Dễ thấy hai tam SE

    giác

    C vàSF B đồng dạng (g-g)

    nên hai tam giác

    SEF vàS CB đồng dạng (c-g-c), hai tam giác này có trung tuyến tương ứn

    là SX vàS M nên∠F SX D ∠B S M . Cũng có hai tam giác

    SF B vàSRL đồng dạng (g-g)

    nên hai tam giác S F R và S B L đồng dạng (c-g-c). Suy ra

    ∠F SR D ∠B SL D ∠B S M D ∠F SX:

    Từ đó, ta có ba điểm

    S ; X ; R thẳng hàng. Vậy

    SR đi quaX . Đều này chứng tỏ ba đường thẳng

    BP ; C Q và RS đồng quy tại trung điểm X của EF .

    Ep

    Tham khảo tại: http://analgeomatica.blogspot.com/2015/06/ve-mot-bai-toanhinh-hoc-tu-dien-aops.html

    12

    R

    E

    st

    B

    aff

    J

    Q

    Mặt khác phép đồng dạngP tâm

    biến đoạn

    CE thànhFB nênJ cũng biến thành

    I; do đó

    ı

    ∠JPI D ∠EPB D 180

    ∠BAC , từ đó tứ giác GIPJ nội tiếp. Ta có biến đổi góc

    n

    ∠IGP D ∠IJP D ∠BEP D ∠BAP D ∠BGQ

    ∠GPI D ∠GJI D ∠GCB D ∠GQB:

    Từ đó hai tam giác

    GIP vàGBQ đồng dạng. Như vậy phép đồng dạng

    G biếnI

    tâmthànhP

    và đoạn

    FB thành đoạn

    LQ . Mặt khác,

    I là trung điểm

    FB nênP là trung điểm

    LQ . Từ đó,

    gọiM là trung điểm

    EF . Ta dễ thấy hai tamBFE

    giácvàPLE đồng dạng. Từ đó, hai tam giác

    BFM vàQLE đồng dạng. Vậy

    ∠FBM D ∠LQE D ∠FBR nênBR đi quaM . Ta có điều

    phải chứng minh.

    Ep

    A

    F

    E

    B

    Q

    13

    Gọi R là bán kính ngoại tiếp tam giác ABC . Ta có biến đổi diện tích

    ŒBFR ŒBFR ŒBAR ŒBRQ

    D

    ŒBER ŒBAR ŒBRQ ŒBER

    ABARBR

    4R

    BRRQQB

    4R

    Vậy BR chia đôi EF .

    aff

    st

    n

    Bài 2. Cho tam giác ABC nội tiếp trong đường tròn .O/. P là điểm bất kỳ trong tam giác

    choR đối xứng

    P quaBC thìR nằm trên

    .O/ . PB; P C lần lượt cắt

    CA; AB tạiE; F . Đường

    tròn.AEF / cắt.O/ tạiG khácA. GP cắtBC tạiM và cắt.O/ tạiD khácG. AD cắt.AEF /

    tại Q khác A. Chứng minh rằng GQ chia đôi EF .

    Lờigiải.Dễ thấyP nằm trên

    .AEF / . Ta có∠DP C D ∠FP G D ∠FAG D ∠PDB nên

    P C k DB. Tương tự, ta cũngPB

    cók DC; do đó tứ giác

    PBDC là hình bình hành PD

    nênđi

    qua trung điểm M của BC .

    A

    Ep

    G

    F

    E

    B

    Q

    O

    C

    M

    R

    D

    Gọi giao điểm của

    GQ vàEF làN . Dễ thấy phép đồng dạng

    G lần

    tâmlượt biến

    E; F thành

    C; B. Lại có hai tam giác GFB và GQD đồng dạng (g-g) nên ∠F GB D ∠QGD; suy ra

    ∠NGF D ∠MGB:

    Do đó cũng phép đồng dạng tâm G đó biến N thành M . Vậy N là trung điểm EF .

    14

    Bài toán trên cũng có thể được mở rộng hơn nữa như sau

    aff

    Bài chúng tôi tam giác

    ABC nội tiếp trong đường .O/

    tròn

    . P là điểm bất kỳ trong tam giác.

    PB; P C lần lượt cắt

    CA; AB tạiE; F . Đường tròn

    .AEF / cắt.O/ tạiG khácA. M là điểm

    bất kỳ trên cạnh

    BC . GM cắt.O/ tạiD khácG. AD cắt.AEF / tạiQ khácA. GQ cắtEF tại

    N . Chứng minh rằng

    MB

    NF

    D

    :

    MC

    NE

    A

    G

    F

    P

    Q

    M

    C

    n

    B

    N

    st

    E

    D

    Lờigiải.Dễ thấy phép đồng dạng

    G lần

    tâmlượt biến

    E; F thànhC; B. Lại có hai tam giác

    GFB vàGQD đồng dạng (g-g) ∠FGB

    nên D ∠QGD suy ra∠NGF D ∠MGB; do đó cũng

    phép đồng dạng tâm G đó biến N thành M . Vậy

    MB

    NF

    D

    :

    MC

    NE

    Ep

    Ta thu được điều phải chứng minh.

    Các bạn có thể làm các bài toán sau đây đề luyện tập thêm:

    1. (Mở rộng ý a) bài toán 3 VMO 2022) Cho tam

    ABC giác

    nội tiếp đường tròn

    .O/ . Một

    đường tròn

    .K/ đi quaB; C cắtCA; AB tạiE; F khácB; C . BE cắtCF tạiH . AH cắt

    .O/ tạiD khácA. Tiếp tuyến E;

    tạiF của.K/ lần lượt cắt

    DB; DC tạiM; N . Chứng

    minh rằng MN ? OH .

    2. (Mở rộng ý b) bài toán 3 VMO 2022) Cho tam

    ABC giác

    nội tiếp trong đường.O/

    tròn

    .

    P là điểm bất kỳ trong tam giác sao

    R đối

    choxứngP quaBC thìR nằm trên

    .O/ .

    PB; P C lần lượt cắt

    CA; AB tạiE; F . Đường tròn

    .AEF / cắt.O/ tạiG khácA. D

    thuộc.O/ sao cho

    DR k BC . AD cắt.AEF / tạiQ khácA. DE; DF cắt.O/ tạiS; T

    khác D. Chứng minh rằng BS; C T; GQ đồng quy.

    15

    aff

    st

    ii) Nếu một hàng và một cột giao nhau tại ô đen thì tập các số nguyên dương được

    trên hàng đó và tập các số nguyên dương được điền trên cột đó không giao nhau

    một hàng và một cột giao nhau tại ô trắng thì tập các số nguyên âm được điền

    hàng đó và tập các số nguyên âm được điền trên cột đó không giao nhau.

    a) Với n D 5; tìm giá trị nhỏ nhấtkcủa

    để tồn tại cách điền

    k số

    cân đối cho cách tô

    màu đối xứng ở hình bên dưới.

    B

    n

    A

    C

    Ep

    D

    b) Vớin D 2022;

    tìm giá trị nhỏ nhấtkcủa

    để với mọi cách tô màu đối xứng, luôn tồn tại

    cách điền số kcân đối.

    5

    ¤ ;:

    16

    Ta sẽ chứng minh k D 3 thỏa với cách điền như sau:

    0

    1

    1

    0

    2

    2

    1

    2

    0

    2

    2

    2

    2

    0

    3

    3

    0

    3

    aff

    3

    2

    st

    1

    1

    Ep

    n

    b)Điều kiện cần: Trước hết, xét cách tô màu đối xứng như bàn cờ, tức là trắng đen xen

    hình, trong đó vị trí .i; j / sẽ được tô đen nếu i C j chẵn, ngược lại thì tô trắng.

    Xét hai ô trắng bất kỳ trong bảng ô vuông trên

    .a; b/ởvà.c;

    vị tríd /; 1 a; b; c; d 2022:

    Nếua C cchẵn thì

    b C d cũng chẵn, suya ra

    C d vàb C clẻ. Khi đó, một trong hai ô

    .a; d /và.b; c/ sẽ được tô đen vì chúng không thể cùng nằm trên đường chéo màu x

    Suy ra hai ô vuông trắng phải được điền số khác nhau.

    Nếua C clẻ thìb C d cũng lẻ, xét.d;

    ô c/ điền cùng số với

    .c;ôd /thì rõ ràng ta có thể

    áp dụng lập luận trên để suy ra hai số điền cho hai ô hai khác nhau.

    Từ đó suy ra tất cả các số điền cho các ô trắng nằm ở nửa trên bên phải của bảng là đôi m

    biệt. Do đó, ta thu được kết quả

    k 2C4C6C

    2017

    Điều kiện đủ: Ta sẽ chứng minh

    k Drằng

    4

    1

    thỏa mãn bài toán bằng quy nạp

    kết quả

    j 2rằng

    k

    n

    trên cũng đúng với mọi bảng có kích

    n thước

    n vớin là số nguyên dương, cụ kthể

    D là4 :

    17

    Thật vậy, với n D 1; n D 2; n D 3; ta dễ dàng kiểm tra được các kết quả tương ứng.

    Xét n 5 và giả sử khẳng định đúng với mọi số nguyên dương bé hơn n:

    Đánh số cách hàng

    1 !từn và cột1 ! n . Ta sẽ chứng minh rằng với mọi vị trí của các ô đen

    thì luôn tồn tại cách điền các số nguyên dương không

    kn vào

    vượt

    ô trắng

    quá còn lại trong bảng

    (trường hợp điền số âm thì tương tự vì tính bình đẳng).

    aff

    Xét graph

    G D .V; E/ màV là tập hợp các đỉnh, đỉnh

    i ứng

    thứ với hàng

    i và1 i n ; còn

    E là tập hợp các cạnh, trong đó có cạnh nối từ

    i đến

    đỉnh

    đỉnh

    thứthứ

    j nếu như tại.i;ô j / và

    ô .j; i / là ô màu trắng. Ta phát biểu bổ đề sau:

    Bổ đề (Định lý Mantel-Turan).

    Xét mộtj graph

    đơn vô hướng

    n đỉnh

    có và

    k cạnh. Khi đó, nếu

    k

    2

    n

    graph này không có chứa tam giác thì

    k

    :

    4

    Áp dụng vào bài toán, ta xét các trường hợp sau:

    st

    j 2k

    Nếu graph

    G không có chứa tam giác, theo bổ đề thì nó sẽ có nkhông

    cạnh,

    quá

    nghĩa

    4

    j 2k

    j 2k

    n

    là có không quá

    ô trắng nên có thể dùng

    k D n4 số nguyên dương điền vào các ô

    4

    đó (cho dù vị trí của các ô đen thế nào đi nữa).

    n

    Nếu graph

    G có chứa tam giác, giả sử các

    a; đỉnh

    b; cphân biệt được nối với nhau đôi

    một. Điều này tương ứng với việc

    .a;các

    b/; ô

    .b; c/; .c; a/và.b; a/; .c; b/; .a; c/là

    giao điểm của các hàng

    a; b; cđều được tô màu trắng. Khi đó, các số điền vào các ô đó

    không cần phải phân biệt và tập hợp các ô trắng (nếu có) còn a;

    lạib;

    trên

    ccũng

    các hàng

    không cần phải rời nhau. Rõ ràng trên mỗi hàng sẽ còn lại không

    3 ô nhưquá

    thế.

    n

    Khi đó, ta có thể dùng

    1số để điền vào các ô trắng ở trên và dùngnkhông

    3số quá

    phân

    biệt để điền vào mỗi ô còn lại của mỗi hàng.

    Nếu không

    3 hàng

    a; b; c, ta còn lại

    n 3 hàng, sử dụng giả thiết quy nạp thì cần

    j tính

    k

    .n 3/ 2

    không quá 4

    số nguyên dương phân biệt cho các hàng đó.

    Ep

    j 2k

    Tóm lại, trong mọi trường hợp, ta đều cần sử dụng nkhông

    số nguyên

    quá

    dương phân biệt

    4

    j 2k

    n

    để điền vào các ô trắng hay nói cách khác

    cũng

    k D thỏa mãn đề bài với bảng n n:

    4

    Theo nguyên lý quy nạp thì khẳng định được chứng minh. Vậy giá trị tốtknhất

    là cần tìm c

    20222 1

    . Bài toán được giải quyết hoàn toàn.

    4

    Bài toán này thuộc dạng cực trị tổ hợp và đòi hỏi phải xử lý cả điều kiện cần và đủ thì mớ

    kết luận được đáp số của bài toán.

    18

    Ở phần a), ta thấy kích thước của bảng là nhỏ nên có thể thử trực tiếp các số để kiểm t

    xây dựng cũng khá nhẹ nhàng. Chú ý rằng một số có thể được sử dụng lại nhiều lần the

    bài nếu đọc không cẩn thận, ta dễ hiểu nhầm đáp số câu a) là k D 5:

    Phần b) thử thách hơn nhiều với kích thước bảng lớn, và quan trọng hơn là cách tô đối xứ

    nên chưa thể định hướng được ngay giá trị “vừa đủ lớn” của k:

    aff

    Ý tưởng mấu chốt là chỉ ra một mô hình đặc biệt mà ở đó,kđòi

    phải

    hỏiđạt

    giáđược

    trị cực đại

    thì mới đủ để điền vào. Và bàn cờ ở trên chính là mô hình cần phải tìm, số các ô đen tr

    xen đòi hỏi tất cả các số dương điền vào các ô trắng phải phân biệt nhau, các số âm cũ

    st

    Đoạn khó khăn chính là việc xây dựng cách đánh số cân đối cho mọi mô hình. Thực tế

    2

    1

    như các cách xây dựng trực tiếp thuật toán để kđiền

    D 2022

    vào

    với

    đều không thành công

    4

    do các mô hình có thể biến đổi rất phức tạp. Cách tiếp cận dùng đồ thị ở trên cũng chỉ mớ

    minh được là cách đánh số cân đối sẽ luôn tồn tại chứ chưa chỉ ra cách xây dựng cụ th

    nhiên, về mặt lập luận thì như thế là đủ.

    n

    Điểm mới lạ của bài toán này chính là việc sử dụng ngôn ngữ đồ thị để giải quyết vấn

    cách tiếp cận mà trước giờ khá ít khi xuất hiện trong các kỳ thi HSG cấp Quốc gia. Địn

    Mantel-Turan về tồn tại graph con đầy đủ trong một graph đơn vô hướng là tương đối que

    đối với các học sinh có học qua về lý thuyết graph. Đặc điểm của các bài toán dùng Mant

    là thường che giấu được vấn đề khá kỹ và khó xử lý tốt bằng các cách thông thường.

    Định lý này có cách chứng minh dùng quy nạp là phân hoạch tập hợp đỉnh thành A; B rồ

    Đếm số cạnh trong A; đếm số cạnh trong B:

    Đếm số cạnh nối giữa A; B:

    Ep

    1. (MOSP, 2011) Xét các số xthực

    : Chứng minh rằng có khôngn4 quá

    cặp

    1; x2; : : : ; nx

    .i; j / với 1 i < j n sao cho 1 < jxi xj j < 2:

    2

    2. (China TST, 1987) Trong mặt phẳng

    2nđiểm

    cho với

    n 2 và có tất n

    cả

    C 1đoạn thẳng

    nối chúng. Chứng minh rằng

    a) Tồn tại ít nhất một tam giác.

    b) Tồn tại hai tam giác có chung cạnh.

    c) Tồn tại ít nhất n tam giác.

    19

    Bài 5 (6.0 điểm).

    Tìm tất cả các hàm số f W R ! R thỏa mãn hệ thức

    f xf .y/

    f .x/ D 2f .x/ C xy

    .1/

    với mọi số thực x; y:

    f f .y/

    f .1/ D y C 2f .1/; 8y 2 R:

    aff

    Lờigiải.Thay x D 1 vào (1), ta được

    .2/

    Từ đây có thể thấy fhàm

    là một song ánh. Do đó, tồn tại duy nhất

    a đểf

    số thực

    .a/ D 0:Thay

    x D a vào phương trình (1), ta được

    Trong (3), cho

    y D 0;ta được

    f af .0/

    Suy ra a D 0 hoặc f .0/ D 1:

    D ay;

    8y 2 R:

    st

    f af .y/

    .3/

    D 0 D f .a/:Từ đó, do

    f đơn ánh nên taafcó

    .0/ D a:

    n

    Xét trường hợp

    a D 0;tứcf .0/ D 0:Thayy D 0 vào (1), ta được

    f

    f .x/ D 2f .x/: Dof

    toàn ánh nên taf .x/

    có D 2x với mọix 2 R: Tuy nhiên, khi thử lại, hàm này không thỏa mãn

    phương trình (1). Do đó a ¤ 0; suy ra f .0/ D 1:

    Thayx D 0 vào (1), ta được

    f . 1/ D 2:Thayy D a vào (3), ta được

    a2 D f .0/ D 1;suy ra

    a D 1 (do f . 1/ D 2), tức f .1/ D 0: Đến đây, ta có hai cách tiếp cận như sau:

    Cách 1. Do f .1/ D 1 nên phương trình (2) có thể viết lại dưới dạng

    f f .y/

    D y;

    8y 2 R:

    .20/

    0

    Thay y bởi f .y/ vào (1) và sử dụng

    /; ta.2được

    f xy

    f .x/ D 2f .x/ C xf .y/;

    8x; y 2 R:

    Ep

    f .x/

    Trong phương trình này, ta xét x ¤ 0 và thay

    ; ta

    y Dđược

    x

    suy ra

    f

    D

    1

    ;

    8x ¤ 0:

    Thay y Df .x/

    vào (1) và sử dụng kết quả trên, ta được

    x

    f1

    3f .x/ D 3f .x/;

    8x ¤ 0:

    Dof song ánh và

    f .0/ D 1nên với

    x ¤ 0 thì1 3f .x/ có thể nhận mọi giá trị thực 2:

    khác

    Do đó, từ kết quả trên, ta suy ra được f .x/ D x C 1 với mọi x ¤ 2:

    Nói riêng,ta cóf .3/ D 2: Thayy D 3 vào.20/; ta đượcf . 2/ D 3: Tóm lại,ta có

    f .x/ D x C 1 với mọi x 2 R: Thử lại, ta thấy hàm này thỏa mãn các yêu cầu bài toán.

    20

    Cách 2. Thay y D 1 vào (1), ta được

    f

    f .x/ D 2f .x/ C x;

    8x 2 R:

    .4/

    aff

    Lần lượt thay

    x D 1 vàx D 2 vào đẳng thức trên, tafđược

    . 2/ D 3vàf . 3/ D 4:Chú ý

    0

    rằngf .1/ D 0nên ta cũng có đẳng.2

    thức

    / như cách 1 ở trên, do đó bằng cách

    x bởif

    thay

    .x/

    vào (4), ta được

    f . x/ D f .x/ C 2x; 8x 2 R:

    Từ đây suy fra.2/ D 1 vàf .3/ D 2: Bây giờ, ta sẽ chứng minh

    x D 1 là nghiệm duy

    nhất của phương trình

    f .t / D 2t: Thật vậy, giả sử có

    b số

    ¤ 1 sao cho

    f .b/ D 2b; ta thay

    x D b và y D 3 vào (1) thì được 1 D f .0/ D 4b C 3b; suy ra b D 1; mâu thuẫn.

    Với kết quả trên, ta thay y D 2 thì có

    Từ đó suy rax

    x

    f .x/ D 2 x C f .x/ D 2

    x

    f .x/ ;

    8x 2 R:

    st

    f

    f .x/ D 1; tức f .x/ D x C 1 với mọi x 2 R:

    n

    D 2f .x/ C xy; 8x; y 2 R:

    Cách giải của hai bài toán cũng hoàn toàn tương tự nhau. Đây là một sự trùng hợp thú v

    đây là một số bài toán “tương tự” khác:

    1. (IMO Shortlist, 2002) Tìm tất cả các hàm số f W R ! R thỏa mãn

    Ep

    f f .x/ C y

    D 2x C f f .y/

    x;

    8x; y 2 R:

    2. (Kiểm tra Trường Đông Nam Bộ, 2022) Tìm tất cả các hàm số f W R ! R thỏa mãn

    f f .x/ C 2y

    D 10x C f f .y/

    3x ;

    8x; y 2 R:

    3. (Baltic Way, 2010) Tìm tất cả các hàm số f W R ! R thỏa mãn

    f .x 2/ C f .xy/ D f .x/f .y/ C yf .x/ C xf .x C y/;

    8x; y 2 R:

    4. (EGMO, 2012) Tìm tất cả các hàm số f W R ! R thỏa mãn

    f yf .x C y/ C f .x/

    D 4x C 2yf .x C y/; 8x; y 2 R:

    5. (EGMO, 2012) Tìm tất cả các hàm số f W R ! R thỏa mãn

    f xf .x C y/

    D f yf .x/

    C x 2;

    8x; y 2 R:

    --- Bài cũ hơn ---

  • Lời Giải Và Bình Luận Đề Toán Thi Học Sinh Giỏi Quốc Gia 2022
  • Lời Giải Và Bình Luận Về Đề Thi Hsg Quốc Gia Vmo 2022
  • Đề Kiểm Tra Học Kì I Lớp 7 Môn Sinh Học Năm 2022
  • Bộ Đề Kiểm Tra 1 Tiết Môn Tiếng Anh Lớp 6 Có Đáp Án
  • Top 52 Đề Kiểm Tra, Đề Thi Toán Lớp 6 Có Đáp Án, Cực Hay
  • Các Bài Toán Hình Học Lớp 9 Có Lời Giải

    --- Bài mới hơn ---

  • Soạn Anh 7: Unit 9. Neighbors
  • Soạn Anh 7: Unit 8. At The Post Office
  • Unit 8. Films. Lesson 5. Skills 1
  • Skills 1 Trang 22 Unit 8 Tiếng Anh 7 Mới
  • Unit 3. Community Service. Lesson 5. Skills 1
  • , Working at Trường Đại học Công nghệ Thông tin và Truyền thông – Đại học Thái Nguyên

    Published on

    Cac bai-toan-hinh-hoc-on-thi-vao-lop-10

    1. 4. N y x O K F E M BA 3. Rõ ràng đây là câu hỏi khó đối với một số em, kể cả khi hiểu rồi vẫn không biết giải như thế nào , có nhiều em may mắn hơn vẽ ngẫu nhiên lại rơi đúng vào hình 3 ở trên từ đó nghĩ ngay được vị trí điểm C trên nửa đường tròn. Khi gặp loại toán này đòi hỏi phải tư duy cao hơn. Thông thường nghĩ nếu có kết quả của bài toán thì sẽ xảy ra điều gì ? Kết hợp với các giả thiết và các kết quả từ các câu trên ta tìm được lời giải của bài toán. Với bài tập trên phát hiện M là trực tâm của tam giác không phải là khó, tuy nhiên cần kết hợp với bài tập 13 trang 72 sách Toán 9T2 và giả thiết M là điểm chính giữa cung AC ta tìm được vị trí của C ngay. Với cách trình bày dưới mệnh đề “khi và chỉ khi” kết hợp với suy luận cho ta lời giải chặt chẽ hơn. Em vẫn có thể viết lời giải cách khác bằng cách đưa ra nhận định trước rồi chứng minh với nhận định đó thì có kết quả , tuy nhiên phải trình bày phần đảo: Điểm C nằm trên nửa đường tròn mà thì AD là tiếp tuyến. Chứng minh nhận định đó xong ta lại trình bày phần đảo: AD là tiếp tuyến thì . Từ đó kết luận. 4. Phát hiện diện tích phần tam giác ADC ở ngoài đường tròn (O) chính là hiệu của diện tích tứ giác AOCD và diện tích hình quạt AOC thì bài toán dễ tính hơn so với cách tính tam giác ADC trừ cho diện tích viên phân cung AC. Bài 3 Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F. 1. Chứng minh: 2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. 3. Gọi K là giao điểm của AF và BE, chứng minh . 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. BÀI GIẢI CHI TIẾT 1. Chứng minh: . EA, EM là hai tiếp tuyến của đường tròn (O) cắt nhau ở E nên OE là phân giác của . Tương tự: OF là phân giác của . Mà và kề bù nên: (đpcm) hình 4 2. Chứng minh: Tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. ” 0 60BC =” 0 60BC = · 0 EOF 90= MK AB⊥ 3 · 0 EOF 90= ·AOM ·BOM ·AOM·BOM· 0 90EOF =
    2. 5. Ta có: (tính chất tiếp tuyến) Tứ giác AEMO có nên nội tiếp được trong một đường tròn. Tam giác AMB và tam giác EOF có:, (cùng chắn cung MO của đường tròn ngoại tiếp tứ giác AEMO. Vậy Tam giác AMB và tam giác EOF đồng dạng (g.g). 3. Gọi K là giao điểm của AF và BE, chứng minh . Tam giác AEK có AE // FB nên: . Mà : AE = ME và BF = MF (t/chất hai tiếp tuyến cắt nhau). Nên . Do đó MK // AE (định lí đảo của định lí Ta- let). Lại có: AE AB (gt) nên MK AB. 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. Gọi N là giao điểm của MK và AB, suy ra MN AB. FEA có MK//AE nên (1). BEA có NK//AE nên (2). Mà (do BF // AE) nên hay (3). Từ (1), (2) và (3) suy ra . Vậy MK = NK. Tam giác AKB và tam giác AMB có chung đáy AB nên: . Do đó. Tam giác AMB vuông ở M nên tg A = . Vậy AM = và MB = = (đvdt). Lời bàn: (Đây là đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của tỉnh Hà Nam) . Từ câu 1 đến câu 3 trong quá trình ôn thi vào lớp 10 chắc chắn thầy cô nào cũng ôn tập, do đó những em nào ôn thi nghiêm túc chắc chắn giải được ngay, khỏi phải bàn, những em thi năm qua ở tỉnh Hà Nam xem như trúng tủ. Bài toán này có nhiều câu khó, và đây là một câu khó mà người ra đề khai thác từ câu: MK cắt AB ở N. Chứng minh: K là trung điểm MN. · · 0 90EAO EMO= = · · 0 180EAO EMO+ = *· · 0 EOF 90AMB = =· ·MAB MEO= MK AB⊥ AK AE KF BF = AK ME KF MF = ⊥⊥ 3 ⊥ ∆MK FK AE FA = ∆NK BK AE BE = FK BK KA KE = FK BK KA FK BK KE = + + FK BK FA BE = MK KN AE AE = 1 2 AKB AMB S KN S MN = = 1 2 AKB AMBS S= 3 MB MA = · 0 60MAB⇒ = 2 a3 2 a⇒1 1 3 . . . 2 2 2 2 AKB a a S⇒ = 21 3 16 a
    3. 6. x H Q I N M O C BA K x H Q I N M O C BA Nếu chú ý MK là đường thẳng chứa đường cao của tam giác AMB do câu 3 và tam giác AKB và AMB có chung đáy AB thì các em sẽ nghĩ ngay đến định lí: Nếu hai tam giác có chung đáy thì tỉ số diện tích hai tam giác bằng tỉ số hai đường cao tương ứng, bài toán qui về tính diện tích tam giác AMB không phải là khó phải không các em? Bài 4 Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng: a) Tứ giác AMQI nội tiếp. b) . c) CN = NH. (Trích đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của sở GD&ĐT Tỉnh Bắc Ninh) BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác AMQI nội tiếp: Ta có: MA = MC (tính chất hai tếp tuyến cắt nhau) OA = OC (bán kính đường tròn (O)) Do đó: MO AC . (góc nội tiếp chắn nửa đường tròn (O)) . Hai đỉnh I và Q cùng nhìn AM dưới Hình 5 một góc vuông nên tứ giác AMQI nội tiếp được trong một đường tròn. b) Chứng minh:. Tứ giác AMQI nội tiếp nên Hình 6 (cùng phụ ) (2). có OA = OC nên cân ở O. (3). Từ (1), (2) và (3) suy ra . c) Chứng minh CN = NH. Gọi K là giao điểm của BC và tia Ax. Ta có: (góc nội tiếp chắn nửa đường tròn(O)). AC BK , AC OM OM // BK. Tam giác ABK có: OA = OB, OM // BK MA = MK. Áp dụng hệ quả định lí Ta let cho có NH // AM (cùng AB) ta được: · ·AQI ACO= ⊥· 0 90MIA⇒ = · 0 90AQB = · 0 90MQA⇒ = · ·AQI ACO= · ·AQI AMI= ·MAC AOC∆· ·CAO ACO⇒ =· ·AQI ACO= · 0 90ACB =⊥⊥⇒⇒ ABM∆ ⊥
    4. 8. · · · · CDB CAB CAB CFA  =  = x F E D C B O A Từ (1) và (2) suy ra: chúng tôi = chúng tôi c) Chứng minh tứ giác CDEF nội tiếp: Ta có: (hai góc nội tiếp cùng chắn cung BC) ( cùng phụ ) Do đó tứ giác CDEF nội tiếp. Cách khác và có: chung và (suy từ chúng tôi = chúng tôi nên chúng đồng dạng (c.g.c). Suy ra: . Vậy tứ giác CDEF là tứ giác nội tiếp. d) Xác định số đo của góc ABC để tứ giác AOCD là hình thoi: Ta có: (do BD là phân giác ) . Tứ giác AOCD là hình thoi OA = AD = DC = OC AD = DC = R Vậy thì tứ giác AOCD là hình thoi. Tính diện tích hình thoi AOCD theo R: . Sthoi AOCD = (đvdt). Hình 8 Lời bàn 1. Với câu 1, từ gt BD là phân giác góc ABC kết hợp với tam giác cân ta nghĩ ngay đến cần chứng minh hai góc so le trong và bằng nhau. 2. Việc chú ý đến các góc nội tiếp chắn nửa đường tròn kết hợp với tam giác AEB, FAB vuông do Ax là tiếp tuyến gợi ý ngay đến hệ thức lượng trong tam giác vuông quen thuộc. Tuy nhiên vẫn có thể chứng minh hai tam giác BDC và BFE đồng dạng trước rồi suy ra chúng tôi = chúng tôi Với cách thực hiện này có ưu việc hơn là giải luôn được câu 3. Các em thử thực hiện xem sao? 3. Khi giải được câu 2 thì câu 3 có thể sử dụng câu 2 , hoặc có thể chứng minh như bài giải. 4. Câu 4 với đề yêu cầu xác định số đo của góc ABC để tứ giác AOCD trở thành hình thoi không phải là khó. Từ việc suy luận AD = CD = R nghĩ ngay đến cung AC bằng 1200 từ đó suy ra số đo góc ABC ·FAC· ·CDB CFA⇒ = ∆DBC∆FBE∆ µBBD BC BF BE = · ·EFBCDB = · ·ABD CBD=·ABC” “AD CD⇒ = ⇔ ⇔” ” 0 60AD DC⇔ = =” 0 120AC⇔ =· 0 60ABC⇔ = · 0 60ABC = ” 0 120 3AC AC R= ⇒ = 2 1 1 3 . . . 3 2 2 2 R OD AC R R= = ·ODB·OBD ” 0 120 3AC AC R= ⇒ =
    5. 9. H N F E CB A bằng 600 . Tính diện tích hình thoi chỉ cần nhớ công thức, nhớ các kiến thức đặc biệt mà trong quá trình ôn tập thầy cô giáo bổ sung như ,…….. các em sẽ tính được dễ dàng. Bài 6 Cho tam giác ABC có ba góc nhọn. Đường tròn đường kính BC cắt cạnh AB, AC lần lượt tại E và F ; BF cắt EC tại H. Tia AH cắt đường thẳng BC tại N. a) Chứng minh tứ giác HFCN nội tiếp. b) Chứng minh FB là phân giác của . c) Giả sử AH = BC . Tính số đo góc của ∆ABC. BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác HFCN nội tiếp: Ta có : (góc nội tiếp chắn nửa đường tròn đường kính BC) Tứ giác HFCN có nên nội tiếp được trong đường tròn đường kính HC) (đpcm). b) Chứng minh FB là tia phân giác của góc EFN: Ta có (hai góc nội tiếp cùng chắn của đường tròn đường kính BC). (hai góc nội tiếp cùng chắn của đường tròn đường kính HC). Suy ra: . Vậy FB là tia phân giác của góc EFN (đpcm) c) Giả sử AH = BC. Tính số đo góc BAC của tam giác ABC: FAH và FBC có: , AH = BC (gt), (cùng phụ ). Vậy FAH = FBC (cạnh huyền- góc nhọn). Suy ra: FA = FB. AFB vuông tại F; FA = FB nên vuông cân. Do đó . Bài 7 (Các em tự giải) Cho tam giác ABC nhọn, các đường cao BD và CE cát nhau tại H. a) Chứng minh tứ giác BCDE nội tiếp. b) Chứng minh AD. AC = AE. AB. c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh OA DE. ·EFN ·BAC · · 0 90BFC BEC= = · · 0 180HFC HNC+ = · ·EFB ECB=”BE · ·ECB BFN=¼HN · ·EFB BFN= ∆∆· · 0 AFH 90BFC= =· ·FAH FBC=·ACB∆∆ ∆· 0 45BAC = ⊥
    6. 10. = // O FE C DBA d) Cho biết OA = R , . Tính BH. BD + CH. CE theo R. Bài 8 Cho đường tròn (O) đường kính AB. Trên tia AB lấy điểm D nằm ngoài đoạn AB và kẻ tiếp tuyến DC với đường tròn (O) (C là tiếp điểm). Gọi E là chân đường vuông góc hạ từ A xuống đường thẳng CD và F là chân đường vuông góc hạ từ D xuống đường thẳng AC. Chứng minh: a) Tứ giác EFDA nội tiếp. b) AF là phân giác của . c) Tam giác EFA và tam giác BDC đồng dạng. d) Các tam giác ACD và ABF có cùng diện tích. (Trích đề thi tốt nghiệp và xét tuyển vào lớp 10- năm học 2000- 2001) BÀI GIẢI a) Chứng minh tứ giác EFDA nội tiếp: Ta có: (gt). Hai đỉnh E và F cùng nhìn AD dưới góc 900 nên tứ giác EFDA nội tiếp được trong một đường tròn. b) Chứng minh AF là phân giác của góc EAD: Ta có: . Vậy ( so le trong) Tam giác AOC cân ở O (vì OA = OC = R) nên . Do đó: . Vậy AF là phân giác của góc EAD (đpcm). c) Chứng minh tam giác EFA và tam giác BDC đồng dạng: EFA và BDC có: (hai góc nội tiếp cùng chắn của đường tròn ngoại tiếp tứ giác EFDA). . Vậy EFA và BDC đồng dạng (góc- góc). d) Chứng minh các tam giác ACD và ABF có cùng diện tích: SACD = và SABF = . (1) BC // DF (cùng AF) nên hay DF. AC = chúng tôi (2). Từ (1) và (2) suy ra : SACD = SABF (đpcm) (Lưu ý: có thể giải 2 cách khác nữa). · 0 60BAC = ·EAD · · 0 AFD 90AED = = // AE CD AE OC OC CD ⊥ ⇒ ⊥ · ·EAC CAD= · ·CAO OCA=· ·EAC CAD= ∆∆ · ·EFA CDB=”AE · · · · · ·EAC CAB EAF BCD CAB DCB  = ⇒ = = ∆∆ 1 . 2 DF AC 1 .AF 2 BC ⊥ AF BC AC DF =
    7. 11. O P K M H A C B Bài 9 Cho tam giác ABC ( ) nội tiếp trong nửa đường tròn tâm O đường kính AB. Dựng tiếp tuyến với đường tròn (O) tại C và gọi H là chân đường vuông góc kẻ từ A đến tiếp tuyến đó. AH cắt đường tròn (O) tại M (M ≠ A). Đường vuông góc với AC kẻ từ M cắt AC tại K và AB tại P. a) Chứng minh tứ giác MKCH nội tiếp. b) Chứng minh ∆MAP cân. c) Tìm điều kiện của ∆ABC để ba điểm M, K, O thẳng hàng. BÀI GIẢI a) Chứng minh tứ giác MKCH nội tiếp: Ta có : (gt), (gt) Tứ giác MKCH có tổng hai góc đối nhau bằng 1800 nên nội tiếp được trong một đường tròn. b) Chứng minh tam giác MAP cân: AH // OC (cùng vuông góc CH) nên (so le trong) AOC cân ở O (vì OA = OC = R) nên . Do đó: . Vậy AC là phân giác của . Tam giác MAP có AK là đường cao (do AC MP), đồng thời là đường phân giác nên tam giác MAP cân ở A (đpcm). Cách 2 Tứ giác MKCH nội tiếp nên (cùng bù ). (cùng bằng sđ), (hai góc đồng vị của MP// CB). Suy ra: . Vậy tam giác AMP cân tại A. c) Tìm điều kiện cho tam giác ABC để ba điểm M; K; O thẳng hàng: Ta có M; K; P thẳng hàng. Do đó M; K; O thẳng hàng nếu P O hay AP = PM. Kết hợp với câu b tam giác MAP cân ở A suy ra tam giác MAP đều. Do đó . Đảo lại: ta chứng minh P O: Khi (do AC là phân giác của ) . Tam giác MAO cân tại O có nên MAO đều. Do đó: AO = AM. Mà AM = AP (do MAP cân ở A) nên AO = AP. Vậy P O. Trả lời: Tam giác ABC cho trước có thì ba điểm M; K và O thẳng hàng. · 0 45BAC < · 0 90MHC =· 0 90MKC = · ·MAC ACO= ∆· ·ACO CAO=· ·MAC CAO=·MAB⊥ · ·AMP HCK=·HMK· ·HCA CBA=1 2 “AC· ·CBA MPA= · ·AMP APM= ≡ · 0 30CAB =· 0 30CAB = ≡ · 0 30CAB = ⇒· 0 60MAB =·MAB· 0 60MAO =∆∆≡ · 0 30CAB =
    8. 12. / / //// H QP I O N M CB A Bài 10 Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N ( A≠ M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh: a) b) Tứ giác BMNC nội tiếp. c) Điểm I là trực tâm tam giác APQ. BÀI GIẢI a) Chứng minh : (góc nội tiếp chắn nửa đường tròn (O)). Nên Tam giác ANH vuông tại N. (do AH là đường cao của ABC) nên tam giác AHC vuông ở H. Do đó (cùng phụ ). b) Chứng minh tứ giác BMNC nội tiếp: Ta có : (hai góc nội tiếp cùng chắn cung AN). (câu a). Vậy: . Do đó tứ giác BMNC là một tứ giác nội tiếp. c) Chứng minh I là trực tâm tam giác APQ: OA = OH và QH = QC (gt) nên QO là đường trung bình của tam giác AHC. Suy ra: OQ//AC, mà AC AB nên QO AB. Tam giác ABQ có AH BQ và QO AB nên O là trực tâm của tam giác. Vậy BO AQ. Mặt khác PI là đường trung bình của tam giác BHO nên PI // BO. Kết hợp với BO AQ ta được PI AQ. Tam giác APQ có AH PQ và PI AQ nên I là trực tâm tam giác APQ (đpcm). Bài 11 Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C≠ A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh: a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó. b) KN là tiếp tuyến của đường tròn (O; R). c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định. BÀI GIẢI · ·AHN ACB= · ·AHN ACB= · 0 90ANH = · 0 90AHC =∆· ·AHN ACB=·HAC · ·AMN AHN= · ·AHN ACB= · ·AMN ACB= ⊥⊥ ⊥⊥⊥⊥⊥⊥⊥
    9. 13. H / / = = P O K I N M C BA a) Chứng minh tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó: Ta có (góc nội tiếp chắn nửa đường tròn (O)). Do đó: Tứ giác ICPN có nên nội tiếp được trong một đường tròn. Tâm K của đường tròn ngoại tiếp tứ giác ICPN là trung điểm của đoạn thẳng IP. b) Chứng minh KN là tiếp tuyến của đường tròn (O). Tam giác INP vuông tại N, K là trung điểm IP nên . Vậy tam giác IKN cân ở K . Do đó (1). Mặt khác (hai góc nội tiếp cùng chắn cung PN đường tròn (K)) (2) N là trung điểm cung CB nên . Vậy NCB cân tại N. Do đó : (3). Từ (1), (2) và (3) suy ra , hai góc này ở vị trí đồng vị nên KN // BC. Mặt khác ON BC nên KN ON. Vậy KN là tiếp tuyến của đường tròn (O). Chú ý: * Có thể chứng minh * hoặc chứng minh . c) Chứng minh rằng khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định: Ta có (gt) nên . Vậy OM là phân giác của . Tương tự ON là phân giác của , mà và kề bù nên . Vậy tam giác MON vuông cân ở O. Kẻ OH MN, ta có OH = chúng tôi = R. = không đổi. Vậy khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định (O; ). · · 0 90ACB ANB= = · · 0 90ICP INP= = · · 0 180ICP INP+ = 1 2 KN KI IP= = · ·KIN KNI= · ·NKP NCP= ” “CN BN CN NB= ⇒ =∆ · ·NCB NBC=· ·INK IBC= ⊥⊥ · · ·0 0 90 90KNI ONB KNO+ = ⇒ = · · ·0 0 90 90KNA ANO KNO+ = ⇒ = ¼ ¼AM MC=· ·AOM MOC=·AOC ·COB·AOC·COB· 0 90MON = ⊥2 2 2 2 R 2 2 R
    10. 14. / / // // H O K E D C B A _ = = / / O K H E D C B A Bài 12 Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC tới đường tròn ( B, C là các tiếp điểm). Đường thẳng qua A cắt đường tròn (O) tại D và E (D nằm giữa A và E , dây DE không qua tâm O). Gọi H là trung điểm của DE, AE cắt BC tại K . a) Chứng minh tứ giác ABOC nội tiếp đường tròn . b) Chứng minh HA là tia phân giác của c) Chứng minh : . BÀI GIẢI a) Chứng minh tứ giác ABOC nội tiếp: (tính chất tiếp tuyến) Tứ giác ABOC có nên nội tiếp được trong một đường tròn. b) Chứng minh HA là tia phân giác của góc BHC: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra . Do đó . Vậy HA là tia phân giác của góc BHC. c) Chứng minh : ABD và AEB có: chung, (cùng bằng sđ ) Suy ra : ABD ~ AEB Do đó: (1) ABK và AHB có: chung, (do ) nên chúng đồng dạng. Suy ra: (2) Từ (1) và (2) suy ra: chúng tôi = AK. AH === = (do AD + DE = AE và DE = 2DH). Vậy: (đpcm). Bài 13 Cho đường tròn (O;R) có đường kính AB. Trên đường tròn (O;R) lấy điểm M sao cho . Vẽ đường tròn (B; BM) cắt đường tròn (O; R) tại điểm thứ hai là N. ·BHC 2 1 1 AK AD AE = + · · 0 90ABO ACO= = · · 0 180ABO ACO+ = ” “AB AC=· ·AHB AHC= 2 1 1 AK AD AE = + ∆∆ ·BAE· ·ABD AEB=1 2 “BD ∆∆ 2 . AB AD AB AD AE AE AB = ⇒ = ∆∆ ·BAH· ·ABK AHB=” “AB AC= 2 . AK AB AB AK AH AB AH = ⇒ = 1 . AH AK AE AD ⇒ = 2 2 . AH AK AE AD ⇒ =( )2 . AD DH AE AD +2 2 . AD DH AE AD + = . AD AD ED AE AD + + . AE AD AE AD +1 1 AD AE + 2 1 1 AK AD AE = + · 0 60MAB =
    11. 15. 60° O J IN M B A a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). b) Kẻ các đường kính MOI của đường tròn (O; R) và MBJ của đường tròn (B; BM). Chứng minh N, I và J thẳng hàng và JI . JN = 6R2 c) Tính phần diện tích của hình tròn (B; BM) nằm bên ngoài đường tròn (O; R) theo R. BÀI GIẢI a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). Ta có . (góc nội tiếp chắn nửa đường tròn(O)). Điểm M và N thuộc (B;BM); AM MB và AN NB. Nên AM; AN là các tiếp tuyến của (B; BM). b) Chứng minh N; I; J thẳng hàng và JI .JN = 6R2 . (các góc nội tiếp chắn nửa đường tròn tâm O và tâm B). Nên IN MN và JN MN . Vậy ba điểm N; I và J thẳng hàng. Tam giác MJI có BO là đường trung bình nên IJ = 2BO = 2R. Tam giác AMO cân ở O (vì OM = OA), nên tam giác MAO đều. AB MN tại H (tính chất dây chung của hai đường tròn (O) và (B) cắt nhau). Nên OH = . Vậy HB = HO + OB = . Vậy JI . JN = 2R . 3R = 6R2 c) Tính diện tích phần hình tròn (B; BM) nằm ngoài đường tròn (O; R) theo R: Gọi S là diện tích phần hình tròn nằm (B; BM) nằm bên ngoài hình tròn (O; R). S1 là diện tích hình tròn tâm (B; BM). S2 là diện tích hình quạt MBN. S3 ; S4 là diện tích hai viên phân cung MB và NB của đường tròn (O; R). Ta có : S = S1 – (S2 + S3 + S4). Tính S1: . Vậy: S1 = . Tính S2: S2 = = Tính S3: S3 = Squạt MOB – SMOB. Squạt MOB = . OA = OB SMOB = SAMB = = = Vậy S3 = = S4 (do tính chất đối xứng). Từ đó S = S1 – (S2 + 2S3) · · 0 90AMB ANB= = ⊥ ⊥ · · 0 90MNI MNJ= =⊥⊥ · 0 60MAO = ⊥ 1 1 2 2 OA R= 3 2 2 R R R+ = 3 2. 3 2 R NJ R⇒ = = · “0 0 60 120MAB MB= ⇒ =3MB R⇒ = ( ) 2 2 3 3R Rπ π= · 0 60MBN = ⇒ ( ) 2 0 0 3 60 360 Rπ 2 2 Rπ · 0 120MOB = ⇒2 0 2 0 .120 360 3 R Rπ π = ⇒1 2 1 1 . . . 2 2 AM MB 1 . 3 4 R R 2 3 4 R 2 3 Rπ 2 3 4 R −
    12. 16. _ // // = M O I H D C BA = – = (đvdt). Bài 14 Cho đường tròn (O; R) , đường kính AB . Trên tiếp tuyến kẻ từ A của đường tròn này lấy điểm C sao cho AC = AB . Từ C kẻ tiếp tuyến thứ hai CD của đường tròn (O; R), với D là tiếp điểm. a) Chứng minh rằng ACDO là một tứ giác nội tiếp. b) Gọi H là giao điểm của AD và OC. Tính theo R độ dài các đoạn thẳng AH; AD. c) Đường thẳng BC cắt đường tròn (O; R) tại điểm thứ hai M. Chứng minh . d) Đường tròn (I) ngoại tiếp tam giác MHB. Tính diện tích phần của hình tròn này nằm ngoài đường tròn (O; R). BÀI GIẢI a) Chứng minh tứ giác ACDO nội tiếp: (tính chất tiếp tuyến). Tứ giác ACDO có nên nội tiếp được trong một đường tròn. b) Tính theo R độ dài các đoạn thẳng AH; AD: CA = CD (tính chất hai tiếp tuyến cắt nhau); OA = OD =R và AH = HD Tam giác ACO vuông ở A, AH OC nên = =. Vậy AH = và AD = 2AH = . c) Chứng minh : (góc nội tiếp chắn nửa đường tròn) . Hai đỉnh H và M cùng nhìn AC dưới góc 900 nên ACMH là tứ giác nội tiếp. Suy ra: . Tam giác ACB vuông tại A, AC = AB(gt) nên vuông cân. Vậy . Do đó : . d) Tính diện tích hình tròn (I) nằm ngoài đường tròn (O) theo R: Từ và mà (do CAB vuông cân ở B). Nên Tứ giác HMBO nội tiếp . Do đó . Vậy tâm I đường tròn ngoại tiếp tam giác MHB là trung điểm MB. Gọi S là diện tích phần hình tròn (I) ở ngoài đường tròn (O). 2 3 Rπ2 2 2 2 3 2 3 2 R R Rπ π  + − ÷ ÷   2 2 11 3 3 6 R Rπ + · 0 45MHD = · · 0 90CAO CDO= = · · 0 180CAO CDO+ = OC AD⇒ ⊥ ⊥ 2 2 2 1 1 1 AH AO AC = + ( ) 22 1 1 2R R + 2 5 4R 2 5 5 R4 5 5 R · 0 45MHD = · 0 90AMB =· 0 90CMA⇒ =· ·ACM MHD= · 0 45ACB = · 0 45MHD = · 0 90CHD =· 0 45MHD =· 0 45CHM⇒ =· 0 45CBA =∆ · ·CHM CBA= ⇒· · 0 90MHB MOB= =
    13. 17. E I K H ON M D C BA S1 là diện tích nửa hình tròn đường kính MB. S2 là diện tích viên phân MDB. Ta có S = S1 – S2 . Tính S1: . Vậy S1 = . Tính S2: S2 = SquạtMOB – SMOB = = . S = ( ) = . Bài 15 Cho đường tròn (O) đường kính AB bằng 6cm . Gọi H làđiểm nằm giữa A và B sao cho AH = 1cm. Qua H vẽ đường thẳng vuông góc với AB , đường thẳng này cắt đường tròn (O) tại C và D. Hai đường thẳng BC và DA cắt nhau tại M. Từ M hạ đường vuông góc MN với đường thẳng AB ( N thuộc thẳng AB). a) Chứng minh MNAC là tứ giác nội tiếp. b) Tính độ dài đoạn thẳng CH và tính tg. c) Chứng minh NC là tiếp tuyến của đường tròn (O). d) Tiếp tuyến tại A của đường tròn (O) cắt NC ở E. Chứng minh đường thẳng EB đi qua trung điểm của đoạn thẳng CH. BÀI GIẢI a) Chứng minh tứ giác MNAC nội tiếp: (góc nội tiếp chắn nửa đường tròn) Suy ra . Tứ giác MNAC có nên nội tiếp được trong một đường tròn. b) Tính CH và tg ABC. AB = 6 (cm) ; AH = 1 (cm) HB = 5 (cm). Tam giác ACB vuông ở C, CH AB CH2 = AH . BH = 1 . 5 = 5 (cm). Do đó tg ABC = . c) Chứng minh NC là tiếp tuyến của đường tròn (O): Ta có (hai góc nội tiếp cùng chắn cung AN của đường tròn ngoại tiếp tứ giác MNAC). (so le trong của MN // CD) và (cùng chắn ) Nên . Do sđ sđ . Suy ra CN là tiếp tuyến của đường tròn (O). (xem lại bài tập 30 trang 79 SGK toán 9 tập 2). d) Chứng minh EB đi qua trung điểm của CH: ” 0 90 2MB MB R= ⇒ = 2 2 1 2 . 2 2 4 R Rπ π   = ÷ ÷  ∆2 0 2 0 .90 360 2 R Rπ − 2 2 4 2 R Rπ − ∗2 4 Rπ − 2 2 4 2 R Rπ − 2 2 R ·ABC · 0 90ACB = · 0 90MCA =µ µ 0 180N C+ = ⇒ ⊥⇒ 5CH⇒ = 5 5 CH BH = · ·NCA NMA=· ·NMA ADC=· ·ADC ABC=”AC· ·NCA ABC=· 1 2 ABC = “AC· 1 2 NCA⇒ = “AC
    14. 18. / /? _ αK E H M O D C B A Gọi K là giao điểm của AE và BC; I là giao điểm của CH và EB. KE//CD (cùngvới AB) (đồng vị). (cùng chắn cung BD). (đối đỉnh) và (cùng chắn ). Suy ra: cân ở E. Do đó EK = EC. Mà EC = EA (tính chất hai tiếp tuyến cắt nhau) nên EK = EA. có CI // KE và có IH // AE . Vậy mà KE = AE nên IC = IH (đpcm). Bài 16 Cho đường tròn tâm O, đường kính AC. Vẽ dây BD vuông góc với AC tại K (K nằm giữa A và O). Lấy điểm E trên cung nhỏ CD (E không trùng C và D), AE cắt BD tại H. a) Chứng minh tam giác CBD cân và tứ giác CEHK nội tiếp. b) Chứng minh AD2 = AH. AE. c) Cho BD = 24cm; BC = 20cm. Tính chu vi hình tròn (O). d) Cho . Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tam giác MBC cân tại M. Tính góc MBC theo để M thuộc đường tròn (O). Hướng dẫn c) Tính BK = 12 cm, CK = 16 cm, dùng hệ thức lượng tính được CA = 25 cm R = 12,5 cm. Từ đó tính được C = 25 d) M (O) ta cần có tứ giác ABMC nội tiếp. Từ đó tính được . Bài 17 Cho nửa đường tròn (O) đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax và dây AC bất kỳ. Tia phân giác của góc xAC cắt nửa đường tròn tại D, các tia AD và BC cắt nhau tại E. a) Chứng minh ∆ABE cân. b) Đường thẳng BD cắt AC tại K, cắt tia Ax tại F . Chứng minh tứ giác ABEF nội tiếp. c) Cho . Chứng minh AK = 2CK. Bài 18 Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB; AC và cát tuyến AMN không đi qua tâm O. Gọi I là trung điểm MN. ⊥· ·AKB DCB⇒ =· ·DAB DCB=· ·DAB MAN=· ·MAN MCN=¼MN · ·EKC ECK KEC= ⇒ ∆ KBE∆⇒CI BI KE BE = ABE∆⇒IH BI AE BE = CI IH KE AE = ·BCD α= α ⇒ π ∈ ⇔· · 0 180ABM ACM+ =·0 0 90 2 180 2 MBC α ⇔ + + = · 0 180 4 MBC α− = · 0 30CAB =

    --- Bài cũ hơn ---

  • Lời Giải Toán Lớp 9
  • Đáp Án Củng Cố Và Ôn Luyện Tiếng Anh 9 Tập 2
  • Củng Cố Và Ôn Luyện Toán 9 Tập 1
  • Củng Cố Và Ôn Luyện Toán 9
  • Skills Trang 10 Unit 6 Sgk Tiếng Anh 11 Mới
  • Web hay
  • Links hay
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100