Top 9 # Giải Bài Tập Sbt Toán 8 Bài 8 Xem Nhiều Nhất, Mới Nhất 5/2023 # Top Trend | Caffebenevietnam.com

Giải Bài Tập Sbt Toán 8 Bài 8: Đối Xứng Tâm

Giải bài tập môn Toán Hình học lớp 8

Bài tập môn Toán lớp 8

Giải bài tập SBT Toán 8 bài 8: Đối xứng tâm được VnDoc sưu tầm và đăng tải, tổng hợp lý thuyết. Đây là lời giải hay cho các câu hỏi trong sách bài tập nằm trong chương trình giảng dạy môn Toán lớp 8. Hi vọng rằng đây sẽ là những tài liệu hữu ích trong công tác giảng dạy và học tập của quý thầy cô và các em học sinh.

Giải bài tập SBT Toán 8 bài 6: Đối xứng trực Giải bài tập SBT Toán 8 bài 7: Hình bình hành Giải bài tập SBT Toán 8 bài 9: Hình chữ nhật

Câu 1: Cho hình vẽ, trong đó ABCD là hình bình hành. Chứng minh rằng điểm M đối xứng với điểm N qua điểm c

Lời giải:

Tứ giác ABCD là hình bình hành:

⇒ AB

Xét tứ giác BMCD ta có:

BM

BM = CD (gt)

Suy ra: Tứ giác BMCD là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ MC

AD

Xét tứ giác BCND ta có: DN

Suy ra: Tứ giác BCND là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ CN

Từ (1) và (2) suy ra: M, C, N thẳng hàng và MC = CN.

Câu 2: Cho hình vẽ trong đó DE

Lời giải:

Ta có: DE

DF

Tứ giác AEDF là hình bình hành.

I là trung điểm của AD nên EF đi qua trung điểm I là IE = IP (tính chất hình bình hành)

Vậy E và F đối xứng qua tâm I.

Câu 3: Cho tam giác ABC, các đường trung tuyến BM, CN. Gọi D là điểm đối xứng với B qua M, gọi E là điểm đối xứng Với C qua N. Chứng minh rằng điểm D đối xứng với điểm E qua điểm A.

Lời giải:

* Xét tứ giác ABCD, ta có:

MA = MC (gt)

MB = MD (định nghĩa đối xứng tâm)

Suy ra: Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

⇒ AD

* Xét tứ giác ACBE, ta có:

AN = NB (gt)

NC = NE (định nghĩa đối xứng tâm)

Suy ra: Tứ giác ACBE là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường) ⇒ AE

Từ (1) và (2) suy ra: A, D, E thẳng hàng và AD = AE

Nên A là trung điểm của DE hay điểm D đối xứng với điểm E qua điểm A.

Câu 4: Cho tam giác ABC vuông tại A, điểm D thuộc cạnh BC. Gọi E là điểm đối xứng với D qua AB, gọi F là điểm đối xứng với D qua AC. Chứng minh rằng các điểm E và F đối xứng với nhau qua điểm A.

Lời giải:

* Vì E đối xứng với D qua AB

⇒ AB là đường trung trực của đoạn thẳng DE

⇒ AD = AE (tỉnh chất đường trung trực)

Nên ΔADE cân tại A

Suy ra: AB là đường phân giác của ∠(DAE) ⇒ ∠A1= ∠A2

* Vì F đối xứng với D qua AC

⇒ AC là đường trung trực của đoạn thẳng DF

⇒ AD = AF (tính chất đường trung trực)

Nên ΔADF cân tại A

Suy ra: AC là phân giác của ∠(DAF)

⇒ ∠A3= ∠A4

∠(EAF) = ∠(EAD) + ∠(DAF) = ∠A1+ ∠A2+ ∠A3+ ∠A4= 2(∠A1+ ∠A3) = 2.90 o= 180 o

⇒ E, A, F thẳng hàng có AE = AF = AD

Nên A là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm A.

Câu 5: Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh đối AD, BC ở E, F. Chứng minh E và F đối xứng với nhau qua điểm O.

Lời giải:

Xét ΔOED và ΔOFB, ta có:

∠(EOD)= ∠(FOB)(đối đỉnh)

OD = OB (tính chất hình bình hành)

∠(ODE)= ∠(OBF)(so le trong)

Do đó: ΔOED = ΔOFB (g.c.g)

⇒ OE = OF

Vậy O là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm O

Câu 6: Cho hình bên, trong đó ABCD là hình bình hành. Chứng minh H và K đối xứng với nhau qua điểm O

Lời giải:

Xét hại tam giác vuông AHO và CKO, ta có:

∠(AHO)= ∠(CKO)= 90 o

OA = OC (tính chất hình bình hành)

∠(AOH)= ∠(COK)(đối đỉnh)

Suy ra: ΔAHO = ΔCKO (cạnh huyền, góc nhọn)

⇒ OH = OK

Vậy O là trung điểm của HK hay điểm H đối xứng với điểm K qua điểm O

Câu 7: Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Gọi O là một điểm bất kỳ nằm trong tam giác ABC. Vẽ điểm M đối xứng với O qua D. Vẽ điểm N đối xứng với O qua E. Chứng minh rằng MNCB là hình bình hành.

Lời giải:

* Xét tứ giác AOBM, ta có:

DA = DB (gt)

DO = DM (định nghĩa đối xứng tâm)

Suy ra: Tứ giác AOBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

⇒ BM

* Xét tứ giác AOCN, ta có: EA = EC (gt)

EO = EN (định nghĩa đối xứng tâm)

Suy ra: Tứ giác AOBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

⇒ CN

Từ (1) và (2) suy ra:BM

Vậy tứ giác BMNC là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau).

Câu 8: Cho tam giácABC, các đường trungtuyến AD, BE, CF cắt nhau tại G. Gọi H là điểm đối xứng với G qua D, I là điểm đối xứng với G qua E, K là điểm đối xứng với G qua F. Tìm các điểm đối xứng với A, với B, với C qua G.

Lời giải:

* Ta có: GD = DH (tính chất đối xứng tâm)

⇒ GH = 2GD (l)

GA = 2GD (tính chất đường trung tuyến của tam giác) (2)

Từ (1) và (2) suy ra: GA = GH

Suy ra điểm đối xứng với điểm A qua tâm G là H.

* Ta có: GE = EI (tính chất đối xứng tâm)

⇒ GI = 2GB (3)

GB = 2GE (tính chất đường trung tuyên của tam giác) (4)

Từ (3) và (4) suy ra: GB = GI

Suy ra điểm đối xứng với điểm B qua tâm G là I.

GF = FK (tỉnh chất đối xứng tâm)

⇒ GK = 2GF (5)

GC = 2GF (tính chất đường trung tuyến của tam giác) (6)

Từ (5) và (6) Suy ra: GC = GK

Suy ra điểm đối xứng với điểm C qua tâm G là điểm K

Câu 9: Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng cắt đường thẳng cắt hai cạnh AB, CD ở E, F. Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G, H. Chứng minh rằng EGFH là hình bình hành.

Lời giải:

* Xét ΔOAE và ΔOCF, ta có:

OA = OC (tính chất hình bình hành)

∠(AOE)= ∠(COF)(đối đỉnh)

∠(OAE)= ∠(OCF)(so le trong)

Do đó: ΔOAE = ΔOCF (g.c.g)

⇒ OE = OF (l)

* Xét ΔOAG và ΔOCH, ta có:

OA = OC (tính chất hình bình hành)

∠(AOG) = ∠(COH)(dối đỉnh)

∠(OAG) = ∠(OCH)(so le trong).

Do đó: ΔOAG = ΔOCH (g.c.g)

⇒ OG = OH (2)

Từ (1) và (2) suy ra tứ giác EGFH là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường).

Câu 10: Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm G đối xứng với A qua Oy.

a, Chứng minh rằng OB = OC

b, Tính số đo góc xOy để B đối xứng với A qua O

Lời giải:

a, Vì B đối xứng với A qua trục Ox nên Ox là đường trung trực của đoạn AB.

⇒ OA = OB (tính chất đường trung trực) (1)

Vì C đối xứng với A qua trục Ọy nên Oy là đườngtrung trực của đoạn AC.

⇒ OA = OC (tỉnh chất đường trung trực) (2)

Từ (l) và (2) suy ra: OB = OC.

b, Vì OB = OC nên để điểm B đối xứng với C qua tâm O cần thêm điều kiện B, O, C thằng hàng

ΔOAB cân tại O có Ox là đường trung trực của AB nên Ox cũng là đường phân giác của ∠(AOB) ⇒ ∠O1= ∠O3

ΔOAC cân tại O có Oy là đường trung trực của AC nên Oy cũng là đường phân giác của ∠(AOC) ⇒ ∠O2= ∠O4

Vì B, O, C thẳng hàng nên:

∠O1+∠O2+∠O3+∠O4 = 180 o ⇒ 2 ∠O1+ 2 ∠O2= 180 o

⇒ ∠O1+∠O2= 90o ⇒ ∠(xOy) = 90 o

Vậy ∠(xOy) = 90o thì B đối xứng với C qua tâm O

Giải Sbt Toán 8 Bài 8: Đối Xứng Tâm

Giải SBT Toán 8 Bài 8: Đối xứng tâm

Bài 92 trang 91 SBT Toán 8 Tập 1: Cho hình vẽ, trong đó ABCD là hình bình hành. Chứng minh rằng điểm M đối xứng với điểm N qua điểm c

Lời giải:

Tứ giác ABCD là hình bình hành:

⇒ AB

Xét tứ giác BMCD ta có:

BM

BM = CD (gt)

Suy ra: Tứ giác BMCD là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ MC

AD

Xét tứ giác BCND ta có: DN

Suy ra: Tứ giác BCND là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ CN

Từ (1) và (2) suy ra: M, C, N thẳng hàng và MC = CN.

Bài 93 trang 92 SBT Toán 8 Tập 1: Cho hình vẽ trong đó DE

Lời giải:

Ta có: DE

DF

Tứ giác AEDF là hình bình hành.

I là trung điểm của AD nên EF đi qua trung điểm I là IE = IP (tính chất hình bình hành)

Vậy E và F đối xứng qua tâm I.

Bài 94 trang 92 SBT Toán 8 Tập 1: Cho tam giác ABC, các đường trung tuyến BM, CN. Gọi D là điểm đối xứng với B qua M, gọi E là điểm đối xứng Với C qua N. Chứng minh rằng điểm D đối xứng với điểm E qua điểm A.

Lời giải:

* Xét tứ giác ABCD, ta có:

MA = MC (gt)

MB = MD (định nghĩa đối xứng tâm)

Suy ra: Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

⇒ AD

* Xét tứ giác ACBE, ta có:

AN = NB (gt)

NC = NE (định nghĩa đối xứng tâm)

Suy ra: Tứ giác ACBE là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường) ⇒ AE

Từ (1) và (2) suy ra: A, D, E thẳng hàng và AD = AE

Nên A là trung điểm của DE hay điểm D đối xứng với điểm E qua điểm A.

Bài 95 trang 92 SBT Toán 8 Tập 1: Cho tam giác ABC vuông tại A, điểm D thuộc cạnh BC. Gọi E là điểm đối xứng với D qua AB, gọi F là điểm đối xứng với D qua AC. Chứng minh rằng các điểm E và F đối xứng với nhau qua điểm A.

Lời giải:

* Vì E đối xứng với D qua AB

⇒ AB là đường trung trực của đoạn thẳng DE

⇒ AD = AE (tỉnh chất đường trung trực)

Nên ΔADE cân tại A

Suy ra: AB là đường phân giác của ∠(DAE) ⇒ ∠A 1= ∠A 2

* Vì F đối xứng với D qua AC

⇒ AC là đường trung trực của đoạn thẳng DF

⇒ AD = AF (tính chất đường trung trực)

Nên ΔADF cân tại A

Suy ra: AC là phân giác của ∠(DAF)

⇒ E, A, F thẳng hàng có AE = AF = AD

Nên A là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm A.

Bài 96 trang 92 SBT Toán 8 Tập 1: Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh đối AD, BC ở E, F. Chứng minh E và F đối xứng với nhau qua điểm O.

Lời giải:

Xét ΔOED và ΔOFB, ta có:

∠(EOD)= ∠(FOB)(đối đỉnh)

OD = OB (tính chất hình bình hành)

∠(ODE)= ∠(OBF)(so le trong)

Do đó: ΔOED = ΔOFB (g.c.g)

⇒ OE = OF

Vậy O là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm O

Bài 97 trang 92 SBT Toán 8 Tập 1: Cho hình bên, trong đó ABCD là hình bình hành. Chứng minh H và K đối xứng với nhau qua điểm O

Lời giải:

Xét hại tam giác vuông AHO và CKO, ta có:

∠(AHO)= ∠(CKO)= 90 o

OA = OC (tính chất hình bình hành)

∠(AOH)= ∠(COK)(đối đỉnh)

Suy ra: ΔAHO = ΔCKO (cạnh huyền, góc nhọn)

⇒ OH = OK

Vậy O là trung điểm của HK hay điểm H đối xứng với điểm K qua điểm O

Bài 98 trang 92 SBT Toán 8 Tập 1: Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Gọi O là một điểm bất kỳ nằm trong tam giác ABC. Vẽ điểm M đối xứng với O qua D. Vẽ điểm N đối xứng với O qua E. Chứng minh rằng MNCB là hình bình hành.

Lời giải:

* Xét tứ giác AOBM, ta có:

DA = DB (gt)

DO = DM (định nghĩa đối xứng tâm)

Suy ra: Tứ giác AOBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

⇒ BM

* Xét tứ giác AOCN, ta có: EA = EC (gt)

EO = EN (định nghĩa đối xứng tâm)

Suy ra: Tứ giác AOBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

⇒ CN

Từ (1) và (2) suy ra:BM

Vậy tứ giác BMNC là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau).

Bài 99 trang 92 SBT Toán 8 Tập 1: Cho tam giácABC, các đường trungtuyến AD, BE, CF cắt nhau tại G. Gọi H là điểm đối xứng với G qua D, I là điểm đối xứng với G qua E, K là điểm đối xứng với G qua F. Tìm các điểm đối xứng với A, với B, với C qua G.

Lời giải:

* Ta có: GD = DH (tính chất đối xứng tâm)

⇒ GH = 2GD (l)

GA = 2GD (tính chất đường trung tuyến của tam giác) (2)

Từ (1) và (2) suy ra: GA = GH

Suy ra điểm đối xứng với điểm A qua tâm G là H.

* Ta có: GE = EI (tính chất đối xứng tâm)

⇒ GI = 2GB (3)

GB = 2GE (tính chất đường trung tuyên của tam giác) (4)

Từ (3) và (4) suy ra: GB = GI

Suy ra điểm đối xứng với điểm B qua tâm G là I.

GF = FK (tỉnh chất đối xứng tâm)

⇒ GK = 2GF (5)

GC = 2GF (tính chất đường trung tuyến của tam giác) (6)

Từ (5) và (6) Suy ra: GC = GK

Suy ra điểm đối xứng với điểm C qua tâm G là điểm K

Bài 100 trang 92 SBT Toán 8 Tập 1: Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng cắt đường thẳng cắt hai cạnh AB, CD ở E, F. Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G, H. Chứng minh rằng EGFH là hình bình hành.

Lời giải:

* Xét ΔOAE và ΔOCF, ta có:

OA = OC (tính chất hình bình hành)

∠(AOE)= ∠(COF)(đối đỉnh)

∠(OAE)= ∠(OCF)(so le trong)

Do đó: ΔOAE = ΔOCF (g.c.g)

⇒ OE = OF (l)

* Xét ΔOAG và ΔOCH, ta có:

OA = OC (tính chất hình bình hành)

∠(AOG) = ∠(COH)(dối đỉnh)

∠(OAG) = ∠(OCH)(so le trong).

Do đó: ΔOAG = ΔOCH (g.c.g)

⇒ OG = OH (2)

Từ (1) và (2) suy ra tứ giác EGFH là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường).

Bài 101 trang 92 SBT Toán 8 Tập 1: Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm G đối xứng với A qua Oy.

a. Chứng minh rằng OB = OC

b. Tính số đo góc xOy để B đối xứng với A qua O

Lời giải:

a. Vì B đối xứng với A qua trục Ox nên Ox là đường trung trực của đoạn AB.

⇒ OA = OB (tính chất đường trung trực) (1)

Vì C đối xứng với A qua trục Ọy nên Oy là đườngtrung trực của đoạn AC.

⇒ OA = OC (tỉnh chất đường trung trực) (2)

Từ (l) và (2) suy ra: OB = OC.

b. Vì OB = OC nên để điểm B đối xứng với C qua tâm O cần thêm điều kiện B, O, C thằng hàng

ΔOAB cân tại O có Ox là đường trung trực của AB nên Ox cũng là đường phân giác của ∠(AOB) ⇒ ∠O 1= ∠O 3

ΔOAC cân tại O có Oy là đường trung trực của AC nên Oy cũng là đường phân giác của ∠(AOC) ⇒ ∠O 2= ∠O 4

Vì B, O, C thẳng hàng nên:

Vậy ∠(xOy) = 90 o thì B đối xứng với C qua tâm O

Bài 102 trang 92 SBT Toán 8 Tập 1: Cho tam giác ABC có trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M. Tính số đo các góc ABK, ACK

Lời giải:

Ta có K là điểm đối xứng của H qua tâm M nên MK = MH

Xét tứ giác BHCK, ta có:

BM = MC (gt)

MK = MH (chứng minh trên)

Suy ra: Tứ giác BHCK là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Suy ra: KB

Ta có: CH ⊥ AB (gt)

Suy ra: KB ⊥ AB nên ∠(KBA) = 90 o

Ta có: BH ⊥ AC (gt)

Suy ra: CK ⊥ AC nên ∠(KCA) = 90 o

Bài 103 trang 92 SBT Toán 8 Tập 1: Trong các hình sau, hình nào có tâm đối xứng? Với các hình đó, hãy chỉ ra tâm đối xứng của hình.

a. Đoạn thẳng AB.

b. Tam giác đều ABC.

c. Đường tròn tâm O.

Lời giải:

a. Đoạn thẳng AB là hình có tâm đối xứng. Tâm đối xứng của đoạn thẳng AB là trung điểm của nó.

b. Tam giác đều ABC là hình không có tâm đối xứng.

c. Đường tròn tâm O là hình có tâm đối xứng. Tâm đối xứng của (O) là tâm của đường tròn đó.

Bài 104 trang 93 SBT Toán 8 Tập 1: Cho góc xOy và điểm A nằm trong góc đó.

a. Vẽ điểm B đối xứng với O qua A. Qua B vẽ đường thẳng song song với Ox, cắt Oy ở C. Gọi D là giao điểm của CA và Ox. Chứng minh rằng các điểm C và D đối xứng với nhau qua điểm A.

b. Từ đó suy ra cách dựng hình đường thẳng đi qua A, cắt OX, Oy ở C, D sao cho A là trung điểm của CD.

Lời giải:

a. Xét ΔOAD và ΔBAC, ta có:

OA = OB (tính chất đối xứng tâm)

Do đó: ΔOAD = ΔBAC (g.c.g)

⇒ AD = AC

Suy ra: C đối xứng với D qua tâm A.

b. Cách dựng:

– Dựng B đối xứng với O qua tâm A.

– Qua B dựng đường thẳng song song Ox cắt Oy tại C.

– Dựng tia CA cắt OX tại D.

Ta có D là điểm cần dựng.

Chứng minh:

Xét ΔOAD và ΔBAC, ta có:

OA = OB (tính chất đối xứng tâm)

Do đó: ΔOAD = ΔBAC (g.c.g)

⇒ AD = AC

Suy ra: C đối xứng với D qua tâm A.

Bài 105 trang 93 SBT Toán 8 Tập 1: Cho tam giác ABC, điểm M nằm trên cạnh BC. Gọi O là trung điểm của AM. Dựng điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho E đối xứng với F qua O

Lời giải:

Cách dựng:

– Qua điểm M dựng đường thẳng song song với AC cắt AB tại E.

– Qua điểm M dựng đường thẳng song song với AB cắt AC tại F.

Chứng minh:

Ta có: ME

MF

Nên tứ giác AEMF là hình bình hành.

Ta có: O là trung điểm của AM

Suy ra: EF đi qua O (tính chất hình bình hành)

⇒ OE = OF

Vậy E đối xứng với F qua tâm O

Bài 8.1 trang 93 SBT Toán 8 Tập 1: Xét tính đúng – sai của mỗi khẳng định sau:

a. Trung điểm của một đoạn thẳng là tâm đối xứng của đoạn thẳng đó.

b. Giao điểm hai đường chéo của một hình bình hành là tâm đối xứng của hình bình hành đó.

c. Trọng tâm của một tam giác là tâm đối xứng của tam giác đó.

d. Tâm của một đường tròn là tâm đối xứng của đường tròn đó.

Lời giải:

a. Đúng

b. Đúng

c. Sai

d. Đúng

Bài 8.2 trang 93 SBT Toán 8 Tập 1: Cho tam giác ABC, đường trung tuyến AM và trọng tâm G. Gọi I là điểm đối xứng với A qua G.

Chứng minh rằng I là điểm đối xứng với G qua M.

Lời giải:

I đối xứng với A qua tâm G

ta có: GA = GI, GM ∈ GA ( tính chất đường trung tuyến của tam giác)

Suy ra: GM ∈ GI

Mà: GM + MI = GI

Suy ra: GM = MI nên điểm M là trung điểm của GI

Vậy I đối xứng với G qua tâm M.

Giải Bài Tập Sbt Toán 8 Bài 11: Hình Thoi

Giải bài tập môn Toán Hình học lớp 8

Bài tập môn Toán lớp 8

Giải bài tập SBT Toán 8 bài 11: Hình thoi được VnDoc sưu tầm và đăng tải, tổng hợp lý thuyết. Đây là lời giải hay cho các câu hỏi trong sách bài tập nằm trong chương trình giảng dạy môn Toán lớp 8. Hi vọng rằng đây sẽ là những tài liệu hữu ích trong công tác giảng dạy và học tập của quý thầy cô và các em học sinh.

Giải bài tập SBT Toán 8 bài 9: Hình chữ nhật Giải bài tập SBT Toán 8 bài 10: Đường thẳng song song với một đường thẳng cho trước Giải bài tập SBT Toán 8 bài 12: Hình vuông

Câu 1: Chứng minh rằng trung điểm bốn cạnh của một hình chữ nhật là một hình thoi.

Lời giải:

Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BD, CD, DA của hình chữ nhật ABCD.

Kẻ đường chéo AC.

* Trong ΔABC, ta có:

E là trung điểm của AB

F là trung điểm của BC

Nên EF là đường trung bình của ΔABC.

⇒ EF

Trong ΔADC, ta có: H là trung điểm của AD

G là trung điểm của DC

Nên HG là đường trung bình của tam giác ADC.

⇒ HG

Từ (1) và (2) suy ra: EF

Suy ra tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Xét ΔAEH và ΔDGH, ta có: AH = HD (gt)

AEH và DGH = 90 o

AE = DG (vì AB = CD)

Suy ra: ΔAEH = ΔDGH (c.g.c) ⇒ HE = HG

Vậy hình bình hành EFGH là hình thoi (có 2 cạnh kề bằng nhau).

Câu 2: Chứng minh rằng trung điểm các cạnh của một hình thoi là đỉnh của một hình chữ nhật.

Lời giải:

Giả sử hình thoi ABCD. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA.

* Trong ΔABC, ta có:

E là trung điểm của AB

F là trung điểm của BC

Nên EF là đường trung bình của ΔABC.

⇒ EF

* Trong ΔADC, ta có: H là trung điểm của AD

G là trung điểm của CD

Nên HG là đường trung bình của tam giác ADC

⇒ HG

Từ (1) và (2) suy ra: EF

Suy ra tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Mặt khác: AC ⊥ BD (tính chất hình thoi)

EF

Suy ra: EF ⊥ BD

Trong ΔABD ta có EH là đường trung bình

⇒ BH

Suy ra: EH ⊥ EF hay ∠(FEH) = 1v

Vậy hình bình hành EFGH là hình chữ nhật.

Câu 3: Chứng minh rằng trong hình thoi:

a, Giao điểm của hai đường thẳng chéo là tâm đối xứng của hình thoi.

b, Hai đường chéo là hai trục đối xứng của hình thoi.

Lời giải:

a, Hình bình hành có tâm đối xứng là giao điểm của hai đường chéo. Hình thoi cũng là một hình bình hành nên cũng có tâm đối xứng là giao điểm hai đường chéo của nó.

b, * Ta có: AC ⊥ BD (tính chất hình thoi)

OB = OD (tính chất hình thoi)

Nên AC là đường trung trực của BD.

Do đó điểm đối xứng với điểm B qua AC là D;

Điểm đối xứng với điểm A qua AC là điểm A;

Điểm đối xứng với điểm C qua AC là điểm C

Vậy điểm đối xứng với mỗi đỉnh của hình thoi qua AC cũng thuộc hình thoi

Do đó AC là trục đối xứng của hình thoi ABCD.

* Ta có : OC = OA (tính chất hình thoi)

Nên BD là đường trung trực của AC

Do đó điểm đối xứng với điểm A qua BD là điểm C

Điểm đối xứng với điểm B qua BD là điểm B

Điểm đối xứng với điểm D qua BD là điểm D

Vậy điểm đối xứng với mỗi đỉnh của hình thoi qua BD cũng thuộc hình thoi.

Do đó BD là trục đối xứng của hình thoi ABCD.

Câu 4: Tứ giác ABCD có tọa độ các đỉnh như sau A(0;2); B(3; 0); C(0;-2) ; D(-3;0).Tứ giác ABCD là hình gì ? Tính chu vi của tứ giác đó.

Lời giải:

Ta có: A(0;2) và C(0;-2) là hai điểm đối xứng qua O(0;0)

⇒ OA = OC

B(3;0) và D(-3; 0) là hai điểm đối xứng qua O(0;0)

⇒ OB = OD

Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

Lại có: Ox ⊥ Oy hay AC ⊥ BD.

Vậy tứ giác ABCD là hình thoi

Trong ΔOAB vuông tại O, theo định lý Pi-ta-go ta có:

AB = √13

Vậy chu vi của hình thoi bằng 4√13

Câu 5: a, Cho hình thoi ABCD, kẻ đường cao AH, AK. Chứng minh rằng AH =AK.

b, Hình bình hành ABCD có hai đường cao AH, AK bằng nhau. Chứng minh rằng ABCD là hình thoi

Lời giải:

a, Xét hai tam giác vuông AHB và AKD, ta có:

∠(AHB) =∠(AKD) = 90o

AB = AD (gt)

∠B = ∠D (tính chất hình thoi)

Suy ra: ΔAHB = ΔAKD (cạnh huyền, góc nhọn)

⇒ AH = AK

b, Xét hai tam giác vuông AHC và AKG, ta có:

∠(AHC) = ∠(AKC) = 90o

AH = AK (gt)

AC cạnh huyền chung

Suy ra: ΔAHC = ΔAKC (cạnh huyền, góc nhọn)

⇒ ∠(ACH) = ∠(ACK) hay ∠(ACB) = ∠(ACD)

⇒ CA là tia phân giác ∠(BCD)

Hình bình hành ABCD có đường chéo CA là đường phân giác nên là hình thoi.

Câu 6: Hình thoi ABCD có ∠A = 60o. Kẻ hai đường cao BE, BF. Tam giác BEF là tam giác gì? Vì sao?

Lời giải:

Xét hai tam giác vuông BEA và BFC, ta có:

∠(BEA) = ∠(BFC) = 90 o

∠A = ∠O (tính chất hình thoi)

BA = BC (gt)

Suy ra: ΔBEA = ΔBFC (cạnh huyền, góc nhọn)

Do đó, ta có:

* BE = BF ⇒ ΔBEF cân tại B

* ∠B1 = ∠B2

Trong tam giác vuông BEA, ta có:

⇒ ∠B2= ∠B1 = 30 o

∠A + ∠(ABC) = 180 o (hai góc trong cùng phía bù nhau)

⇒ ∠(ABC) = ∠B1+ ∠B2+ ∠B3

Vậy ΔBEF đều.

Câu 7: Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân Các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì? Vì sao?

Lời giải:

Ta có: AB

OE ⊥ AB (gt)

⇒ OE ⊥CD

OG ⊥CD(gt)

Suy ra OE trùng với OG nên ba điểm O,E,G thẳng hàng.

BC

OF ⊥ BC (gt)

⇒ OF ⊥ AD

OH ⊥ AD (gt)

Suy ra OF trùng với OH nên ba điểm O,H,F thẳng hàng.

Vì AC và BD là đường phân giác các góc của hình thoi nên:

OE = OF ( t/chất tia phân giác) (1)

OE = OH ( t/chất tia phân giác) (2)

OH = OG ( t/chất tia phân giác) (3)

Tứ giác EFGH có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên nó là hình chữ nhật.

Lời giải:

Chu vi hình thoi bằng 16(cm) nên độ dài một cạnh bằng:

16 : 4 = 4(cm)

Gọi M là trung điểm của AD.

*Trong tam giác vuông AHD ta có HM là trung tuyến thuộc cạnh huyền, suy ra: HM = AM = 1/2 AD = 1/2 . 4 = 2(cm)

⇒ AM = HM = AM = 2cm

⇒ Δ AHM đều

*Trong tam giác vuông AHD, ta có:

⇒ ∠B = ∠D = 30 o ( t/chất hình thoi)

∠B + ∠C = 180 o (hai góc trong cùng phía bù nhau)

⇒ ∠A = ∠C = 150 o (tính chất hình thoi).

Câu 9: Hình thoi ABCD có góc A = 60 o. Trên cạnh AD lấy điểm M, trên canh CD lấy điểm N sao cho AM = DN. Tam giác AMN là tam giác gì? Vì sao?

Lời giải:

Nối BD, ta có AB = AD (gt)

Suy ra Δ ABD cân tại A

Mà ∠A = 60o ⇒ ΔABD đều

⇒ ∠(ABD) = ∠D = 60 o và BD = AB

Suy ra: BD = BC = CD

⇒Δ CBD đều ⇒ ∠D2= 60 o

Xét ΔBAM và ΔBDN,ta có:

AB = BD (chứng minh trên)

AM = DN

Do đó ΔBAM = ΔBDN (c.g.c) ⇒ ∠B1= ∠B3 và BM = BN

Suy ra ΔBMN cân tại B.

Mà ∠B2+∠B1 = ∠(ABD) = 60 o

Suy ra: ∠B2+ ∠B3 = ∠(MBN) = 60 o

Vậy ΔBMN đều

Câu 10: Cho tam giác ABC. Lấy các điểm D,E theo thứ tự trên cạnh AB, AC sao cho BD = CE. Gọi M,N,I,K theo thứ tự là trung điểm của BE, CD, DE, BC. Chứng minh rằng IK vuông góc với MN.

Lời giải:

*Trong ΔBCD, ta có:

K là trung điểm của BC (gt)

N là trung điểm của CD (gt)

Nên NK là đường trung bình của ΔBCD

⇒ NK

*Trong ΔBED, ta có:

M là trung điểm của BE (gt)

I là trung điểm của DE (gt)

Nên MI là đường trung bình của ΔBED

⇒ MI

Từ (1) và (2) suy ra: MI

Nên tứ giác MKNI là hình bình hành.

*Trong ΔBEC ta có MK là đường trung bình.

⇒ MK = 1/2 CE (t/chất đường trung bình của tam giác)

BD = CE (gt). Suy ra: MK = KN

Vậy hình bình hành MKNI là hình thoi.

⇒IK ⊥ MN (t/chất hình thoi).

Giải Sbt Toán 8 Bài 2: Hình Thang

Giải SBT Toán 8 Bài 2: Hình thang

Bài 11 trang 81 SBT Toán 8 Tập 1: Tính các góc của hình thang ABCD (AB

Lời giải:

Ta có: AB

Ta có: A = 3D (gt)

B + C = 180 o (hai góc trong cùng phía)

Bài 12 trang 81 SBT Toán 8 Tập 1: Tứ giác ABCD có BC = CD và DB là tia phân giác của góc D. chứng minh rằng ABCD là hình thang.

Lời giải:

ΔBCD có BC = CD (gt) nên ΔBCD cân tại C.

⇒ ∠B 1= ∠D 1(tính chất tam giác cân)

Do đó: BC

Vậy ABCD là hình thang.

Bài 13 trang 81 SBT Toán 8 Tập 1: Xem các hình dưới và cho biết:

a. Tứ giác ở hình (1) chỉ có mấy cặp cạnh đối song song?

b. Tứ giác ở hình (3) có mấy cặp cạnh đối song song?

c. Tứ giác ở hình nào là hình thang?

Lời giải:

a. Tứ giác ở hình (1) chỉ có 1 cặp cạnh đối song song.

b. Tứ giác ở hình (3) có hai cặp cạnh đối song song.

c. Tứ giác ở hình (1) và hình (3) là hình thang.

Bài 14 trang 81 SBT Toán 8 Tập 1: Tính các góc B và D của hình thang ABCD, biết rằng: A = 60 o, C = 130 o

Lời giải:

Trong hình thang ABCD, ta có A và C là hai góc đối nhau.

a. Trường hợp A và B là 2 góc kề với cạnh bên.

⇒ AB

A + B = 180 o (hai góc trong cùng phía bù nhau)

C + D = 180 o (hai góc trong cùng phía bù nhau)

b. Trường hợp A và D là 2 góc kề với cạnh bên.

⇒ AB

A + D = 180 o (hai góc trong cùng phía bù nhau)

C + B = 180 o (hai góc trong cùng phía bù nhau)

Bài 15 trang 81 SBT Toán 8 Tập 1: Chứng minh rằng trong hình thang có nhiều nhất là hai góc tù, có nhiều nhất là hai góc nhọn.

Lời giải:

Xét hình thang ABCD có AB

Ta có:

* ∠A và ∠D là hai góc kề với cạnh bên

⇒ ∠A + ∠D = 180 o (2 góc trong cùng phía) nên trong hai góc đó có nhiều nhất 1 góc nhọn và có nhiều nhất là 1 góc tù.

* ∠B và ∠C là hai góc kề với cạnh bên

⇒ ∠B + ∠C = 180 o (2 góc trong cùng phía) nên trong hai góc đó có nhiều nhất 1 góc nhọn và có nhiều nhất là 1 góc tù.

Vậy trong bốn góc là A, B, C, D có nhiều nhất là hai góc tù và có nhiều nhất là hai góc nhọn.

Bài 16 trang 81 SBT Toán 8 Tập 1: Chứng minh rằng trong hình thang các tia phân giác của hai góc kề với một cạnh bên vuông góc với nhau.

Lời giải:

Giả sử hình thang ABCD có AB

Mà ∠A + ∠D = 180 o (2 góc trong cùng phía bù nhau)

* Trong ΔAED, ta có:

(AED) + ∠A 1+ ∠D 1= 180 o (tổng 3 góc trong tam giác)

Bài 17 trang 81 SBT Toán 8 Tập 1: Cho tam giác ABC, các tia phân giác của các góc B và C cắt nhau ở I. Qua I kẻ đường thẳng song song với BC cắt các cạnh AB và AC ở D và E.

a. Tìm các hình thang trong hình vẽ.

b. Chứng minh rằng hình thang BDEC có một đáy bằng tổng hai cạnh bên.

Lời giải:

a. Đường thẳng đi qua I song song với BC cắt AB tại D và AC tại E, ta có các hình thang sau: BDEC, BDIC, BIEC

b. DE

⇒ ∠I 1= ∠B 1(hai góc so le trong)

Do đó: ΔBDI cân tại D ⇒ DI = DB (1)

Suy ra: ∠I 1= ∠C 2 do đó: ΔCEI cân tại E

⇒ IE = EC (2)

DE = DI + IE (3)

Từ (1), (2), (3) suy ra: DE = BD + CE

Bài 18 trang 82 SBT Toán 8 Tập 1: Cho tam giác ABC vuông cân tại A. Ở phía ngoài tam giác ABC, ve tam giác BCD vuông cân tại B. Tứ giác ABCD là hình gì? Vì sao?

Lời giải:

Vì ΔABC vuông cân tại A nên ∠C 1= 45 o

Vì ΔBCD vuông cân tại B nên ∠C 2= 45 o

⇒ AC ⊥ CD

Mà AC ⊥ AB (gt)

Suy ra: AB

Vậy tứ giác ABCD là hình thang vuông.

Bài 19 trang 82 SBT Toán 8 Tập 1: Hình thang vuông ABCD có ∠A = ∠D = 90 o, AB = AD = 2cm, DC = 4cm. Tính các góc của hình thang.

Lời giải:

Kẻ BH ⊥ CD

Ta có: AD ⊥ CD (gt)

Suy ra: BH

Hình thang ABHG có hai cạnh bên song song nên HD = AB và BH = AD

AB = AD = 2cm (gt)

⇒ BH = HD = 2cm

CH = CD – HD = 4 – 2 = 2 (cm)

Suy ra: ΔBHC vuông cân tại H ⇒ ∠C = 45 o

Bài 20 trang 82 SBT Toán 8 Tập 1: Chứng minh rằng tổng hai cạnh bên của hình thang lớn hơn hiệu của hai đáy.

Lời giải:

Giả sử hình thang ABCD có AB

Từ B kẻ đường thẳng song song với AD cắt CD tại E.

Hình thang ABED có hai cạnh bên song song nên AB = ED và AD = BE

Ta có: CD – AB = CD – ED = EC (1)

Trong ΔBEC ta có:

Mà BE = AD

Bài 21 trang 82 SBT Toán 8 Tập 1: Trên hình vẽ dưới có bao nhiêu hình thang.

Lời giải:

Trên hình vẽ có tất cả 10 hình thang.

Đó là: ABCD, ABEF, ABGH, ABIK, DCEF, DCGH, DCIK, FEGH, FEIK, HGIK

Lời giải:

Bài 2.2 trang 82 SBT Toán 8 Tập 1: Hình thang ABCD (AB

Lời giải:

Hình thang ABCD có AB

⇒ có ∠A + ∠D = 180 o (hai góc trong cùng phía bù nhau)

∠A = 2∠C (gt)

∠B + ∠C = 180 o (hai góc trong cùng phía bù nhau)

Bài 2.3 trang 82 SBT Toán 8 Tập 1: Cho tam giác ABC vuông cân tại A, BC = 2 cm. Ở phía ngoài tam giác ABC, vẽ tam giác ACE vuông cân tại E.

a. Chứng minh rằng AECB là hình thang vuông

b. Tính các góc và các cạnh của hình thang AECB

Lời giải:

a. Tam giác ABC vuông cân tại A

Tam giác EAC vuông cân tại E

Suy ra: ∠(ACB) = ∠(EAC)

⇒ AE

nên tứ giác AECB là hình thang có ∠E = 90 o. Vậy AECB là hình thang vuông

∠B + ∠(EAB) = 180 o (hai góc trong cùng phía bù nhau)

Tam giác ABC vuông tại A. Theo định lí Py-ta-go ta có:

AB 2 = 2 ⇒ AB= √2(cm) ⇒ AC = √2 (cm)

Tam giác AEC vuông tại E. Theo định lí Py-ta-go ta có:

⇒ EA = 1(cm) ⇒ EC = 1(cm)