Bài Giải Toán Rời Rạc Nguyễn Hữu Anh

--- Bài mới hơn ---

  • Câu Hỏi Ôn Tập Chương 2 (Phần Số Học)
  • Sách Giải Bài Tập Toán Lớp 6 Ôn Tập Chương 3 (Câu Hỏi
  • Giải Bài Tập Toán Sách Giáo Khoa Lớp 6
  • Giải Bài Tập Hóa 8 Trong Sách Giáo Khoa
  • Ôn Tập Kiến Thức Phép Nhân Đa Thức Với Đa Thức Trong Đại Số 8
  • Giải Sách Bồi Dưỡng Năng Lực Tự Học Toán 6 Phần 2 Dố Nguyên Tiết 1 Phép Cộng Và Phép Trừ 2 Số Nguyên, Bài Giải Nguyên Lý Kế Toán, Bài Giải Toán Rời Rạc Nguyễn Hữu Anh, Giải Bài Tập Nguyên Lý Kế Toán, Bài Giải Bài Tập Nguyên Lý Kế Toán Võ Văn Nhị, Giải Nguyên Lí Kế Toán, Giải Bài Tập Nguyên Lý Kế Toán Neu, Bài Giải Nguyên Lý Kế Toán Đại Học Kinh Tế, Giai Bài 33 Trang 39 Toán Rời Rạc Nguyễn Huu Anh, Giải Bài Tập Nguyên Lý Kế Toán Chương 1, Giải Bài Tập Nguyên Lý Kế Toán Chương 3, Giải Bài Tập Nguyên Lý Kế Toán Chương 4, Giải Bài Tập Nguyên Lý Kế Toán Chương 5, Cẩm Nang Giải Toán Vật Lý 12 Nguyễn Anh Vinh, Giải Sách Bồi Dưỡng Năng Lực Toán 6 Phần 2 Số Nguyên Tiết 1, Giải Bài Tập 1 Nguyên Hàm, Giải Bài Tập Nguyên Hàm, Bài Giải Nguyên Hàm, Giải Bài Tập 2 Nguyên Hàm, Giải Bài Tập Phần Nguyên Hàm, Nguyên Tắc Giải ô Số Sudoku, Bài Giải Nguyên Lý Thống Kê, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16, Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16, Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt, Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Hãy Giải Thích Nguyên Nhân Của Sự Mỏi Cơ, Giải Bài Tập Nguyên Lý Thống Kê Hvtc, Giải Bài Tập Xác Suất Thống Kê Của Nguyễn Cao Văn, Giải Bài Tập Bài 5 Cấu Hình Electron Nguyên Tử, Nguyên Tắc Hòa Giải Trong Tố Tụng Dân Sự, Các Dạng Toán Và Phương Pháp Giải Toán 6, Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1, Phương Pháp Giải Toán Qua Các Bài Toán Olympic, Các Dạng Toán Và Phương Pháp Giải Toán 8, Phương án Nào Lý Giải Nguyên Nhân Dẫn Đến Cạnh Tranh, Hãy Giải Thích Những Nguyên Tắc Xây Dựng Thực Đơn, Thực Trajng Và Giải Pháp Bảo Hiểm Y Tế Tự Nguyện, Thực Trạng, Nguyên Nhân Hậu Quả Giải Pháp, Phương án Lí Giải Nguyên Nhân Dẫn Đến Cạnh Tranh, Giải Bài Tập Nguyên Lý Thống Kê Học Viên Ngân Hàng, Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm, Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán, Giải Quyết Tranh Chấp Quốc Tế Nguyễn Thị Thu Thảo, Mẫu Công Văn Giải Trình Nguyên Vật Liệu Chênh Lệch, Con Đường Cứu Nước Giải Phóng Dân Tộc Mà Lãnh Tụ Nguyễn ái Quốc, Nguyên Tắc Hòa Bình Giải Quyết Tranh Chấp Quốc Tế, Phương án Nào Dưới Đây Lí Giải Nguyên Nhân Dẫn Đến Cạnh Tranh, Nguyên Lý Kế Toán Bài Tập, Sơ Đồ Chữ T Nguyên Lý Kế Toán, Nguyên Lý Kế Toán Pdf, 7 Nguyên Tắc Kế Toán, Nguyên Lý Kế Toán Cơ Bản, Tìm X Nguyên Lý Kế Toán, 8 Nguyên Tắc Kế Toán, 4 Nguyên Lý Kế Toán, Đề Thi Nguyên Lý Kế Toán, 7 Nguyên Lý Kế Toán, Đồ án Môn Học Nguyên Lý Kế Toán, 6 Nguyên Tắc Kế Toán, Tìm X Y Nguyên Lý Kế Toán, Đồ án Nguyên Lý Kế Toán, Đề Thi Ueh Nguyên Lý Kế Toán, Đề Thi Môn Nguyên Lý Kế Toán Có Đáp án, Bài Tập Nguyên Lý Kế Toán Pgs. Ts. Võ Văn Nhị, Mẫu Đồ án Môn Học Nguyên Lý Kế Toán, Toán Rời Rạc Nguyễn Hữu Anh, 12 Nguyên Tắc Kế Toán, Nguyên Lý Kế Toán, Bài Tập ôn Thi Nguyên Lý Kế Toán, Đề Thi Vấn Đáp Môn Nguyên Lý Kế Toán, 4 Nguyên Tắc Kế Toán, 2 Nguyên Tắc Kế Toán Cơ Bản, Đáp án Nguyên Lý Kế Toán, Bài Tập Nguyên Lý Kế Toán, Nguyên Tắc Kế Toán, 07 Nguyên Tắc Kế Toán, Bài Tập ôn Thi Môn Nguyên Lý Kế Toán, Nêu Tồn Tại Về Vấn Đề Giao Tiếp ứng Sử Tìm Nguyên Nhân Va Giải Pháp Khắc Phục, Công Văn Giải Trình Nguyên Nhân Không Có Xuất Tờ Khai, Nguyên Lý Kế Toán Chương 3, Đề Cương Nguyên Lý Kế Toán, Nguyên Tắc In Sổ Sách Kế Toán, Chương 5 Nguyên Lý Kế Toán, Nguyên Tắc An Toàn Điện, Nguyên Lý Kế Toán Chương 1, Tìm X Trong Nguyên Lý Kế Toán, Uef Nguyên Lí Kế Toán Chương 3, Kế Toán Nguyên Vật Liệu, Nguyên Tắc Hạch Toán, Nguyên Lý Kế Toán Chương 2, Bài Tập Chuyên Đề Số Nguyên Môn Toán Lớp 6, Bài Tập Chương 6 Nguyên Lý Kế Toán,

    Giải Sách Bồi Dưỡng Năng Lực Tự Học Toán 6 Phần 2 Dố Nguyên Tiết 1 Phép Cộng Và Phép Trừ 2 Số Nguyên, Bài Giải Nguyên Lý Kế Toán, Bài Giải Toán Rời Rạc Nguyễn Hữu Anh, Giải Bài Tập Nguyên Lý Kế Toán, Bài Giải Bài Tập Nguyên Lý Kế Toán Võ Văn Nhị, Giải Nguyên Lí Kế Toán, Giải Bài Tập Nguyên Lý Kế Toán Neu, Bài Giải Nguyên Lý Kế Toán Đại Học Kinh Tế, Giai Bài 33 Trang 39 Toán Rời Rạc Nguyễn Huu Anh, Giải Bài Tập Nguyên Lý Kế Toán Chương 1, Giải Bài Tập Nguyên Lý Kế Toán Chương 3, Giải Bài Tập Nguyên Lý Kế Toán Chương 4, Giải Bài Tập Nguyên Lý Kế Toán Chương 5, Cẩm Nang Giải Toán Vật Lý 12 Nguyễn Anh Vinh, Giải Sách Bồi Dưỡng Năng Lực Toán 6 Phần 2 Số Nguyên Tiết 1, Giải Bài Tập 1 Nguyên Hàm, Giải Bài Tập Nguyên Hàm, Bài Giải Nguyên Hàm, Giải Bài Tập 2 Nguyên Hàm, Giải Bài Tập Phần Nguyên Hàm, Nguyên Tắc Giải ô Số Sudoku, Bài Giải Nguyên Lý Thống Kê, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16, Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16, Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt, Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Hãy Giải Thích Nguyên Nhân Của Sự Mỏi Cơ, Giải Bài Tập Nguyên Lý Thống Kê Hvtc, Giải Bài Tập Xác Suất Thống Kê Của Nguyễn Cao Văn, Giải Bài Tập Bài 5 Cấu Hình Electron Nguyên Tử, Nguyên Tắc Hòa Giải Trong Tố Tụng Dân Sự, Các Dạng Toán Và Phương Pháp Giải Toán 6, Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1, Phương Pháp Giải Toán Qua Các Bài Toán Olympic, Các Dạng Toán Và Phương Pháp Giải Toán 8, Phương án Nào Lý Giải Nguyên Nhân Dẫn Đến Cạnh Tranh, Hãy Giải Thích Những Nguyên Tắc Xây Dựng Thực Đơn, Thực Trajng Và Giải Pháp Bảo Hiểm Y Tế Tự Nguyện, Thực Trạng, Nguyên Nhân Hậu Quả Giải Pháp, Phương án Lí Giải Nguyên Nhân Dẫn Đến Cạnh Tranh, Giải Bài Tập Nguyên Lý Thống Kê Học Viên Ngân Hàng, Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm, Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán,

    --- Bài cũ hơn ---

  • Bài Tập Toán Rời Rạc Chương 2: Đồ Thị
  • Toán Rời Rạc(Chương Ii: Quan Hệ)
  • Giải Sbt Toán 11 Bài 1, 2: Phép Biến Hình. Phép Tịnh Tiến
  • Phép Biến Hình Phép Tịnh Tiến
  • Bài Tập Toán Lớp 11: Phép Biến Hình Bài Tập Hình Học Lớp 11 Chương 1
  • Bài Giải Toán Rời Rạc

    --- Bài mới hơn ---

  • Giải Bài Tập Robot Công Nghiệp
  • Giải Bài Tập Sinh Học 8 Bài 4: Mô
  • Giải Bài Tập Sức Bền Vật Liệu
  • 200 Câu Hỏi Trắc Nghiệm Môn Vật Lý Lớp 8
  • Bài Giải Bài Tập Vật Lý 8
  • Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp, Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình, Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt, Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1, Phương Pháp Giải Toán Qua Các Bài Toán Olympic, Các Dạng Toán Và Phương Pháp Giải Toán 8, Các Dạng Toán Và Phương Pháp Giải Toán 6, Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán, Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm, Toán Lớp 3 Bài ôn Tập Về Giải Toán Trang 176, Giải Bài Giải Toán Lớp 3, Giải Toán Lớp 4 Bài Giải, Giải Phiếu Bài Tập Toán Cuối Tuần Lớp 4 Môn Toán Tuần 20, Bài Giải Bài Tập Toán Lớp 4 Tập 2, Bài Giải Bài Tập Toán Lớp 5 Tập 2, Bài Giải Bài Tập Toán Lớp 6, Bài Giải Bài Tập Toán Lớp 7, Toán 8 Giải Bài Tập, Giải Bài Tập 17 Sgk Toán 9 Tập 2, Giải Bài Tập 62 Toán 9 Tập 2, Giải Bài Tập Toán 9, Toán 9 Giải Bài Tập Sgk, Giải Bài Toán Vận Tải, Giải Bài Tập Toán 6 Sgk, Giải Bài Tập Toán 6 Tập 2, Giải Bài Tập Toán 7, Giải Bài Tập 9 Toán, Giải Bài Tập Toán 7 Sgk, Giải Bài Toán Tìm X Lớp 3, Giải Bài Tập Toán 8, Giải Bài Tập Toán 8 Sgk, Giải Bài Tập Toán 8 Tập 2, Toán 9 Giải Bài Tập, Giải Bài Toán Tối ưu, Giải Bài Tập Toán 7 Tập 2, Giải Bài Tập Toán Tìm X Lớp 4, Bài Giải Vở Bài Tập Toán, Bài Giải Vở Bài Tập Toán Lớp 5, Giải Bài Tập Toán Lớp 4 Bài 95, Giải Bài Tập Toán Lớp 4 Tập 2, Giải Toán 7 Tập 2 Bài 2, Bài 9 ôn Tập Về Giải Toán Lớp 5, Bài 9 ôn Tập Về Giải Toán, Giải Toán 8 Bài 3 Tập 2, Giải Bài Tập Toán Lớp 5, Giải Bài Tập Toán Lớp 5 Bài 101, Giải Bài Toán Tìm Y Lớp 2, Giải Bài Tập Toán Lớp 5 Bài 102, Giải Bài Tập Toán Lớp 5 Bài 92, Giải Bài Tập Toán Lớp 5 Bài 96, Giải Toán 8 Tập 2 Bài 1, Giải Bài Toán Tìm Y, Giải Bài Tập Toán Lớp 4 Bài 103, Giải Bài Tập Toán Lớp 4 Bài 100, Giải Bài Tập Toán Lớp 4, Bài Giải Vở Bài Tập Toán Lớp 5 Tập 2, Giai Toan, Giải Bài Tập Toán 9 Tập 2, Giải Bài Tập Toán Bài 101, Giải Bài Tập Toán Bài 99, Giải Bài Tập Toán Kì 2, Giải Bài Tập Toán Lớp 1, Giải Bài Tập Toán Lớp 1 Bài 71, Giải Bài Tập Toán Lớp 2, Giải Bài Tập Toán Lớp 3, Giải Bài Tập Toán Lớp 3 Bài 100, Giải Bài Tập Toán Lớp 3 Tập 2, Giải Toán 7 Tập 2 Bài 1, Bài Giải Bài Tập Toán Lớp 5, Giải Bài Toán Tìm X Lớp 6, Bài Giải Toán Tìm X Lớp 6, Toán 6 Giải Bài Tập, Giải Bài Tập 55 Sgk Toán 8 Tập 2, Toán Lớp 3 Bài Giải, Bài Giải Kế Toán Chi Phí Ueh, Toán Lớp 7 Giải Bài Tập, Toán Lớp 2 Bài Giải, Toán Lớp 3 Giải Bài Tập, Toán 11 Bài 2 Giải Bài Tập, Bài Giải Toán, Bài Giải Toán 8, Bài Giải Toán 9, Bài Giải Toán 9 Tập 2, Bài Giải Toán Bài Thơ, Bài Giải Toán Cần Thơ, Bài Giải Toán Có Lời Văn, Giải Bài Tập 43 Sgk Toán 8 Tập 2, Toán 7 Giải Bài Tập, Toán Lớp 4 Giải Bài Tập, Toán Lớp 8 Giải Bài Tập, Giải Bài Tập 42 Sgk Toán 8, Bài Giải Mẫu Toán Lớp 5,

    Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp, Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16, Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình, Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt, Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình, Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình, Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1, Phương Pháp Giải Toán Qua Các Bài Toán Olympic, Các Dạng Toán Và Phương Pháp Giải Toán 8, Các Dạng Toán Và Phương Pháp Giải Toán 6, Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán, Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm, Toán Lớp 3 Bài ôn Tập Về Giải Toán Trang 176, Giải Bài Giải Toán Lớp 3, Giải Toán Lớp 4 Bài Giải, Giải Phiếu Bài Tập Toán Cuối Tuần Lớp 4 Môn Toán Tuần 20, Bài Giải Bài Tập Toán Lớp 4 Tập 2, Bài Giải Bài Tập Toán Lớp 5 Tập 2, Bài Giải Bài Tập Toán Lớp 6, Bài Giải Bài Tập Toán Lớp 7, Toán 8 Giải Bài Tập, Giải Bài Tập 17 Sgk Toán 9 Tập 2, Giải Bài Tập 62 Toán 9 Tập 2, Giải Bài Tập Toán 9, Toán 9 Giải Bài Tập Sgk, Giải Bài Toán Vận Tải, Giải Bài Tập Toán 6 Sgk, Giải Bài Tập Toán 6 Tập 2, Giải Bài Tập Toán 7, Giải Bài Tập 9 Toán, Giải Bài Tập Toán 7 Sgk, Giải Bài Toán Tìm X Lớp 3, Giải Bài Tập Toán 8, Giải Bài Tập Toán 8 Sgk, Giải Bài Tập Toán 8 Tập 2, Toán 9 Giải Bài Tập, Giải Bài Toán Tối ưu, Giải Bài Tập Toán 7 Tập 2, Giải Bài Tập Toán Tìm X Lớp 4, Bài Giải Vở Bài Tập Toán, Bài Giải Vở Bài Tập Toán Lớp 5, Giải Bài Tập Toán Lớp 4 Bài 95, Giải Bài Tập Toán Lớp 4 Tập 2, Giải Toán 7 Tập 2 Bài 2, Bài 9 ôn Tập Về Giải Toán Lớp 5,

    --- Bài cũ hơn ---

  • Bài Giải Toán Rời Rạc ( Đề Thi Sau Đại Học)
  • Một Ví Dụ Để Hiểu Thêm Về Giải Thuật Định Thời Round Robin
  • Cách Giải Bài Tập Về Hiện Tượng Quang Điện Hay, Chi Tiết
  • Bí Quyết Giải Nhanh Bài Tập Điện Quang Bi Quyet Giai Nhanh Bai Tap Quang Dien Doc
  • Bài Tập Tình Huống Quản Trị Nguồn Nhân Lực Đại Học Ngoại Thương: Làm Thế Nào Để Tuyển Ứng Viên ?
  • Toán Rời Rạc(Chương Ii: Quan Hệ)

    --- Bài mới hơn ---

  • Bài Tập Toán Rời Rạc Chương 2: Đồ Thị
  • Bài Giải Toán Rời Rạc Nguyễn Hữu Anh
  • Câu Hỏi Ôn Tập Chương 2 (Phần Số Học)
  • Sách Giải Bài Tập Toán Lớp 6 Ôn Tập Chương 3 (Câu Hỏi
  • Giải Bài Tập Toán Sách Giáo Khoa Lớp 6
  • 1. Giới thiệu Quan hệ

    Ví dụ:

    Nếu: A = {1,2}; B = {p,q,r} thì:

    A×B = {(1,p),(1,q),(1,r),(2,p),(2,q),(2,r)}

    và:

    B×A = {(p,1),(q,1),(r,1),(p,2),(q,2),(r,2)}

    1. Giới thiệu Quan hệ

    Định nghĩa:

    Một quan hệ giữa tập A và tập B là một tập con  của tích Descartes AxB.

    Nếu (a,b)  , ta viết: ab

    Quan hệ từ A đến A (chính nó) gọi là quan hệ trên A

    1. Giới thiệu Quan hệ

    Ví dụ: Một cách biểu diễn quan hệ:

    R1 = {(1,1), (1,2), (2,1),

    (2, 2), (3, 4), (4, 1), (4, 4)}

    không phản xạ vì (3, 3)  R1

    R2 = {(1,1), (1,2), (1,4),

    (2, 2), (3, 3), (4, 1), (4, 4)}

    phản xạ vì (1,1), (2,2), (3,3), (4,4)  R2

    2. Các tính chất của quan hệ

    Ví dụ:

    Quan hệ “” trên Z phản xạ vì a  a

    với mọi a Z

    2. Các tính chất của quan hệ

    Tính đối xứng:

    Quan hệ R trên A được gọi là đối xứng nếu: aA, bA, a R b  b R a

    Ví dụ:

    + Quan hệ R1 = {(1,1), (1,2), (2,1)}

    trên tập A = {1, 2, 3, 4} là đối xứng

    + Quan hệ “” trên Z không đối xứng

    2. Các tính chất của quan hệ

    Tính phản xứng:

    Một quan hệ R trên tập A được gọi là phản xứng nếu:

    x, y  A, (x R y)  (y R x)  x = y

    Ví dụ:

    + Quan hệ “” là phản xứng

    + Quan hệ đồng nhất “” là phản xứng

    + Quan hệ song song “” là phản xứng

    3. Biểu diễn quan hệ

    Ví dụ:

    Cho R là quan hệ từ A = {1,2,3,4} đến

    B = {u,v,w} như sau:

    R = {(1,u),(1,v),(2,w),(3,w),(4,u)}.

    3. Biểu diễn quan hệ

    Nhận xét:

    Nếu R là quan hệ trên tập A, khi đó MR là ma trận vuông

    R là phản xạ nếu tất cả các phần tử trên đường chéo chính của MR đều bằng 1 (mii = 1 i)

    R là đối xứng nếu MR đối xứng qua đường chéo chính

    Hỏi:

    R phản xạ?

    R đối xứng?

    R bắc cầu?

    YES

    YES

    YES

    4. Quan hệ tương đương

    Định nghĩa:

    Quan hệ R trên tập A được gọi là tương

    đương nếu nó có tính chất:

    – Phản xạ

    – Đối xứng

    – Bắc cầu

    4. Quan hệ tương đương

    Ví dụ:

    Quan hệ R trên các chuỗi ký tự xác định bởi a R b nếu a và b có cùng độ dài.

    Khi đó R là quan hệ tương đương

    4. Quan hệ tương đương

    Ví dụ:

    Tìm các lớp tương đương modulo 8 chứa 0 và modulo 8 chứa 1?

    Giải:

    – Lớp tương đương modulo 8 chứa 0 gồm tất cả các số nguyên a chia hết cho 8.

    Ta có: 8 = {…, -15, -7, 1, 9, 17, …}

    5. Quan hệ thứ tự

    Xét ví dụ:

    Cho R là quan hệ trên tập số thực:

    a R b nếu a  b

    Hỏi:

    + R phản xạ ?

    + R phản xứng ?

    + R đối xứng ?

    + R bắc cầu ?

    6. Quan hệ toàn phần

    Định nghĩa:

    Các phần tử a và b của cặp (S, ) gọi là so sánh được nếu a b hay b a

    Định nghĩa:

    Cho (S, ), nếu hai phần tử tùy ý của S đều so sánh được với nhau thì ta gọi nó là tập sắp thứ tự toàn phần

    Ta cũng nói rằng là thứ tự toàn phần hay thứ tự tuyến tính trên S

    6. Quan hệ toàn phần

    Ví dụ:

    Quan hệ “” trên tập số nguyên dương Z+ là thứ tự toàn phần

    --- Bài cũ hơn ---

  • Giải Sbt Toán 11 Bài 1, 2: Phép Biến Hình. Phép Tịnh Tiến
  • Phép Biến Hình Phép Tịnh Tiến
  • Bài Tập Toán Lớp 11: Phép Biến Hình Bài Tập Hình Học Lớp 11 Chương 1
  • 8 Chuyên Đề Các Phép Biến Hình Trong Mặt Phẳng Lớp 11 Có Lời Giải
  • Sách Giải Bài Tập Toán Lớp 11 Bài 4: Phép Quay Và Phép Đối Xứng Tâm (Nâng Cao)
  • Tổng Hợp Bài Tập Toán Rời Rạc Có Đáp Án Rời Rạc Có Lời Giải, Bài Tập Toán Rời Rạc Có Lời Giải

    --- Bài mới hơn ---

  • 400 Câu Trắc Nghiệm Toán Rời Rạc Có Đáp Án
  • Ra Mắt Cuốn Sách: “101 Bài Tập Có Lời Giải Chi Tiết Sức Bền Vật Liệu 2”
  • Vở Bài Tập Địa Lí Lớp 7 (Tập Một)
  • Soccer Picks And Results For England Premier League 2 Division 1 League. Season 2021/2021
  • / Khoa Học Tự Nhiên / Vật Lý Học
  • Giải Toán 6 Đề CươngGiải Toán Lớp 6 Đề CươngGiải Toán 7 Đề CươngĐề Cương Toán Rời Rạc Có GiảiGiải Toán 9 Đề CươngGiải Toán Lớp 5 Đề CươngĐề Cương ôn Tập Toán 8 Thcs Long Toàn Có Đáp ánPhương Hướng,nội Dung,giải Pháp Phát Huy Sức Mạnh Toàn Dân Tộc Trong Giai Đoạn Hiện NayBài Giải Vật Lý Đại Cương A2Bài Giải Vật Lý Đại CươngGiải Bài Hoá Đại Cương 2Bài Giải Vật Lý Đại Cương 2Bài Giải Hóa Đại CươngGiải Đề CươngGiải Hóa 8 Đề CươngGiải Bài Tập Vật Lý Đại Cương 1Bài Giải Logic Học Đại CươngĐề Cương Giải Tích 2

    Giải Toán 6 Đề Cương,Giải Toán Lớp 6 Đề Cương,Giải Toán 7 Đề Cương,Đề Cương Toán Rời Rạc Có Giải,Giải Toán 9 Đề Cương,Giải Toán Lớp 5 Đề Cương,Đề Cương ôn Tập Toán 8 Thcs Long Toàn Có Đáp án,Phương Hướng,nội Dung,giải Pháp Phát Huy Sức Mạnh Toàn Dân Tộc Trong Giai Đoạn Hiện Nay,Bài Giải Vật Lý Đại Cương A2,Bài Giải Vật Lý Đại Cương,Giải Bài Hoá Đại Cương 2,Bài Giải Vật Lý Đại Cương 2,Bài Giải Hóa Đại Cương,Giải Đề Cương,Giải Hóa 8 Đề Cương,Giải Bài Tập Vật Lý Đại Cương 1,Bài Giải Logic Học Đại Cương,Đề Cương Giải Tích 2,Đề Cương Giải Tích 3,Giải Bài Tập Quản Trị Học Đại Cương,Giải Bài Tập Excel Tin Học Đại Cương,Giai Bai Tap Thien Van Dai Cuong,Bài Giải Đề Cương ôn Thi Ppnckh,Đề Cương Bài Tập Giải Tích 2,Đề Cương Giải Tích 3 Hust,Đề Cương 45 Năm Giải Phóng Miền Nam,Đề Cương 40 Năm Giải Phóng Miền Nam,Đề Cương Giải Tích 2 Sami,Giải Bài Tập 24 Cường Độ Dòng Điện,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet,Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16,Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet,Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt,Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16,Các Dạng Toán Và Phương Pháp Giải Toán 8,Các Dạng Toán Và Phương Pháp Giải Toán 6,Phương Pháp Giải Toán Qua Các Bài Toán Olympic,Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1,Đề Cương Sơ Bộ Giải Quyết Tranh Chấp Về Thừa Kế,Đề Cương Tuyên Truyền 39 Năm Giải Phóng Miền Nam,Giải Pháp Tăng Cường Công Tác Tư Tưởng Của Đảng,Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán,Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm,Đề Cương Toán Lớp 7 Học Kì 2,Đề Cương Kì 2 Toán 7,Đề Cương Toán Lớp 5,Đề Cương Toán Lớp 4 Học Kỳ 1,Đề Cương Toán Lớp 4,Đề Cương Toán Lớp 3,Đề Cương ôn Tập Học Kì 1 Toán 9,Đề Cương Toán Lớp 2 Học Kỳ 1,Đề Cương Học Kì 2 Toán 8,Đề Cương Toán Lớp 5 Học Kì 1,Đề Cương Toán Lớp 5 Học Kỳ 1,Đề Cương ôn Tập Học Kì 2 Toán 6,Đề Cương Toán Rời Rạc,Đề Cương Toán Lớp 5 Học Kỳ 2,Đề Cương ôn Tập Kì 2 Toán 6,Đề Cương ôn Tập Toán 6 Học Kì 1,Đề Cương ôn Tập Kì 1 Toán 9,Đề Cương ôn Tập Toán 8 Kì 1 Có Đáp án,Đề Cương ôn Tập Học Kì 2 Toán 8,Đề Cương ôn Tập Học Kì 2 Toán 7,Đề Cương Học Kì 2 Toán 7,Đề Cương Học Kì 2 Toán 6,Đề Cương Toán 5 Học Kì 1,Đề Cương Toán 5 Học Kì 2,Đề Cương Toán 5 Học Kỳ 1,Đề Cương Toán 6,Đề Cương Toán 6 Học Kì 1,Đề Cương ôn Tập Môn Toán Rời Rạc,Đề Cương Toán 6 Học Kì 2,Đề Cương ôn Tập Môn Toán Lớp 7,Đề Cương ôn Tập Môn Toán Lớp 6,Đề Cương ôn Tập Môn Toán Lớp 5,Đề Cương ôn Tập Môn Toán Lớp 4,Đề Cương Toán 6 Học Kỳ 1,Đề Cương ôn Tập Môn Toán Lớp 3 Học Kì 1,Đề Cương Toán 7 Học Kì 1,Đề Cương Toán 7,Đề Cương Toán 6 Kì 2,Đề Cương ôn Tập Môn Toán Lớp 3,Đề Cương Toán 5,Đề Cương Toán 7 Học Kì 2,Đề Cương Học Kì 2 Toán 11,Đề Cương Học Kì 2 Toán 10,Đề Cương Toán 9 Học Kì 2 Có Đáp án,Đề Cương Toán 9 Học Kì 2,Đề Cương Học Kì 1 Toán 8,Đề Cương Toán 9 Học Kì 1,Đề Cương Học Kì 1 Toán 7,Đề Cương ôn Tập Học Kì 1 Toán 8,Đề Cương Học Kì 1 Toán 6,Đề Cương Toán 8 Học Kì 2,

    Giải Toán 6 Đề Cương,Giải Toán Lớp 6 Đề Cương,Giải Toán 7 Đề Cương,Đề Cương Toán Rời Rạc Có Giải,Giải Toán 9 Đề Cương,Giải Toán Lớp 5 Đề Cương,Đề Cương ôn Tập Toán 8 Thcs Long Toàn Có Đáp án,Phương Hướng,nội Dung,giải Pháp Phát Huy Sức Mạnh Toàn Dân Tộc Trong Giai Đoạn Hiện Nay,Bài Giải Vật Lý Đại Cương A2,Bài Giải Vật Lý Đại Cương,Giải Bài Hoá Đại Cương 2,Bài Giải Vật Lý Đại Cương 2,Bài Giải Hóa Đại Cương,Giải Đề Cương,Giải Hóa 8 Đề Cương,Giải Bài Tập Vật Lý Đại Cương 1,Bài Giải Logic Học Đại Cương,Đề Cương Giải Tích 2,Đề Cương Giải Tích 3,Giải Bài Tập Quản Trị Học Đại Cương,Giải Bài Tập Excel Tin Học Đại Cương,Giai Bai Tap Thien Van Dai Cuong,Bài Giải Đề Cương ôn Thi Ppnckh,Đề Cương Bài Tập Giải Tích 2,Đề Cương Giải Tích 3 Hust,Đề Cương 45 Năm Giải Phóng Miền Nam,Đề Cương 40 Năm Giải Phóng Miền Nam,Đề Cương Giải Tích 2 Sami,Giải Bài Tập 24 Cường Độ Dòng Điện,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tiếp,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Violet,Lười Giải Phiếu Bài Tập Toán Cuối Tuần Toán 4tuân 16,Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình Violet,Toán Đại 8 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán 9 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán Lớp 8 Giải Bài Toán Bằng Cách Lập Phương Trình,Toán 9 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình,Toán 8 Giải Bài Toán Bằng Cách Lập Phương Trình Tt,Giải Toán Lớp 5 Toán Phát Chiển Năng Lực Tư Tuần 14 Đến 15,16,Các Dạng Toán Và Phương Pháp Giải Toán 8,Các Dạng Toán Và Phương Pháp Giải Toán 6,Phương Pháp Giải Toán Qua Các Bài Toán Olympic,Các Dạng Toán Và Phương Pháp Giải Toán 8 Tập 1,Đề Cương Sơ Bộ Giải Quyết Tranh Chấp Về Thừa Kế,Đề Cương Tuyên Truyền 39 Năm Giải Phóng Miền Nam,Giải Pháp Tăng Cường Công Tác Tư Tưởng Của Đảng,Giải Toán Cuối Tuần 12 Lớp 3 Môn Toán,Toán Lớp 5 Bài Giải Toán Về Tỉ Số Phần Trăm,Đề Cương Toán Lớp 7 Học Kì 2,

    --- Bài cũ hơn ---

  • Bài 4(Tt): Chiến Lược Điều Phối Cpu 2 Rr (Round Robin)
  • Giải Bài Tập Nguyên Lý Thống Kê Trang 1 Tải Miễn Phí Từ Tailieuxanh
  • Bài Giảng1.6 Chương 6 – Kế Toán Các Quá Trình Kinh Doanh Chủ Yếu
  • Đáp Án Bài Tập Nguyên Lý Kế Toán Chương 6 Đại Học Thương Mại (Tmu)
  • Full Giải Bài Tập Chương 4 Nguyên Lý Kế Toán
  • Bài Tập Toán Rời Rạc Chương 2: Đồ Thị

    --- Bài mới hơn ---

  • Bài Giải Toán Rời Rạc Nguyễn Hữu Anh
  • Câu Hỏi Ôn Tập Chương 2 (Phần Số Học)
  • Sách Giải Bài Tập Toán Lớp 6 Ôn Tập Chương 3 (Câu Hỏi
  • Giải Bài Tập Toán Sách Giáo Khoa Lớp 6
  • Giải Bài Tập Hóa 8 Trong Sách Giáo Khoa
  • BÀI TẬP TOÁN RỜI RẠC *** CHƯƠNG 2: ĐỒ THỊ Giảng viên : Nguyễn Mậu Hân Sinh viên thực hiện : Nguyễn Thị Diệu Hằng Lớp : Tin K30D * Bài 1: Cho G là một đồ thị có v đỉnh và e cạnh.M và m tương ứng là bậc lớn nhất và nhỏ nhất của các đỉnh của G.Chứng minh rằng: m £ 2.e/v £ M Lời giải: Theo đề ra ta có: M: bậc lớn nhất của đỉnh của G. m: bậc nhỏ nhất của đỉnh của G. Như vậy: m £ deg(vi) £ M (với deg(vi) : bậc của đỉnh vi) v.m £ ∑deg(vi) £ v.M v.m £ 2.e £ v.M m £ 2.e £ M Vậy ta có điều phải chứng minh. * Bài 2: Chứng minh rằng nếu G là đơn đồ thị phân đôi có v đỉnh và e cạnh, khi đó e £ v2/4. Lời giải : Ta có: G=(V,E) là đơn đồ thị phân đôi. V=V1 U V2, V1 ∩ V2 =ø, V1 ≠ ø, V2 ≠ ø. Gọi n1 và n2 lần lượt là số phần tử của V1 và V2. n1 + n2 = v G là đồ thị phân đôi nên e đạt giá trị max khi G là đồ thị phân đôi đầy đủ.Khi đó: e = n1.n2 Có nghĩa là trong trường hợp tổng quát thì: e £ n1.n2 Như vậy, để chứng minh e £ v2/4 chỉ cần chứng minh: n1.n2£ v2/4 Thật vậy: n1.n2 £ v2/4 n1.n2 £ (n1+ n2)2/4 4.n1.n2 £ n12 + n22 + 2.n1.n2 n12 + n22 – 2.n1.n2 ≥ 0£ v2/4 (n1- n2)2 ≥ 0 (hiển nhiên đúng) Suy ra: e £ n1.n2 £ v2/4 Vậy ta có điều phải chứng minh. * Bài 3: Trong một phương án mạng kiểu lưới kết nối n=m2 bộ xử lý song song, bộ xử lý P(i,j) được kết nối với 4 bộ xử lý (P(i±1) mod m, j), P(i, (j±1) mod m), sao cho các kết nối bao xung quanh các cạnh của lưới. Hãy vẽ mạng kiểu lưới có 16 bộ xử lý theo phương án này. Lời giải: P(0,1) P(0,0) P(2,0) P(2,1) P(0,2) P(0,3) P(2,2) P(2,3) P(3,1) P(3,0) P(1,0) P(1,1) P(3,2) P(3,3) P(1,3) P(1,2) * Bài 4: Hãy vẽ các đồ thị vô hướng được biểu diễn bởi ma trận liền kề sau: a) b) 1 2 3 1 2 0 1 2 0 4 2 0 3 0 3 4 0 0 3 1 1 1 0 1 0 c) 0 1 3 0 4 1 2 1 3 0 3 1 1 0 1 0 3 0 0 2 4 0 1 2 3 Lời giải: a) b) V1 V3 V2 c) V4 V3 V1 V2 V1 V2 V5 V3 V4 *Bài 5: Nêu ý nghĩa của tổng các phần tử trên một hàng (tương ứng cột) của một ma trận liền kề đối với một đồ thị vô hướng ? Đối với đồ thị có hướng ? Lời giải: Cho đồ thị G=(V,E).V= {v1,v2,…,vn } Ma trận liền kề của đồ thị G=(V,E) là ma trận: A=( aij ) với 1≤i,j≤n a11 a12 … a1n a21 a22 … a2n A= ……… an1 an2 … ann *Nếu G là đồ thị vô hướng: aij là số cạnh nối đỉnh vi và vj -Tổng hàng i của ma trận A: n ∑ aij chính là bậc của đỉnh vi j=1 -Tổng cột j của ma trận A: n ∑aij chính là bậc của đỉnh vj i=1 *Nếu G là đồ thị có hướng: aij là số cung nối vi và vj mà vj là đỉnh cuối -Tổng hàng i của ma trận A: n ∑ aij chính là bậc ra của đỉnh vi j=1 -Tổng cột j của ma trận A: n ∑aij chính là bậc ra của đỉnh vj i=1 *Bài 6: Tìm ma trận liền kề cho các ma trận sau: a) Kn b) Cn c) Wn d) Km,n e) Qn Lời giải: Ma trận liền kề của đồ thị đầy đủ Kn: ai1 ai2 … aij … ain a1j 0 1 … 1 … 1 a2j 1 0 … 1 … 1 … … … … … … … aij 1 1 … 0 … 1 … … … … … … … anj 1 1 … 1 … 0 Hay viết cách khác: Ma trận liền kề của đồ thị đầy đủ Kn là: 0 nếu i = j A = (aij), trong đó aij = 1 nếu i ≠ j Ma trận liền kề của đồ thị vòng Cn: ai1 ai2 ai3 … aij-1 aij aij+1 … ain-1 ain a1j 0 1 0 … 0 0 0 … 0 1 a2j 1 0 1 … 0 0 0 … 0 0 a3j 0 1 0 … 0 0 0 … 0 0 … … … … … … … … … … … aij 0 0 0 … 1 0 1 … 0 0 … … … … … … … … … … … anj 1 0 0 … 0 0 0 … 1 0 Viết cách khác: Ma trận liền kề của đồ thị vòng Cn là: A = (aij), trong đó: 1 nếu j=2 hoặc j=n – Với i=1: aij= 0 nếu j≠2và j≠n 1 nếu j=1 hoặc j=n-1 – Với i=n: aij= 0 nếu j≠1 và j≠n-1 -Với i≠1 và i≠n: 1 nếu j=i+1, j=i-1 aij = 0 nếu j≠i+1 và j≠i-1 c) Ma trận liền kề A của đồ thị bánh xe Wn: ai1 ai2 ai3 … aij-1 aij aij+1 … ain-1 ain ain +1 a1j 0 1 0 … 0 0 0 … 0 1 1 a2j 1 0 1 … 0 0 0 … 0 0 1 … … … … … … … … … … … … aij 0 0 0 … 1 0 1 … 0 0 1 … … … … … … … … … … … … anj 1 0 0 … 0 0 0 … 1 0 1 an+1j 1 1 1 … 1 1 1 … 1 1 0 Ma trận liền kề của đồ thị phân đôi đầy đủ Km,n: Cho G=(V,E)=Km,n, trong đó V=V1 U V2 V1={v1,v2,…,vm} V2={v’1,v’2,…,v’n} Ta có ma trận liền kề của Km,n như sau: v1 v2 … vm v’1 v’2 … v’n v1 0 0 … 0 1 1 … 1 v2 0 0 … 0 1 1 … 1 … … … … … … … … … vm 0 0 … 0 1 1 … 1 v’1 1 1 … 1 0 0 … 0 v’2 1 1 … 1 0 0 … 0 … … … … … … … … … v’n 1 1 … 1 0 0 … 0 Ma trận liền kề của đồ thị lập phương Qn( 2n đỉnh ứng với n xâu nhị phân khác nhau chứa bit 0, 1) 00..00 00..01 00..10 00..11 … 10..00 10..01 … 11..11 00..00 0 1 1 0 … 1 0 … 0 00..01 1 0 0 1 … 0 1 … 0 00..10 1 0 0 1 … 0 0 … 0 00..11 0 1 1 0 … 0 0 … 0 … … 10..00 1 0 0 0 … 0 1 … 0 10..01 0 0 0 0 … 1 0 … 0 … 11..11 0 0 0 0 … 0 0 … 0 *Bài 7: Hai đơn đồ thị với ma trận liền kề sau đây có là đẳng cấu không? 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 Ma trận 1 Ma trận 2 Lời giải: * Cách 1: Dựa vào ma trận liền kề, ta có thể vẽ được 2 đồ thị tương ứng như sau: V1 V4 V3 V2 V’4 V’1 V’3 V’2 G1 G2 G1=(V,E): đồ thị ứng với ma trận 1 G2=(V’,E’): đồ thị ứng với ma trận 2 Dễ dàng nhận thấy: Số cạnh của 2 đồ thị khác nhau: G1 có 4 cạnh, G2 có 5 cạnh Ngoài ra: G1 có 1 đỉnh bậc 1 (V3) 2 đỉnh bậc 2 (V1,V2) 1 đỉnh bậc 3 (V4) G2 không có đỉnh bậc 1 2 đỉnh bậc 2(V’2,V’3) 2 đỉnh bậc 3(V’1,V’4) Vậy 2 đồ thị trên không đẳng cấu. * Cách 2: Tổng các phần tử trong ma trận liền kề của đơn đồ thị bằng tổng số bậc của các đỉnh và bằng 2 lần số cạnh của đồ thị. Từ 2 ma trận trên ta có: Đồ thị ứng với ma trận 1 có 8:2=4 cạnh Đồ thị ứng với ma trận 2 có 10:2=5 cạnh Như vậy, 2 đơn đồ thị ứng với 2 ma trận liền kề trên không đẳng cấu. *Bài 8: Hai đơn đồ thị với ma trận liên thuộc sau có là đẳng cấu không? 1 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 1 Lời giải: – Ma trận 1: e1 e2 e3 e4 e5 u1 1 1 0 0 0 u2 1 0 1 0 1 u3 0 0 0 1 1 ứng với đồ thị G=(U,E) u4 0 1 1 1 0 Ma trận 2: e’1 e’2 e’3 e’4 e’5 v1 0 1 0 0 1 v2 0 1 1 1 0 ứng với đồ thị G’=(V,E’) v3 1 0 0 1 0 v4 1 0 1 0 1 U2 V1 V2 U1 e1 e’2 e2 e3 e5 e’5 e’3 e’4 U3 V4 V3 U4 e4 e’1 G=(U,E) G’=(V,E’) Xét phép đẳng cấu f: e1→e’2 e2→e’5 e3→e’3 e4→e’1 e5→e’4 Lúc này, ta biểu diễn lại ma trận liên thuộc của đồ thị G’ theo thứ tự các đỉnh v1, v2, v3,v4 và thứ tự các cạnh e’2, e’5, e’3, e’1, e’4 như sau: e’2 e’5 e’3 e’1 e’4 v1 1 1 0 0 0 v2 1 0 1 0 1 v3 0 0 0 1 1 v4 0 1 1 1 0 Ma trận n ày và ma trận liên thuộc của G bằng nhau. Vậy G và G’ đẳng cấu với nhau. * Bài 9: Các đồ thị G và G’ sau có đẳng cấu với nhau không? v2 v1 v6 u1 a) v4 u2 u3 v5 u4 v3 u6 u5 v2 v1 u3 u2 u1 b) v3 v6 u6 u5 u4 v5 v4 Lời giải: Xét phép đẳng cấu f: u1→v2 u2→v3 u3→v6 u4→v5 u5→v4 u6→v1 Lúc này, ma trận liền kề của G (theo thứ tự các đỉnh u6, u1, u2, u5, u4, u3) và ma trận liền kề của G’ là bằng nhau và bằng: 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 Vậy G và G’ đẳng cấu với nhau. b)Xét phép đẳng cấu f: u1→v3 u2→v5 u3→v1 u4→v2 u5→v4 u6→v6 Lúc này, ma trận liền kề của G(theo thứ tứ các đỉnh v3, v4, v1, v5, v2, v6) và na trận liền kề của G’ bằng nhau và bằng: 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 Vậy, hai đồ thị G và G’ đẳng cấu với nhau. * Bài 10: Cho V={2,3,4,5,6,7,8} và E là tập hợp các cặp phần tử (u,v) của V sao cho u<v và u,v nguyên tố cùng nhau. Hãy vẽ đồ thị có hướng G=(V,E). Tìm số các đường đi phân biệt độ dài 3 từ đỉnh 2 tới đỉnh 8. Lời giải: Các cặp phần tử (u,v) thỏa mãn yêu cầu đề bài là: E={(2,3), (2,5), (2,7), (3,4), (3,5), (3,7), (3,8), (4,5), (4,7), (5,6), (5,7), (5,8), (6,7), (7,8)} Đồ thị G cần vẽ : 4 3 2 8 7 6 5 Các đường đi phân biệt độ dài 3 đi từ 2 đến 8 là: 2, 3, 7, 8 2, 3, 5, 8 2, 5, 7, 8 * Bài 11: Hãy tìm số đường đi độ dài n giữa hai đỉnh liền kề (t.ư. không liền kề) tùy ý trong K3,3 với mỗi giá trị của n sau: a) n=2 b) n=3 c) n=4 d) n=5 Lời giải: V4 V5 V6 V2 V3 V1 K3,3 * Cách 1: Tập các đỉnh của K3,3 được chia làm 2 phần: Phần 1 gồm V1, V2, V3 Phần 2 gồm V4, V5, V6 Trong đó, 2 đỉnh thuộc cùng 1 phần thì không liền kề 2 đỉnh thuộc 2 phần khác nhau thì liền kề. Gọi d là số đường đi độ dài n giữa 2 đỉnh thuộc K3,3. * Nếu n chẵn thì điểm đầu và điểm cuối của đường đi phải nằm trong cùng 1 phần (chúng không liền kề). * Nếu n lẻ thì điểm đầu và điểm cuối của đường đi phải nằm ở 2 phần khác nhau (chúng liền kề với nhau). Mà khi xuất phát từ 1 đỉnh ta luôn có 3 cách đi(do mỗi phần gồm 3 đỉnh). Áp dụng quy tắc nhân ta có số đường đi có độ dài n giữa 2 đỉnh là: Nếu 2 đỉnh liền kề: + n chẵn: d=0 + n lẻ : d=3n-1(do cạnh cuối cùng nối với đỉnh cuối chỉ có 1 cách) Nếu 2 đỉnh không liền kề: + n chẵn : d=3n-1(do cạnh cuối cùng nối với đỉnh cuối chỉ có 1 cách) + n lẻ : d=0 Áp dụng cụ thể: Độ dài Đỉnh n=2 n=3 n=4 n=5 Liền kề d=0 d=9 d=0 d=81 Không liền kề d=3 d=0 d=27 d=0 * Cách 2: Đồ thị K3,3 có ma trận liền kề theo thứ tự các đỉnh V1, V2, V3, V4, V5, V6 như sau: 0 0 0 1 1 1 0 0 0 1 1 1 A= 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 Ta có mệnh đề: Cho G là một đồ thị (vô hướng hoặc có hướng) với ma trận liền kề A theo thứ tự các đỉnh v1, v2, …, vn. Khi đó số các đường đi khác nhau độ dài r từ vi tới vj trong đó r là một số nguyên dương, bằng giá trị của phần tử dòng i cột j của ma trận Ar. n Ta có: An = A.A…A.A 3n-1 3n-1 3n-1 0 0 0 3n-1 3n-1 3n-1 0 0 0 A= 3n-1 3n-1 3n-1 0 0 0 , nếu n chẵn 0 0 0 3n-1 3n-1 3n-1 0 0 0 3n-1 3n-1 3n-1 0 0 0 3n-1 3n-1 3n-1 0 0 0 3n-1 3n-1 3n-1 0 0 0 3n-1 3n-1 3n-1 0 0 0 3n-1 3n-1 3n-1 A= 3n-1 3n-1 3n-1 0 0 0 , nếu n lẻ 3n-1 3n-1 3n-1 0 0 0 3n-1 3n-1 3n-1 0 0 0 Như vậy, theo mệnh đề trên, áp dụng vào các trường hợp cụ thể đề bài đã cho ta có kết quả như ở cách 1. * Bài 12: Một cuộc họp có ít nhất 3 đại biểu đến dự.Mỗi người quen ít nhất 2 đại biểu khác.Chứng minh rằng có thể sắp xếp một số đại biểu ngồi xung quanh một bàn tròn để mỗi người ngồi giữa 2 người mà đại biểu đó quen. Lời giải: * Ta có thể biểu diễn mối quan hệ của các đại biểu đến tham dự cuộc họp bằng đơn đồ thị G=(V,E). G có n đỉnh (n≥3, n là số đại biểu) và e cạnh. Mỗi đỉnh của đồ thị ứng với 1 đại biểu, giữa 2 đỉnh ứng với 2 đại biểu quen nhau tồn tại 1 cạnh. Gọi Vi (i=1,2,…,n): đỉnh của đồ thị (ứng với 1 đại biểu) Do mỗi người quen ít nhất 2 đại biểu khác nên deg(Vi) ≥ 2 n ∑deg(Vi) ≥ 2n i=1 Số cạnh của đồ thị: e ≥ n (1) * Mặt khác, theo đề ra ta có: các đại biểu ngồi xung quanh 1 bàn tròn. Vì vậy, đồ thị biểu diễn cách sắp xếp chỗ ngồi của các đại biểu thỏa yêu cầu là đồ thị vòng Cn. Trong đồ thị vòng Cn có n (cạnh), n cạnh này được lấy từ e cạnh của G(do nó biểu thị mối quan hệ giữa các đại biểu) (2) * Tập đỉnh của G và Cn bằng nhau và bằng n. (3) Từ (1), (2) và (3) cho thấy, Cn là đồ thị con bao hàm của G.(Cn được tạo ra bằng cách bỏ đi một số cạnh thích hợp của G) Vậy, dựa trên mối quan hệ giữa các đại biểu như trên ta có thể sắp xếp các đại biểu ngồi quanh bàn tròn sao cho mỗi người ngồi giữa 2 người mà họ quen.( Đpcm) *Bài 13: Một lớp học có ít nhất 4 sinh viên. Mỗi sinh viên thân với ít nhất 3 sinh viên khác. Chứng minh rằng có thể xếp một số chẵn sinh viên ngồi quanh một cái bàn tròn để mỗi sinh viên ngồi giữa 2 sinh viên mà họ thân. Lời giải: * Mối quan hệ giữa các sinh viên trong lớp có thể biểu diễn bằng 1 đơn đồ thị G=(V,E) n đỉnh(n≥4, n: số sinh viên), e cạnh. Hai đỉnh ứng với 2 sinh viên thân nhau liền kề với nhau. Gọi Vi (i=1,2,…,n): đỉnh của đồ thị ứng với 1 sinh viên. Mỗi sinh viên thân với ít nhất 3 người deg(Vi) ≥ 3 n ∑ deg(Vi) ≥ 3n i=1 Tổng số cạnh của G là: e ≥ 3n/2 (1) * Mặt khác, theo đề ra ta có: cách sắp xếp chỗ ngồi của các sinh viên có thể biểu diễn bằng đồ thị vòng Cn (do các sinh viên ngồi quanh bàn tròn). Cn có n cạnh (n cạnh này lấy từ e cạnh của G) Mà e phải là số nguyên suy ra n phải chia hết cho 2 (n chẵn) Tập đỉnh của Cn và G bằng nhau và bằng n. Từ đó, ta thấy Cn chính là đồ thị con bao hàm của G.(Cn có thể tạo ra từ G bằng cách bỏ đi một số cạnh thích hợp) Hay: có thể sắp xếp một số chẵn sinh viên ngồi quanh một cái bàn tròn sao cho mỗi người ngồi giữa 2 người mà họ thân.( Đpcm) * Bài 14: Trong một cuộc họp có đúng 2 đại biểu không quen nhau và mỗi đại biểu này có một số lẻ người quen đến dự.Chứng minh rằng luôn luôn có thể xếp một số đại biểu ngồi chen giữa 2 đại biểu nói trên, để mỗi người ngồi giữa 2 người mà đại biểu đó quen. Lời giải: Mối quan hệ giữacác đại biểu đến tham dự cuộc họp có thể biểu diễn bằng 1 đơn đồ thị G=(V,E).Trong đó mỗi đỉnh là một đại biểu, giữa 2 đỉnh ứng với 2 đại biểu quen nhau tồn tại 1 cạnh. Trong cuộc họp có đúng 2 đại biểu không quen nhau và có số lẻ người quen đến tham dự.Vậy G có đúng 2 đỉnh không liền kề và 2 đỉnh này có bậc lẻ. Từ mệnh đề: Nếu một đồ thị có đúng hai đỉnh bậc lẻ thì hai đỉnh này phải liên thông, tức là có một đường đi nối chúng ta suy ra có thể tìm ra một số đại biểu ngồi chen vào giữa 2 đại biểu này sao cho mỗi đại biểu ngồi giữa 2 người mà đại biểu đó quen.(do 2 đỉnh ứng với 2 người này không liên thông, 2 người không ngồi sát nhau và họ quen với n-2 người còn lại) *Bài 15: Một thành phố có n (n ³ 2) nút giao thông và hai nút giao thông bất kỳ đều có số đầu mối đường ngầm tới một trong các nút giao thông này đều không nhỏ hơn n. Chứng minh rằng từ một nút giao thông tuỳ ý ta có thể đi đến một nút giao thông bất kỳ khác bằng đường ngầm. Lời giải: – Ta có thể xem hệ thống đường ngầm của thành phố là một đơn đồ thị có các đỉnh là các nút giao thông. Số đỉnh của đồ thị chính là số nút giao thông: n (n≥2) Cạnh của đồ thị là đường ngầm nối 2 nút giao thông. Theo đề ra ta có: Hai nút giao thông bất kì đều có số đầu mối đường ngầm tới một trong các nút giao thông đều không nhỏ hơn n. – Ta có mệnh đề: Mọi đơn đồ thị n đỉnh (n≥2) có tổng bậc của 2 đỉnh tùy ý không nhỏ hơn n đều là đồ thị liên thông. Vậy, theo định lí trên, hệ thống đường ngầm của thành phố là đồ thị liên thông. Suy ra, từ một nút giao thông tuỳ ý ta có thể đi đến một nút giao thông bất kỳ khác bằng đường ngầm.(Đpcm). *Bài 16: Có bao nhiêu đơn đồ thị đẳng cấu với n đỉnh khi: a) n=2 b) n=3 c) n=4 Lời giải: Với n=2, có 2 đơn đồ thị không đẳng cấu như sau: và Với n=3, có 4 đơn đồ thị không đẳng cấu: c) Với n=4 có 11 đơn đồ thị không đẳng cấu:

    --- Bài cũ hơn ---

  • Toán Rời Rạc(Chương Ii: Quan Hệ)
  • Giải Sbt Toán 11 Bài 1, 2: Phép Biến Hình. Phép Tịnh Tiến
  • Phép Biến Hình Phép Tịnh Tiến
  • Bài Tập Toán Lớp 11: Phép Biến Hình Bài Tập Hình Học Lớp 11 Chương 1
  • 8 Chuyên Đề Các Phép Biến Hình Trong Mặt Phẳng Lớp 11 Có Lời Giải
  • Bài Tập Toán Rời Rạc Có Lời Giải

    --- Bài mới hơn ---

  • Bài Tập Tổng Hợp Nguyên Lý Kế Toán Có Đáp Án
  • Bài Tập Nguyên Lý Kế Toán Có Lời Giải
  • Giải Bài 1, 2, 3 Trang 38 Vở Bài Tập Toán 4 Tập 1
  • Giải Vở Bài Tập Toán 4 Bài 65: Luyện Tập Chung
  • Giải Vở Bài Tập Toán 4 Bài 65 : Luyện Tập Chung
  • Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    BT Toan roi rac

    1

    BÀI TẬP CHƯƠNG I

    Bài 1:

    Số mã vùng cần thiết nhỏ nhất là bao nhiêu để đảm bảo 25 triệu máy điện thoại khác nhau.

    Mỗi điện thoại có 9 chữ số có dạng 0XX-8XXXXX với X nhận giá trị từ 0 đến 9.

    Giải:

    Vì số mã vùng có dạng: 0XX-8XXXXX, với X nhận các giá trị từ 0 đến 9 (10 số), có 07 ký tự X

    do vậy sẽ có 10

    7

    trường hợp. Do đó, theo nguyên lý Dirichlet với 10 triệu máy điện thoại thì số mã vùng

    cần thiết là:

    ][

    35,2

    000.000.10

    000.000.25

    Bài 2:

    Biển số xe gồm 8 ký tự, dạng NN-NNNN-XN, ví dụ 75_1576_F1. Hai số đầu là mã tỉnh, X là

    chữ cái (26 chũ cái). N gồm các số 0, 1, …, 9. Hỏi một tỉnh nào đó cần đăng ký cho 10 triệu xe thì

    cần bao nhiêu serial (X).

    Giải

    Bài toán này có 02 cách hiểu: serial ở đây có thể là 02 ký tự NN đầu tiên hoặc là 02 ký tự XN cuối

    cùng.

    Cách hiểu 1: (serial là 02 ký tự XN cuối cùng).

    Hai số NN đầu là mã tỉnh, do nhà nước quy định nên không ảnh hưởng đến kết quả bài toán.

    Sáu ký tự còn lại có 5 ký tự là N, như vậy có

    5

    10 trường hợp. Theo nguyên lý Dirichlet, số serial

    X tối thiểu phải thỏa mãn:

    100

    000.100

    000.000.10

    =

    . Điều này không hợp lý vì số ký tự chữ cái chỉ là 26. Do

    vậy, nếu bài toán sửa lại là 1 triệu bảng số xe thì kết quả hợp lý hơn, khi đó số serial là:

    10

    000.100

    000.000.1

    =

    .

    Cách hiểu 2: (serial là 02 ký tự NN đầu tiên)

    Bốn ký tự NNNN sẽ có 10

    4

    trường hợp, 02 ký tự XN sẽ có 26*10 = 260 trường hợp. Theo quy tắc

    nhân, tổng số trường hợp sẽ là: 10

    4

    *260 = 2.600.000. Do đó, theo nguyên lý Dirichlet, số serial tối thiểu

    phải là:

    Bài 3:

    Có bao nhiêu xâu nhị phân có độ dài 10:

    a. Bắt đầu bằng 00 hoặc kết thúc bằng 11.

    b. Bắt đầu bẳng 00 và kết thúc bằng 11.

    Giải

    a. Bắt đầu bằng 00 hoặc kết thúc bằng 11.

    Xâu nhị phân bắt đầu bằng 00 có dạng: 00.xxxxxxxx. Ký tự x có thể là 0 hoặc 1, có 8 ký tự x do

    vậy có

    8

    2 xâu.

    Xâu nhị phân kết thúc bằng 11 có dạng: xxxxxxxx11. Tương tư ta cũng tính được có

    8

    2 xâu.

    Xâu nhị phân bắt đầu bằng 00 và kết thúc bằng 11 có dạng 00.xxxxxx11. Tương tự như trên, ta

    cũng tính được có

    6

    2 xâu.

    Vậy số xâu nhị phân bắt đầu bằng 00 hay kết thúc bằng 11 là:

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    BT Toan roi rac

    2

    4486451222*

    2

    68

    =−=−=n xâu.

    b.

    Bắt đầu bằng 00 và kết thúc bằng 11.

    Xâu nhị phân thỏa mãn đề bài phải có dạng: 00.xxxxxx11. Hai ký tự đầu và 02 ký tự cuối là

    không đổi, do vậy chỉ còn 06 ký tự ở giữa. Do đó số xâu nhị phân thỏa mãn đề bài là: 2

    6

    xâu.

    Bài 4:

    Khóa 29 CNTT có 150 SV học NNLT Java, 160 SV hoc Delphi, 40 SV học cả hai môn trên.

    a. Tìm tất cả SV của khóa 29 biết rằng SV nào cũng phải học ít nhất 01 môn.

    b. Biết tổng số SV là 285, hỏi có bao nhiêu SV không học Java hoặc Delphi.

    Giải

    Gọi J: SV học Java

    D: SV học Delphi

    a.

    Số SV của khóa 29 là: 27040160150

    1

    =−+=−+== DJDJDJn IU SV

    b.

    Câu b có 02 cách hiểu:

    Cách 01: không học ít nhất 01 môn.

    Số SV không học Java hoặc Delphi là (áp dụng nguyên lý bù trừ) ta tính được:

    24540285

    2

    =−=−= DJnn I

    SV

    Cách 02: không học Java cũng chẳng học Delphi:

    Theo cách hiểu này, áp dụng nguyên lý bù trừ ta tính được số SV như sau:

    1540160150285

    2

    =+−−=+−−== DJDJnDJn IU SV

    Giải

    Bài toán này cũng có thể được hiểu theo 02 cách.

    Cách 01: phân biệt chữ thường với chữ hoa.

    Chữ cái thường: 26

    Chữ cái hoa: 26

    Chữ số: 10

    Do đó, tổng cộng có 26 + 26 + 10 = 62 ký tự khác nhau.

    Nếu password có n ký tự.

    Tổng số trường hợp:

    n

    62

    Số password không có chữ số:

    n

    52

    Suy ra số password có ít nhất 01 chữ số:

    nn

    n

    n 5262 −=

    Áp dụng cho các trường hợp n = 6, 7, 8. Tổng số password thỏa yêu cầu đề bài là:

    040.583.949.410.167526252625262

    887766

    876

    =−+−+−=++= nnnn

    Cách 02: không phân biệt chữ thường với chữ hoa:

    Cách làm hoàn toàn tương tự, nhưng thay vì sử dụng các số 62 và 52 thì ở đây sử dụng 02 số: 36

    và 26. Kết quả sẽ là:

    063.3602.684.483.263626362636

    887766

    876

    =−+−+−=++= nnnnBài 6:

    Có n lá thư bỏ vào n bì thư. Hỏi xác suất để xảy ra trường hợp không có lá thư nào bỏ đúng

    được bì thư của nó.

    Giải

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    Bài 7:

    Chỉ ra rằng nếu chọn 5 số từ tập 8 số {1, 2, …, 7, 8} thì bao giờ cũng có ít nhất 01 cặp số có

    tổng là 9.

    Giải

    Từ 8 số ở trên, ta chia thành 04 cặp: {1, 8}, {2, 7}, {3, 6}, {4, 5} và tổng của mỗi cặp đều bằng 9.

    Như vậy, đề bài sẽ trở thành chọn 5 số từ 4 cặp số trên. Theo nguyên lý Dirichlet, phải có ít nhất 01 cặp

    số được chọn hết. Vậy bài toán đã được chứng minh.

    Bài 8:

    Chứng minh rằng trong bất kỳ một nhóm 27 từ tiếng Anh nào cũng có ít nhất 2 từ bắt đầu

    từ cùng 01 chữ cái.

    Giải

    Bảng chữ cái của tiếng anh gồm 26 ký tự: a, b, c, …, x, y, z. Vì có 27 từ tiếng Anh và mỗi từ bắt

    đầu bằng 01 chữ cái nên theo nguyên lý Dirichlet phải có ít nhất 02 từ bắt đầu bằng cùng 01 chữ cái.

    Bài 9:

    Cần phải có bao nhiêu SV ghi tên vào lớp TRR để chắc chắn có ít nhất 65 SV đạt cùng điểm

    thi, giả sử thang điểm thi gồm 10 bậc.

    Giải

    Gọi n là số sinh viên tối thiểu thỏa mãn đề bài, theo nguyên lý Dirichlet thì

    ] [

    65

    10

    =

    n

    . Do vậy

    641164*10 =+=n SV.

    Bài 10:

    Tìm hệ thức truy hồi và cho điều kiện đầu để tính số các xâu nhị phân có độ dài n và không

    có 2 số 0 liên tiếp.

    Có bao nhiêu xâu nhị phân như thế có độ dài bằng 5.

    Giải

    Với xâu nhị phân có độ dài n, ta chia thành 02 trường hợp:

    Nếu ký tự cuối cùng là 1 thì ký tự trước đó (ký tự thứ n – 1) có thể là 1 hay là 0 đều được.

    Nếu ký tự cuối cùng là 0 thì ký tự trước đó (ký tự thứ n – 1) chỉ có thể là 1 (vì nếu là 0 thì vi phạm

    yêu cầu bài toán) nhưng ký tự trước đó nữa (thứ n – 2) có thể là 0 hay 1 đều được.

    Từ 02 trường hợp trên ta suy ra được:

    21 −−

    +=

    nnn

    fff

    Các điều kiện đầu:

    2

    1

    =f , 3

    2

    =f

    Có 13 xâu nhị phân có độ dài 5 và không có 2 số 0 liên tiếp.

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    BT Toan roi rac

    4

    Giải

    Giải

    Vậy nghiệm của hệ thức truy hồi là:

    nn

    n

    a 3)2(35 −−+=

    Bài 13:

    Tìm hệ thức truy hồi và

    n

    r . Với

    n

    r là số miền của mặt phẳng bị phân chia bởi n đường

    thẳng. Biết rằng không có 2 đường thẳng nào song song và cũng không có 03 đường thẳng nào đi

    qua cùng 1 điểm.

    Giải

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    BT Toan roi rac

    5

    Với n đường t

    hẳng, theo đề bài thì đường thẳng thứ n sẽ cắt n – 1 đường thẳng còn lại tại n – 1

    điểm, tức là sẽ cắt n – 1 + 1 = n phần mặt phẳng. Do đó, số phần mặt phẳng tăng lên là n. Từ đó, ta có

    được hệ thức truy hồi: nrr

    nn

    +=

    −1

    .

    Các điều kiện đầu là:

    n = 0: r

    0

    = 1.

    n = 1: r

    1

    = 2.

    BÀI TẬP CHƯƠNG II

    Bài 14

    Chứng minh rằng trong một đơn đồ thị luôn có ít nhất 02 đỉnh có cùng bậc.

    Giải

    Trong đồ thị đơn, số bậc tối đa cung

    TH1: Giả sử đồ thì không có đỉnh treo, do đó số bậc tối thiểu của các đỉnh là 1, số bậc tối đa của

    các đỉnh là n-1 (vì là đơn đồ thị). Có n đỉnh, số bậc của các đỉnh đi từ 1 đến n-1 (n-1) giá trị. Do đó theo

    nguyên lý Dirichlet phải có ít nhất 02 đỉnh có cùng bậc.

    TH2: Giả sử đồ thị có ít nhất 01 đỉnh treo, khi đó số bậc tối thiểu của các đỉnh là 0, và số bậc tối

    đa chỉ là n-

    2 (vì là đơn đồ thị, đồng thời có đỉnh tre

    o). Có n đỉnh, số bậc của các đỉnh chỉ có thể đi từ 0

    đến n-2 (n-1) giá trị. Do đó theo nguyên lý Dirichlet phải có ít nhất 02 đỉnh có cùng bậc.

    Bài 15:

    Tính tổng số bậc của

    n

    K (đơn đồ thị đủ).

    Giải

    Với đồ thị đủ thì mỗi đỉnh đều nối với các đỉnh còn lại. Do vậy, khi có n đỉnh thì mỗi đỉnh đều nối

    với n -1 đỉnh còn lại, tức là bậc của mỗi đỉnh đều bằng n – 1.

    Vậy, tổng số bậc của cả đồ thị là: n*(n – 1) bậc.

    II. Các bài tập trong giấy kiểm tra lần 1.

    Bài 16:

    (giống bài 12 phần trước).

    Bài 17:

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    BT Toan roi rac

    6

    Trong tổng số 2504 sinh viên của một khoa công nghệ thông tin, có 1876 theo học môn

    NNLT Pascal, 999 học môn ngôn ngữ Fortran và 345 học môn ngôn ngữ C. Ngoài ra còn biết 876

    sinh viên học cả Pascal và Fortran, 232 học cả Fortran và C, 290 học cả Pascal và C. Nếu 189 sinh

    viên học cả 03 môn Psacal, Fortran và C thì trong trường hợp đó có bao nhiêu sinh viên không học

    môn nào trong cả 03 môn nói trên.

    Giải

    Gọi P: là tập gồm các SV học Pascal

    F: là tập gồm các SV học Fortran

    C: là tập gồm các SV học C

    N: là tổng số SV (2504 SV)

    Gọi K là số SV học ít nhất 01 môn

    Theo nguyên lý bù trừ, ta có:

    KPFCPFCPFFCCPPFC==++−−−+UU I I I II

    4932011250420111892902328763459991876 =−=−=⇒=+−−−++= KNKK

    SV

    Vậy có 493 SV không học môn nào trong 03 môn: Pascal, Fortran và C.

    Bài 18:

    Hãy tìm số đỉnh, số cạnh, số bậc của mỗi đỉnh và xác định các đỉnh cô lập, đỉnh treo, ma

    trận liền kề, ma trận liên thuộc trong mỗi đồ thị vô hướng sau:

    Giải

    Câu 18.1. Số đỉnh: 8

    Số cạnh: 11

    Đỉnh cô lập: D

    Đỉnh treo: không có

    Tên đỉnh a b C d e g h i

    Bậc của định 3 2 4 0 5 3 2 3

    Câu 18.2.

    Số đỉnh: 5

    Số cạnh: 12

    Đỉnh cô lập: không có

    Đỉnh treo: không có

    Tên đỉnh a b c d e

    Bậc của định 6 5 5 5 3

    Giải

    Dựa vào ma trận liền kề của hai đơn đồ thị ta có thể vẽ lại các đồ thị bằng hình vẽ: Theo hình vẽ của hai đơn đồ thị ta thấy chúng không có cùng số cạnh, một bên có 4 cạnh và một

    bên có 5 cạnh. Vậy hai đồ thị có ma trận liền kề đã cho ở trên không đẳng cấu.

    Bài toán này có thể không cần vẽ hình lại cũng được, từ ma trận kề ta cũng có thể dễ dàng xác

    định được số cạnh của mỗi đồ thị lần lượt là 4 v

    à 5. Do vậy chúng không thể đẳng cấu.

    Bài 20:

    Xét xem các đồ thị cho sau đây có đẳng cấu với nhau không?

    Giải

    a. Hình 01.

    Hai đồ thị cho ở trên có: số đỉnh, số cạnh, tổng số bậc và số bậc của mỗi đỉnh bằng nhau. Đặc biệt,

    các đỉnh của đồ thị thứ nhất và thứ hai khi sắp theo thứ tự sau đây thì chúng hoàn toàn tương đương về

    mọi mặt:

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    BT Toan roi rac

    9

    Số bậc của mỗi đỉnh

    3 4 4 3 5 5

    Chính vì vậy, hai đồ

    thị trên là đẳng cấu.

    b. Hình 02. Hai đồ thị có hướng cho ở trên khi sắp theo thứ tự sau đ

    ây về các đỉnh thì chúng tương đương về

    tất cả các mặt: từ số đỉnh, tổng số bậc, bậc vào, bậc ra của mỗi đỉnh, tổng số cạnh, thứ tự và chiều của

    các cạnh đều tương ứng:

    Vì vậy, hai đồ thị có hướng ở trên là đẳng cấu với nhau.

    Bài 21: (3.1)

    Cho G là đồ thị có v đỉnh và e cạnh, còn m và M tương ứng là bậc nhỏ nhất và lớn nhất các

    đỉnh của G. Chứng tỏ rằng:

    2e

    mM

    v

    ≤≤

    Giải

    Vì m và M tương ứng là bậc nhỏ nhất và lớn nhất các đỉnh của G, do đó ta dễ dàng có được:

    Bài 22: (3.2)

    Chứng minh rằng nếu G là đơn đồ thị phân đôi có v đỉnh và e cạnh, khi đó chứng minh bất

    đẳng thức sau đây:

    2

    (1)

    4

    v

    e ≤Giải

    Bài 24: (3.6)

    Tìm ma trận liền kề cho các đồ thị sau:

    Hai đồ thị với ma trận liền kề ở trên không thể đẳng cấu với nhau vì: chúng có số cạnh khác nhau:

    đồ thị thứ nhất có 4 cạnh, đồ thị thứ hai có 5 cạnh.

    Bài 26: (3.9)

    Thưa thầy, theo em nghĩ thì đây là hai ma trận

    liên thuộc chứ không phải là hai ma trận liền kề.

    Và nếu là hai ma trận liên thuộc thì chúng đẳng cấu với nhau vì:

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    Giải

    Bài này hoàn toàn giống bài số 20 đã giải ở trên.

    Bài 28: (3.11)

    Cho V = {2, 3, 4, 5, 6, 7, 8} và E là tập hợp các cặp phần tử (u, v) của V sao cho u < v và u với

    v là các số nguyên tố cùng nhau. Hãy vẽ đồ thị có hướng

    ()

    ,GVE= .

    Tìm số đường đi phân biệt độ dài 3 từ đỉnh 2 tới đỉnh 8. Giải 7

    2

    4

    3

    8

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    BT Toan roi rac

    13

    Bài 29: (3.12)

    Hãy tìm số đường đi độ dài n giữa hai đỉnh liền kề (t.ư không liền kề) tùy ý trong K

    3,3

    với

    mỗi giá trị của n sau:

    a. n = 2, b. n = 3, c. n = 4, d. n = 5.

    Giải

    Hai đỉnh liền kề phải ở 2 phần khác nhau. Một cạnh chỉ có thể nối từ 1 đỉnh ở phần (I) đến 1 đỉnh

    ở phần (II) và ngược lại. Gọi m là số đường đi giữa 2 đỉnh bất kỳ trong K

    3,3

    có độ dài n.

    TH1: n chẵn.

    Nếu n chẵn thì đỉnh đầu và đỉnh cuối của đường đi phải ở cùng 1 phần, do vậy chúng không thể

    liền kề.

    TH2: n lẻ.

    Nếu n lẻ thì đỉnh đầu và đỉnh cuối của đường đi phải ở trên 2 phần khác nhau, do vậy chúng phải

    liền kề (vì đây là K

    3,3

    ).

    Mặc khác mỗi một đỉnh ở phần này luôn có 3 phương án để đi qua 1 đỉnh ở phần kia. Do vậy ta có

    được các kết luận sau đây:

    o Hai đỉnh liền kề, n chẵn: m = 0,

    o Hai đỉnh liền kề, n lẻ: m = 3

    n-1

    ,

    o Hai đỉnh không liền kề, n chẵn: m = 3

    n-1

    ,

    o Hai đỉnh không liền kề, n lẽ: m = 0.

    Áp dụng cho các trường hợp:

    BT Toan roi rac

    14

    Bài tập chương III

    Câu 1: Cho G là đồ thị có v đỉnh và e cạnh, còn M, m tương ứng là bậc lớn nhất và nhỏ nhất của các đỉnh

    của G. Chứng tỏ rằng:

    m ≤

    v

    e2

    ≤ M.

    Câu 2: Chứng minh rằng nếu G là đơn đồ thị phân đôi có v đỉnh và e cạnh, khi đó

    e ≤ v

    2

    /4.

    BT Toan roi rac

    15

    Câu 10:

    Các đồ thị G và G’ sau có đẳng cấu với nhau không?

    a)

    b) Câu 11: Cho V={2,3,4,5,6,7,8} và E là tập hợp các cặp phần tử (u,v) của V sao cho u<v và u,v nguyên tố

    cùng nhau. Hãy vẽ đồ thị có hướng G=(V,E). Tìm số các đường đi phân biệt độ dài 3 từ đỉnh 2 tới đỉnh 8.

    Câu 12: Hãy tìm số đường đi độ dài n giữa hai đỉnh liền kề (t.ư. không liền kề) tùy ý trong K

    3,3

    với mỗi

    giá trị của n sau:

    a) n=2, b) n=3, c) n=4, d) n=5.

    u

    1

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    BT Toan roi rac

    16Câu 1:

    Vì m và M tương ứng là bậc nhỏ nhất và lớn nhất các đỉnh của G, do đó ta dễ dàng có được:

    deg() , i=1,vimvM≤≤

    Khi đó, số cạnh nhiều nhất sẽ là:

    12 12

    (2)ddd edd=× ⇔≤

    Ta dễ dàng có được:

    22 22 2

    12 1 122 1 122 12

    ()0 2 0 2 4dd d ddd d ddd dd− ≥⇔− +≥⇔+ +≥

    Câu 4:

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    BT Toan roi rac

    20

    Câu 8:

    Dựa vào ma trận liền kề của hai đơn đồ thị ta có thể vẽ lại các đồ thị bằng hình vẽ: Dựa vào hình vẽ của hai đơn đồ thị ta thấy hai đơn đồ thị không có cùng số cạnh, một bên có 4 cạnh và

    một bên có 5 cạnh. Vậy hai đơn đồ thị có ma trận liền kề đã cho không đẳng cấu.

    Câu 9:

    Theo em dề ra là hai ma trận liên thuộc

    Dựa vào hai ma trận liên thuộc ta có thể vẽ lại đồ thị của hai ma trận như sau:

    Hai đồ thị có các cạnh tương ứng là:

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    b/

    Hai đồ thị có hướng G

    1

    , G

    2

    cho ở trên khi sắp lại thứ tự về các đỉnh thì chúng tương đương về tất cả các

    mặt: từ số đỉnh, tổng số bậc, bậc vào, bậc ra của mỗi đỉnh, tổng số cạnh, thứ tự và chiều đi và đến của các

    cạnh đều tương ứng với nhau:

    Bậc vào: 1 2 1 2 2 1

    Bậc ra: 2 1 2 1 1 2

    Vì vậy, hai đồ thị G

    1

    ,G

    2

    có hướng cho ở trên là đẳng cấu với nhau.

    Câu 12:

    Hai đỉnh liền kề phải ở 2 phần khác nhau cảu đồ thị. Một cạnh chỉ có thể nối từ 1 đỉnh ở phần (I)

    đến 1 đỉnh ở phần (II) và ngược lại. Gọi b là số đường đi giữa 2 đỉnh bất kỳ trong K

    3,3

    có độ dài n.

    TH1

    : n chẵn.

    Nếu n chẵn thì đỉnh đầu và đỉnh cuối của đường đi phải ở cùng 1 phần, do vậy chúng không thể

    liền kề.

    TH2:

    n lẻ.

    Nếu n lẻ thì đỉnh đầu và đỉnh cuối của đường đi phải ở trên 2 phần khác nhau, do vậy chúng phải

    liền kề (vì đây là K

    3,3

    ).

    Mặc khác mỗi một đỉnh ở phần này luôn có 3 đường đi để đi qua 1 đỉnh ở phần kia. Do vậy ta có

    được các kết quả sau đây rút ra từ suy luận trên:

    o Hai đỉnh liền kề, n chẵn: b = 0,

    o Hai đỉnh liền kề, n lẻ: b = 3

    n-1

    ,

    (II) (I)

    1 4

    3

    2

    5

    6

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    BT Toan roi rac

    22

    o Hai đỉnh không liền kề, n chẵn: b = 3

    n-1

    ,

    o Hai đỉnh không liền kề, n lẽ: b = 0. Áp dụng cho các trường hợp:

    Số cạnh n = 2 n = 3 n = 4 n = 5

    Liền kề 0 9 0 81

    Không liền

    kề

    3 0 27 0

    BÀI TẬP CHƯƠNG 4

    ĐỒ THỊ EULER VÀ ĐỒ THỊ HAMILTON Bài 1:

    Với giá trị nào của n thì các đồ thị sau đây là đồ thị Euler?

    a. K

    n

    b. C

    n

    c. W

    n

    d. Q

    nGiải:

    Bài 2:

    Với các giá trị nào của m và n thì đồ thị phân đôi đầy đủ K

    m,n

    có:

    a. Chu trình Euler.

    b. Đường đi Euler.

    Giải

    a. Vì các đỉnh của đồ thị phân đôi đủ K

    m,n

    có bậc là m hoặc n. Do vậy, để nó là đồ thị Euler thì m và

    n đều phải là một số chẵn.

    b. Để một đồ thị có đường đi Euler thì phải có đúng 2 đỉnh bậc lẻ, các đỉnh còn lại phải là bậc chẵn.

    Vậy một trong 2 giá trị m, n phải là 2, giá trị còn lại phải là số lẻ.

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    BT Toan roi rac

    23

    Bài 3:

    Với giá trị nào của m và n thì đồ thị phân đôi đầy đủ K

    m,n

    có chu trình Hamilton.

    Giải

    Theo định lý Dirac, nếu G là đơn đồ thị có n đỉnh và mọi đỉnh của G đều có bậc không nhỏ hơn

    2

    n

    thì G

    là một đồ thị Hamilton. Với K

    m,n

    các đỉnh có bậc m hoặc n, nên để đồ thị đầy đủ K

    m,n

    là đồ thị Hamilton

    thì phải có điều kiện sau:

    Câu 4:

    Chứng minh rằng đồ thị lập phương Q

    n

    là một đồ thị Hamilton. Vẽ cây liệt kê tất cả các chu trình

    Hamilton của đồ thị lập phương Q

    3

    .

    Câu 5:

    Trong một cuộc họp có 15 người mỗi ngày ngồi với nhau quanh một bàn tròn một lần. Hỏi có bao

    nhiêu cách sắp xếp sao cho mỗi lần ngồi họp, mỗi người có hai người bên cạnh là bạn mới, và sắp

    xếp như thế nào ?

    Câu 6:

    Hiệu trưởng mời 2n (n ≥ 2) sinh viên giỏi đến dự tiệc. Mỗi sinh viên giỏi quen ít nhất n sinh viên

    giỏi khác đến dự tiệc. Chứng minh rằng luôn luôn có thể xếp tất cả các sinh viên giỏi ngồi xung

    quanh một bàn tròn, để mỗi người ngồi giữa hai người mà sinh viên đó quen.

    Giải

    Giả sử có đồ thị G = (V, E) mà trong đó ta có: V là tập hợp các sinh viên được mời dự tiệc, E = (u,v) với

    u, v thuộc V và u, v có quan hệ là quen biết nhau (theo giả thiết của đề bài).

    Như vậy theo giả thiết của bài toán ta sẽ xác lập được một đồ thị là một đơn đồ thị có 2n đỉnh, mỗi đỉnh

    có bậc tối thiểu là n (vì theo đề bài cho: mỗi sinh viên quen biết với ít nhất là n sinh viên khác).Cho nên ta

    có: số bậc của mỗi đỉnh

    2

    Do đó, theo định lý Dirac thì G là đồ thị Hamilton.

    Mặc khác, đây là đồ thị vô hướng

    Vậy theo các lập luận trên thì luôn luôn có thể xếp tất cả các sinh viên giỏi ngồi xung quanh một bàn tròn,

    để mỗi người ngồi giữa hai người mà sinh viên đó quen. (đpcm)

    Câu 7:

    Một ông vua đã xây dựng một lâu đài để cất báu vật. Người ta tìm thấy sơ đồ của lâu đài (hình sau)

    với lời dặn: muốn tìm báu vật, chỉ cần từ một trong các phòng bên ngoài cùng (số 1, 2, 6, 10, ), đi

    qua tất cả các cửa phòng, mỗi cửa chỉ một lần; báu vật được giấu sau cửa cuối cùng.

    Hãy tìm nơi giấu báu vật?

    21

    3

    4 5

    6

    7

    Links downloaded from Caffebenevietnam.com tap toan roi rac co giai

    Câu 9:

    Giải bài toán người phát thư Trung Hoa với đồ thị cho trong hình sau:

    Đồ thị G có đường đi Hamilton từ s tới r nhưng không có chu trình Hamilton thì ta cần tìm một đường đi

    từ s tới r qua tất cả các đỉnh còn lại nhưng không trở về đỉnh xuất phát .

    Đường đi Hamilton là :

    s Æ a Æ b Æ c Æ e Æ f Æ g Æ d Æ h Æ r

    Từ đồ thị ta nhận thấy sẽ không có bất kỳ chu trình Hamilton nào xuất phát từ s và lại trở về s.

    Câu 11:

    Cho thí dụ về:

    a) Đồ thị có một chu trình vừa là chu trình Euler vừa là chu trình Hamilton;

    b) Đồ thị có một chu trình Euler và một chu trình Hamilton, nhưng hai chu trình đó không trùng

    nhau;

    c) Đồ thị có 6 đỉnh, là đồ thị Hamilton, nhưng không phải là đồ thị Euler;

    d) Đồ thị có 6 đỉnh, là đồ thị Euler, nhưng không phải là đồ thị Hamilton.

    Giải

    a) b) a

    c

    b

    s

    r

    f

    e

    d

    g

    h

    1

    3 2

    1 2

    3

    4

    6

    5

    --- Bài cũ hơn ---

  • Dạng Bài Tập Về Phép Quay 90 Độ Cực Hay, Có Lời Giải
  • Mệnh Đề Và Suy Luận Toán Học
  • Tài Liệu Toán Lớp 10 Mệnh Đề Tập Hợp Mệnh Đề Và Mệnh Đề Chứa Biến Tóm Tắt Lý Thuyết + Bài Tập Có Lời Giải File Word
  • 253 Bài Tập Trắc Nghiệm Mệnh Đề
  • Các Dạng Toán Về Phân Thức Đại Số Và Bài Tập Vận Dụng
  • Bộ Đề Toán Rời Rạc Thi Cao Học

    --- Bài mới hơn ---

  • Hướng Dẫn Sử Dụng Auto Đánh Quái Trong Mu Online
  • Hướng Dẫn Sự Kiện Imperial Guardian Trong Game Mu Online
  • Viết Đoạn Văn Ngắn Có Sử Dụng Câu Rút Gọn
  • Câu Rút Gọn Là Gì ? Thế Nào Là Câu Rút Gọn ? Câu Đặc Biệt Là Gì
  • Soạn Bài Rút Gọn Câu Lớp 7 Đầy Đủ Hay Nhất
  • Published on

    1. 1. ĐẠI HỌC QUẢNG NGÃI BỘ ĐỀ TOÁN RỜI RẠC Dùng cho sinh viên khoa Công nghệ thông tin và cho thí sinh luyện thi cao học ngành Khoa học máy tính Biên soạn: BÙI TẤN NGỌC – 10/2011 –
    2. 3. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 2 a xong, b a) Sau k a, b c a, b) b. abc c : {0, 2, 4}. + Khi c a b như sau: c =0, a {1, 2, 3, 4, 5}. a, c b + Khi c c a b như sau: c, a c a, c b c a) Bài 3. Có bao nhiêu xâu khác nhau có thể lập được từ các chữ cái trong từ MISSISSIPI, COMPUTER yêu cầu phải dùng tất cả các chữ? Từ MISSISSIPI có chứa : 1 từ M, 4 từ I, 4 từ S và 1 từ P Số xâu khác nhau là : !1!.4!.4!.1 !10 Xâu COMPUTER , nên lập được 8! xâu.
    3. 6. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 5 Moät caàu thuû ñaõ chæ ñònh laøm thuû moân, vaäy ta caàn choïn ra 10 caàu thuû trong 19 caàu thuû coøn laïi xeáp vaøo 10 vò trí. Soá caùch choïn baèng chænh hôïp khoâng laëp chaäp 10 cuûa 19 phaàn töû : 003352212864 !9 !19 )!1019( !19 )!( ! kn n Ak n caùch. c. Coù 3 caàu thuû chæ coù theå laøm thuû moân ñöôïc, caùc caàu thuû khaùc chôi ôû vò trí naøo cuõng ñöôïc ? Coù 3 caùch choïn 1 caàu thuû ñeå laøm thuû moân töø 3 caàu thuû. Sau khi ta choïn thuû moân xong, keá ñeán choïn 10 caàu thuû trong 17 caàu thuû coøn laïi ñeå xeáp vaøo 10 vò trí, coù: 07057290240 !7 !17 )!1017( !17 )!( ! kn n Ak n caùch Theo nguyeân lyù nhaân, ta coù: 3 07057290240 = 211718707200 caùch. Bài 8. Coù 8 ngöôøi ñi vaøo 1 thang maùy cuûa moät toøa nhaø 13 taàng. Hoûi coù bao nhieâu caùch ñeå : a. Moãi ngöôøi ñi vaøo 1 taàng khaùc nhau. Soá caùch ñi vaøo 8 taàng khaùc nhau cuûa 8 ngöôøi naøy laø soá caùch choïn 8 trong soá 13 taàng khaùc nhau (moãi taàng ñöôïc ñaùnh soá töø 1 ñeán 13). Ñoù laø soá chænh hôïp khoâng laëp chaäp 8 cuûa 13 phaàn töû: 51891840 !5 !13 )!813( !13 )!( ! kn n Ak n b. 8 ngöôøi naøy, moãi ngöôøi ñi vaøo 1 taàng baát kì naøo ñoù. Moãi ngöôøi coù 13 caùch löïa choïn töø taàng 1 ñeán 13. Maø coù 8 ngöôøi. Vaäy soá caùch choïn laø 813 . Bài 9. Có bao nhiêu xâu có độ dài 10 được tạo từ tập {a, b, c} thỏa mãn ít nhất 1 trong 2 điều kiện: – Chứa đúng 3 chữ a & chúng phải đứng cạnh nhau – Chứa đúng 4 chữ b & chúng phải đứng cạnh nhau Gọi A là số xâu có độ dài 10 có chứa đúng 3 chữ a đứng cạnh nhau. B là số xâu có độ dài 10 có chứa đúng 4 chữ b đứng cạnh nhau. Như vậy: A B là số xâu mà ta phải tìm.
    4. 10. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 9 + Bỏ 2 viên bi chai vào 3 cái túi, có 6 2 4.3 !2)!.2( !42 4 13 123 1 1 CCCn kn cách bỏ bi + Bỏ 1 viên bi chai vào 3 cái túi, có 3 !2!.1 !32 3 13 113 1 1 CCCn kn cách bỏ bi Theo nguyên lý nhân, ta có: 6.6.3 = 108 cách bỏ bi. c. Giả sử chúng ta có 5 viên bi (2 bi sắt, 2 bi chai và 1 bi đất. Cho biết có bao nhiêu cách sắp chúng thành hàng? Ví dụ: sắt sắt chai chai đất, sắt chai sắt chai đất,… Cách sắp các viên bi thành hàng chính bằng hoán vị lặp của 5 phần tử, trong đó 2 bi sắt, 2 bi chai và 1 bi đất, vậy có: 30 2 5.4.3 !1!.2!.2 !5 cách sắp bi. 14. (Đề thi cao học ĐH CNTT TPHCM -5/2001) a. Tìm số các chuỗi 8 bits thỏa mãn điều kiện: bit đầu tiên là 1 hay 2 bit cuối là 0 Gọi A là số chuỗi 8bits có bit đầu tiên là 1 B là số chuỗi 8bits có 2 bit cuối là 0. Theo nguyên lý bù trừ, ta có N(A B) = N(A) + N(B) – N(A B) Tính N(A): Gọi S=s1s2s3s4s5s6s7s8 là chuỗi 8bits có bit đầu tiên là 1. Vậy s1 có 1 trường hợp, si(i=2..8) có 2 trường hợp 0 và 1. Theo nguyên lý nhân, ta có: N(A) = 1.2.2.2.2.2.2.2 = 27 Tương tự: N(B) = 26 . N(A B) = 25 Vậy: N(A B) = 27 + 26 – 25 = 160 b. Mỗi người sử dụng một hệ thống máy tính của một công ty X phải sử dụng một password dài từ 6 đến 8 ký tự, trong đó mỗi ký tự là một chữ cái hoặc là một chữ s Mỗi password phải có ít nhất một chữ số. Hỏi có thể lập được bao nhiêu password khác nhau? n .
    5. 11. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 10 n . n – 52n 6 – 526 7 – 527 8 – 528 6 – 526 ) + (627 – 527 ) + (628 – 528 ) 6 – 266 ) + (367 – 267 ) + (368 – 268 ) 15. (Đề thi cao học ĐH KHTN-1999) Xét 3 chuỗi ký tự trên tập mẫu tự {a, b, c} ( với a < b < c) : s1 = ac, s2 = aacb, s3 = aba. a. Hãy sắp xếp chúng theo thứ tự tăng đối với thứ tự từ điển. a < b < c, nên s2 < s3 < s1) b. Cho biết giữa s1 và s3 có bao nhiêu chuỗi ký tự có chiều dài 6. s3 = aba < ab * * * * < s1 = ac Bài 16. Cho trước một đa giác lồi P có 10 đỉnh lần lượt là A, B, C, D, E, F, G, H, I, J. Giả sử rằng trong đa giác không có 3 đường chéo nào cắt nhau tại một điểm. Hãy cho biết đa giác có tổng bao nhiêu đường chéo. Vì đa giác lồi P có 10 đỉnh, nên tổng số các đường nối 2 đỉnh bất kỳ của P chính bằng tổ hợp chập 2 (đỉnh) của 10 (đỉnh). 45 2 10.9 !2)!.210( !102 10C cạnh. Theo đề bài đa giác lồi P có 10 cạnh, vậy số đường chéo của đa giác P là: 45 -10 =35
    6. 15. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 14 12650 4.3.2 25.24.23.22 !4!.21 !25 !4)!.425( !254 25 15 1215 1 1 CCCn kn b. x5<4. + x1 ≥ 3 (II) + x1 ≥ 3, x5 ≥ 4 (III) – r. (1) x1 ≥ 3 – a = x1 – 3 x1 = a + 3 a + 3 + b + c + d + e = 21 a + b + c + d + e = 18 (2) ≥ 3. q = 7315 4.3.2 22.21.20.19 !4!.18 !22 !4)!.422( !224 22 15 1185 1 1 CCCn kn x3 ≥ 0, x4 ≥ 0, x5 ≥ 4. x1 ≥ 3 – – 3 x1 = a + 3 x5 ≥ 4 x5 – 4 ≥ 0 e = x5 – 4 x5 = e + 4 a + 3 + b + c + d + e + 4 = 21 a + b + c + d + e = 14 (3 x1 ≥ 3, x5 ≥ 4.
    7. 16. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 15 r = 3060 4.3.2 18.17.16.15 !4!.14 !18 !4)!.418( !184 18 15 1145 1 1 CCCn kn – r = 7315 – 3060 = 4255. . ( – 9/2011) Người ta chia 10 viên kẹo (hoàn toàn giống nhau) cho 3 em bé. a. Có bao nhiêu cách chia kẹo Gọi x1, x2, x3 lần lượt là số kẹo được chia cho mỗi em Ta có : x1 + x2 + x3 = 10 với x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 0 3 10 3 Vậy có 66 cách chia 10 viên kẹo cho 3 em bé. b. Có bao nhiêu cách chia kẹo sao cho em nào cũng có ít nhất 1 viên Gọi x1, x2, x3 lần lượt là số kẹo được chia cho mỗi em. Vì mỗi em phải có ít nhất 1 viên nên: x1 + x2 + x3 = 10 (1) với x1 ≥ 1, x2 ≥ 1, x3 ≥ 1. Đặt: x1′ = x1 – 1 ≥ 0 x1 = x1′ + 1 (a) x2′ = x2 – 1 ≥ 0 x2 = x2′ + 1 (b) x3′ = x3 – 1 ≥ 0 x3 = x3′ + 1 (c) Thay (a), (b) và (c) vào phương trình (1), ta được : x1′ + x2′ + x3′ = 7 (2) với x1′ ≥ 0, x2′ ≥ 0, x3′ ≥ 0 Số nghiệm nguyên dương của phương trình (2) cũng chính bằng số nghiệm nguyên dương của phương trình (1) thỏa mãn với điều kiện mà đề bài đưa ra và bằng: Vậy có 36 cách chia 10 viên kẹo cho 3 em bé mà mỗi em bé có ít nhất 1 viên.
    8. 17. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 16 Bài 20. (Đề thi cao học ĐH Đà Nẵng – 8/2009). Cho bảng chữ cái gồm n ký tự phân biệt, trong đó có ký tự a. Hãy cho biết: a. Có bao nhiêu chuỗi ký tự được xây dựng từ có độ dài p. Số chuỗi có độ dài p được xây dựng từ bảng chữ cái gồm n ký tự phân biệt, chính bằng chỉnh hợp lặp chập p của n phần tử: p n . b. Có bao nhiêu chuỗi ký tự được xây dựng từ có độ dài p chứa ít một ký tự a. Số chuỗi có độ dài p không chứa ký tự a là: p n )1( . Số chuỗi có độ dài p chứa ít nhất 1 ký tự a bằng số chuỗi có độ dài p trừ đi số chuỗi có độ dài p không chứa ký tự a: p n – p n )1( . c. Có bao nhiêu chuỗi được xây dựng từ có độ dài p chứa chỉ một ký tự a. Gọi B là số chuỗi có độ dài p-1 không có ký tự a là: B = 1 )1( p n . Để có chuỗi có đúng 1 ký tự a, ta đem chèn ký tự a vào số chuỗi B. Ứng với 1 chuỗi trong B có p cách chèn ký tự a vào. Vậy số chuỗi được xây dựng từ có độ dài p chứa chỉ một ký tự a là: 1 )1( p np d. Có bao nhiêu chuỗi ký tự được xây dựng từ có độ dài p có đúng q ký tự a. Số tập hợp gồm q vị trí trong số p vị trí của chuỗi có độ dài p là: !)!.( ! qqp p Cq p Trong chuỗi p, có q ký tự a, số ký tự ký còn lại không có chứa a là p-q, và bằng qp n )1( Vậy số chuỗi được xây dựng từ có độ dài p chứa q ký tự a là: qp n qqp p )1( !)!.( ! Bài 21. Đếm số cách đặt 20 cuốn sách vào 4 ngăn tủ, mỗi ngăn đựng 5 cuốn, nếu: a. Mỗi ngăn được đánh số phân biệt b. Các ngăn như nhau a. Chọn 5 cuốn sách bỏ vào ngăn 1, có : !5)!.15( !205 20C cách Sau khi chọn 5 cuốn bỏ vào ngăn 2, số sách còn lại là 15. Chọn tiếp 5 cuốn bỏ vào ngăn 2, có: !5)!.10( !155 15C cách.
    9. 19. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 18 Bài 23. (Đề thi cao học Đà Nẵng – 10/2010) Cho X={0..15}. Chứng tỏ rằng nếu S là một tập con gồm 9 phần tử của X thì có ít nhất 2 phần tử của S có tổng bằng 15. Phân hoạch X thành 8 tập con, mỗi tập con đều có tổng bằng 15, như sau: {0,15}, {1,14}, {2,13}, {3,12}, {4,11}, {5,10}, {6,9}, {7,8} Phân 9 phần tử của S vào 8 tập con trên. Theo nguyên lý Dirichlet, có 2 phần tử của S thuộc một tập nào đó, mà tổng 2 phần tử này sẽ bằng 15. Bài 24. (Đề thi cao học Đà Nẵng – 3/2011) Trong mặt phẳng cho 6 điểm phân biệt nối nhau từng đôi một bởi các đoạn thẳng màu xanh hoặc đỏ. Chứng tỏ rằng có 3 điểm nối nhau bởi các đoạn thẳng cùng màu. Gọi A, B, C, D, E, F là 6 điểm phân biệt nằm trong một mặt phẳng. Giả sử ta chọn điểm A, nối điểm A với 5 điểm còn lại B, C, D, E, F bởi các đoạn thẳng màu xanh hoặc đỏ. + Ngược lại, tam giác BCD không có cạnh màu đỏ, thì tam giác này phải màu xanh. Vậy luôn luôn tồn tại 3 điểm nối với nhau từng đôi 1 bởi các đoạn thẳng cùng màu A B C D E F Giả sử ta chọn điểm A, nối điểm A với 5 điểm còn lại B, C, D, E, F bởi các đoạn thẳng màu xanh hoặc đỏ. Theo nguyên lý Dirichlet phải có 3 đoạn thẳng cùng màu xanh hoặc đỏ. Giả sử là 3 đoạn thẳng AB, AC và AD có màu đỏ (như hình vẽ). + Nếu trong tam giác BCD có cạnh màu đỏ, giả sử là cạnh BC, thì tam giác ABC là tam giác có các cạnh màu đỏ (hay 3 điểm nối nhau cùng màu).
    10. 21. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 20 + Sáu điểm A, B, C, D, E, F được nối với nhau từng đôi một bởi các đoạn thẳng, trong đó có ít nhất 1 đoạn thẳng có màu đỏ. Khi đó, đoạn thẳng màu đỏ này cùng với điểm P tạo thành 3 điểm nối với nhau bởi các đoạn thẳng có màu đỏ. + Sáu điểm A, B, C, D, E, F được nối với nhau từng đôi một bởi các đoạn thẳng không có màu đỏ, tức là các đoạn thẳng này có màu xanh hoặc vàng. Khi đó, chọn điểm bất kỳ (chẳng hạn điểm A) nối với 5 điểm còn lại bởi các đoạn thẳng màu xanh hoặc vàng. Theo nguyên lý Dirichlet, tồn tại ít nhất 3 trong 5 đoạn thẳng có cùng màu, giả sử đó là màu xanh. Giả sử đó là các cạnh AB, AC và AD. Nếu có ít nhất một trong 3 đoạn thẳng BC, CD và DB có màu xanh thì cùng với điểm A tạo thành 3 điểm được nối với bởi màu xanh. Ngược lại, thì B, C, D là điểm được nối với nhau bởi màu vàng. Như vậy, luôn tồn tại ba điểm nối với nhau bởi các đoạn thẳng cùng màu Bài 27. Trong mặt phẳng xOy lấy ngẫu nhiên 5 điểm tọa độ nguyên. Chứng tỏ rằng có ít nhất một trung điểm của các đoạn nối chúng có tọa độ nguyên. Giả sử trong mặt phẳng xOy có A(x1,y1), B(x2,y2). Vậy trung điểm của đoạn thẳng AB sẽ là: 2 21 , 2 21 yyxx . Các tọa độ này nguyên khi: (x1,x2) đều chẵn hoặc đều lẻ, (y1,y2) đều chẵn hoặc đều lẻ. Vì có 4 bộ bao gồm 2 phần tử có tính chẵn lẻ với nhau. Nên theo nguyên lý Dirichlet thì trong 5 điểm sẽ có ít nhất 2 điểm có tính chẵn lẻ như nhau. Do dó, trung điểm của 2 điểm này sẽ có tọa độ nguyên. Bài 28. Cho trước các tập hợp gồm các phần tử xác định nào đó. a. Hãy cho biết các cách mô tả, hay biểu diễn một tập hợp? Cho ví dụ. + Nếu A là một tập hợp gồm một số hữu hạn phần tử, để biểu diễn tập A, ta có thể liệt kê hết các phần tử của A. – Ví dụ biểu diễn A là tập hợp 4 chữ cái hoa đầu tiên: A={‘A’,’B’,’C’,’D’} + Nếu A là một tập hợp vô hạn các phần tử, để biểu diễn tập A, ta dùng cách biểu diễn tính chất của các phần tử, có dạng: A={x P(x)} là tập hợp các phần tử x, sao cho x thỏa mãn tính chất P
    11. 22. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 21 – Ví dụ biểu diễn A là tập hợp các số thực: A={x x R} b. Hãy cho biết thế nào là một tập hợp đếm được, một tập hợp không đếm được? Cho ví dụ. + Nếu A là một tập hợp có hữu hạn phần tử, thì tập A được gọi là tập đếm được. Ví dụ: A={1, 2, 3, 4, 5, 6, 7, 8, 9}, A là tập đếm được vì nó có 9 phần tử, từ 1 đến 9 + Nếu A là một tập hợp có vô hạn phần tử, thì tập A có thể là tập đếm được hoặc không đếm được. Để xác định A có đếm được hay không ta chỉ cần xây dựng song ánh giữa tập A với tập các số tự nhiên N. Ví dụ: Cho A là tập hợp các số phức. A là tập vô hạn không đếm được. c. Cho A là tập không đếm được, B là tập đếm được. Hãy cho biết tập hợp A-B (hiệu) có đếm được hay không? Giả sử A-B là tập đếm được, khi đó A=(A-B) B cũng là tập hợp đếm được, vì: (A-B) : là tập đếm được theo giả thiết. B : là tập đếm được theo đề bài. Mâu thuẩn với đề bài đã cho là A là tập không đếm được. Vậy A-B là tập không đếm được. d. CMR tích Decac của hai tập hợp vô hạn đếm được cũng là một tập vô hạn đếm được? Tích Decac AxB là tập tất cả các cặp phần tử có trật tự sắp xếp (a,b) được tạo ra bởi một phần tử a A với các phần tử đứng kế tiếp b B. Giả sử A={ai, i=1..n}; B={bj, j=1..n} Ta xây dựng một (bảng) ma trận hai chiều, đầu mỗi hàng là một phần tử của A, đầu mỗi cột là phần tử của B. Khi đó, các phần tử của tích Decac AxB là các phần tử của ma trận.
    12. 29. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 28 C00: C tùy ý có độ dài n-2, số chuỗi là: 2(n-2) Ta có công thức truy hồi: Sn=S(n-1)+S(n-2)+ 2(n-2) Bài 6. (Đề thi cao học Đà Nẵng – 9/2010) Cho biết dân số của Việt Nam năm 2007 là 86 triệu người. Giả sử tốc độ tăng dân số hằng năm là 0,2% mỗi năm. Gọi Dn là dân số của Việt Nam n năm sau 2007 a. Lập hệ thức truy hồi tính Dn. Gọi: D0 là tổng dân số Việt Nam năm 2007, D0 = 86 triệu người D1 là tổng dân số Việt Nam năm 2008 : D1 = D0 + 0,002.D0=1,002.D0 ………………………….. Dn là tổng dân số Việt Nam n năm sau năm 2007 Dn = Dn-1 + 0,002Dn-1 = 1,002.Dn-1 b. Dân số Việt Nam năm 2021 là bao nhiêu? Thế lần lượt Dn-1 = 1,002.Dn-2 vào Dn Dn-2 = 1,002Dn-3 vào Dn-1 …….. Cuối cùng ta có : Dn = (1,002)n .D0 = 86.(1,002)n triệu người. Theo đề bài, ta có: n = 2021 – 2007 = 13 Như vậy sau 13 năm dân số Việt Nam là: D13 =86.(1,002)13 triệu người. Bài 7. Giả sử lãi suất ngân hàng là 2% một năm. Tính tổng số tiền có trong tài khoản sau 10 năm, nếu tiền gửi ban đầu tài 10 triệu. P0 là số tiền ban đầu : P0 = 10 triệu P1 là tổng số tiền sau 1 năm gửi: P1 = P0 + 0,02P0 = 1,02P0 P2 là tổng số tiền sau 2 năm gửi: P2 = P1 + 0,02P1 =1,02P1 = 1,02 . 1,02 P0 = (1,02)2 P0
    13. 30. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 29 ….. Pn là tổng số tiền sau n năm gửi: Pn = Pn-1 + 1,02Pn-1 …. = (1,02)n P0 Với n=10, ta có: P10 = (1,02)10 P0 = (1,02)10 .10 = 12,189 triệu đồng. Bài 8. Tìm hệ thức truy hồi và điều kiện đầu để tính số chuỗi nhị phân độ dài n có 4 bít 0 liên tiếp. Ứng dụng tính số chuỗi với n=8. Gọi Sn là số chuỗi nhị phân độ dài n (n 4) có 4 bit 0 liên tiếp. Sn sẽ có một trong các dạng sau: A1: Trong đó A chứa 4 bit 0 liên tục, số chuỗi là: S(n-1) B10: B chứa 4 bít 0 liên tục, số chuỗi là: S(n-2) C100: C chứa 4 bít 0 liên tục, số chuỗi là: S(n-3) D1000: D chứa 4 bít 0 liên tục, số chuỗi là: S(n-4) E0000: E tùy ý có độ dài n-4, số chuỗi là 2(n-4) Ta có công thức truy hồi: Sn=S(n-1)+S(n-2)+S(n-3)+S(n-4)+2(n-4) Điều kiện đầu là: S1=S2=S3=0; S4=1 (Nghĩa là, với n=1, 2, 3 không có chuỗi nào, n=4 có duy nhất 1 chuỗi, đó là: 0000). Dùng phương pháp thế để giải, như sau: s5 = s4+s3+s2+s1+2 = 1+0+0+0+2 = 3 (chuỗi độ dài 5 có 3 trường hợp 0000 kề nhau: 00000, 10000, 00001) s6 = s5 + s4 + s3 + s2 + 22 = 3 + 1 + 0 +0+4 = 8 s7 = s6 + s5 + s4 + s3 + 23 = 8 + 3 + 1+0 + 8 = 20 s8 = s7 + s6 + s5 + s4 + 24 = 20 + 8 + 3 + 1 + 16 = 48 Vậy có 48 chuỗi nhị phân có độ dài 8 chứa 4 bits 0 kề nhau.
    14. 32. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 31 Logic mệnh đề Bài 1. Viết bảng giá trị chân lý của các phép toán mệnh đề Bài 2. Hãy nêu các công thức trong logic mệnh đề
    15. 33. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 32 Bài 3. Chứng minh a. rqprpqp )()( )()()()( rpqprpqp (Đ/n ) ))()(()( rprpqp (Luật De Morgan và Đ/n ) ))()(()( rprppq (Luật De Morgan và giao hoán) ))()((( rprppq (Luật kết hợp) )))(())((( rpprppq (Luật phân phối) ))))(())((( rpprppq (Luật kết hợp) ))()(( rprTq (Luật bù) ))(( rpTq (Luật nuốt) )( rpq ( Luật đồng nhất) rqp ( Luật giao hoán) b. )()](()()()[( (Luật đúng sai) qpq )( (Luật đồng nhất) qpq )( (Đ/n ) qpq )( (Luật De Morgan) pqq )( (Luật kết hợp) p1 (Luật đúng sai) 1 (Luật trội) Bài 4. Viết biểu thức mệnh đề của: a. Bạn không được phép lái xe máy nếu bạn chưa cao đến 1,5m, trừ khi bạn đủ 18 tuổi và có giấy phép lái xe. Ta đặt các biến mệnh đề: p : Bạn được phép lái xe máy. q : Bạn cao dưới 1,5 m r : Bạn đủ 18 tuổi. s : Bạn có giấy phép lái xe. q r s p Hoặc : q r s p. b. Đặt P, Q lần lượt là các mệnh đề: P := ” Minh học chăm”, Q:= ” Minh có kết quả học tập tốt” Hãy viết lại các mệnh đề sau dưới dạng hình thức trong đó có sử dụng các phép nối. * Minh học chăm và có kết quả học tập tốt: QP * Minh học chăm hay Minh có kết quả học tập tốt: QP * Nếu Minh học chăm thì Minh có kết quả học tập tốt: QP * Minh có kết quả học tập tốt khi và chỉ khi Minh học chăm: PQ Bài 5. (Đề thi cao học ĐHSP HN – 2006) a. Cho trước mệnh đề logic F = (P (R Q)) ( P (Q (R P))), Trong đó P, Q, R là ba mệnh đề logic và là phép phủ định.
    16. 36. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 35 Bài 6. Dùng bảng chân trị chứng minh rằng : CBACBA A B C CBA CBA A B C CBA 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 Bài 7.Trình bày các quy tắc suy diễn trong logic mệnh đề
    17. 38. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 37 q r s (4) (Tam đoạn luận 1 và 2) s (5) (Tiền đề) rq (Do 4, 5 và luật phủ định) q r (Luật De Morgan ) Vậy suy luận trên là đúng. b. Cho biết biểu thức nào trong số các biểu thức sau đây là đồng nhất đúng 1. pqr p+q là đồng nhất đúng: p q r pqr p+q pqr p+q 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 2. (p q(q r)) (p r) là đồng nhất đúng: p q r q r q(q r) p q(q r)) p r (p q(q r)) (p r) 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 3. (p q) p không đồng nhất đúng: p q p q (p q) p 0 0 1 0 0 1 1 0
    18. 39. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 38 1 0 0 1 1 1 1 1 4. (p (q+r)) (q pr) không đồng nhất đúng: p q r q+r p (q+r) q pr q pr (p (q+r)) (q pr) 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 c. Tìm giá trị các biến Boole x và y thỏa mãn phương trình xy = x + y x y xy x + y 0 0 0 0 1 1 1 1 Bài 10. Hãy kiểm tra các suy luận sau và cho biết đã sử dụng quy tắc suy diễn nào? c, a. ((p q) q) p (Quy tắc phủ định) r p (r p) (De Morgan)
    19. 41. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 40 Đại số Boole Bài 1. Trình bày các tính chất của các phép toán Boole 1. Tính giao hoán: a.b = b.a a+b = b+a. 2. Tính kết hợp: (a.b).c = a.(b.c) (a+b)+c = a+(b+c). 3. Tính phân phối: a.(b+c) = (a.b)+(a.c) a+(b.c) = (a+b).(a+c). 4. Tính đồng nhất: a.1 = 1.a = a a+0 = 0+a = a. 5. Tính bù: 0.. aaaa 0aaaa 6. Tính nuốt a.0 = 0 a+1 = 1 7. Tính luỹ đẳng a.a = a a+a = a. 8. Hệ thức De Morgan baab baba 9. Tính bù kép aa 10. Tính hút a.(a+b) = a a+(a.b) = a.
    20. 42. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 41 Bài 2. Tối thiểu hàm Bool bằng bảng Karnaugh a) zyxyzxzyxzxyzyxF ),,( Việc nhóm thành các khối cho thấy rằng: Có 2 cặp hình vuông kề nhau, cặp ngang biểu diễn cho zx , cặp đứng biểu diễn cho zy và 1 hình vuông cô lập biểu diễn cho yzx ; vì vậy: zx , zy và yzx là các nguyên nhân nguyên tố của F(x,y,z). Do đó, ta có hàm tuyển chuẩn tắc tối thiểu là: yzxzyzxzyxF ),,( zxyzyxF ),,( zyxzyxF ),,(
    21. 43. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 42 Bài 3. (Đề thi cao học Đà Nẵng – 8/2008) a. Tìm các giá trị của hàm Boole được biểu diễn: zxyzyxF ),,( x y z z xy zxy 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 b. Tối thiểu hàm Boole yxyxyxyxF ),( yxyyxyyxxxy 1.)( yx c. Tối thiểu hóa hàm Boole bằng bảng Karnaugh : zyxyzxzyxzxyyxF ),( yz zy zy zy x 1 1 x 1 1  zxzxyxF ),(
    22. 44. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 43 Bài 4: Tìm dạng chuẩn tắc của hàm zyxzyxF )(),,( Ta lập bảng giá trị của hàm F như sau: x y z z x+y zyx )( 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 0 Ta thấy F(x,y,z) bằng 1 khi : x=0, y=1, z=0 hoặc x=1, y=0, z=0 hoặc x=1, y=1, z=0 Vậy dạng chuẩn tắc của hàm F : zxyzyxzyxzyxF ),,( Bài 5: Vẽ mạch logic của các hàm sau: a. xyxyxF )(),( b. zyxzyxyxF )(),(
    23. 45. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 44 Bài 6. a, Dạng tuyển đầy đủ của F Tập các thể hiện làm cho giá trị của F(x,y,z) bằng 1 là: {000, 010, 100, 110, 111}. Từ tập các thể hiện này ta lập các từ tối thiểu tương ứng : zyx , zyx , zyx , zxy , xyz. Như vậy, dạng tuyển chuẩn tắc đầy đủ của F như sau: F(x,y,z) = zyx + zyx + zyx + zxy + xyz b, Dạng chuẩn tắc tối thiểu F(x,y,z) = zyx + zyx + zyx + zxy + xyz = zx ( y + y ) + zx ( y + y ) + xyz = zx + zx + xyz = ( x + x ) z + xyz = z + xyz Bài 7. a, Dạng tuyển đầy đủ của F Tập các thể hiện làm cho giá trị của F(w,x,y,z) bằng 1 là: {1111, 1101, 1100, 1010, 1000, 0110, 0101, 0100, 0010}. Từ tập các thể hiện này ta lập các từ tối thiểu tương ứng : wxyz, zywx , zywx , zyxw , zyxw , zxyw , zyxw , zyxw , zyxw . Như vậy, dạng tuyển chuẩn tắc đầy đủ của F như sau: F(x,y,z) = wxyz + zywx + zywx + zyxw + zyxw + zxyw + zyxw + zyxw + zyxw b, Dạng chuẩn tắc tối thiểu F(x,y,z) = wxyz + zywx + zywx + zyxw + zyxw + zxyw + zyxw + zyxw + zyxw = wxz( y + y ) + zwx ( y + y ) + zyxw + z ( xyw + yxw ) + yxw (z + z )
    24. 46. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 45 = wxz + zwx + zyxw + z ( yw ( x + x )) + yxw = wx( z + z ) + zyxw + zyw + yxw = wx + zyxw + zyw + yxw Bài 8. Tìm dạng chuẩn tắc của biểu thức ))(()(),,( zyzxzxyzyxf = ( zxy )( )( zx + )( zy ) (Luật De Morgan) = ( zxy )( zx + yz) (Luật De Morgan) = zyzzzxxyyzzxyx (Luật phân phối) = zxxzyzxy + 0 (Luật lũy đẳng: xx = x Luật bù: 0zz Luật nuốt 0.x = 0) = zxzzxy )( = zxxy (Luật bù 1zz ) Bài 9. Tìm dạng chuẩn tắc đầy đủ của biểu thức a, zxyzzyxf ),,( = )()( yyzxxxyz = zyxzxyyzxxyz b, zxyxzyxf ),,( = zxyzzx )( = zxyzxxz = yzxxz
    25. 47. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 46 = ))(()()( zxxzyyyzxyyxz = zyyxxyzzyxzxyzyxxyz = )()( xxzyzzyxzyxzxyzyxxyz = zyxzxyzyxyzxzyxzxyzyxxyz = zyxyzxzyxzyxzxyxyz Cách khác: Giải bằng lập bảng chân trị của biểu thức zxyxzyxf ),,( X Y Z Z’ XZ’ X+Y X+Y+XZ’ 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 Tập các thể hiện làm cho giá trị của F(x,y,z) bằng 1 là: {010, 011, 100, 101, 110, 111}. Từ tập các thể hiện này ta lập các từ tối thiểu tương ứng : zyx , yzx , zyx , zyx , zxy , xyz . Như vậy, dạng tuyển chuẩn tắc đầy đủ của F như sau: zyxyzxzyxzyxzxyxyzzyxF ),,( Bài 10. Tìm biểu thức tối thiểu của: a, xxyyxyxxyE 1.)(1 (Luật bù 1yy ) (Luật đồng nhất x.1=x) b, )(2 yyxxyyxyxxyE yxxxyxxyE 1.2 (Luật hấp thụ yxyxx , xxyx , xyxx )( , xyyxx )( )
    26. 48. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 47 c, yxyxyxE4 )( yyxyx xyx yx Bài 11. Tìm biểu thức tối thiểu của: a, xzyyxzyzxE1 )1()1(1 xyzzyxE )1()1(1 xyzzyxE 1.1.1 yzxE (Luật nuốt 1 + x = 1) yzxE1 (Luật đồng nhất 1.x =x) b, zyxzyxzxyxyzE2 zyxzyxzxy )1( zvyxzyxxy zyxzxxy )( zyxzxy )( (Luật hấp thụ yxyxx ) zyxzyxy c, zyxyzxzyxzxyxyzE3 )()( yyzxzyxzzxy zxzyxxy zxzyyx )(
    27. 49. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 48 zxzyx )( zxxzxy zxxxy )( zxy d, zyxzyxzxyxyzE3 zyxzyxzzxy )( zyxzyxxy zyxzxxy )( zyxzxy )( zyxzyxy zyxzyxy Bài 12. Tìm biểu thức tối thiểu của: A, zxywyxwwxyxwE1 )()( zwwxyywwx )()( zwxyywx zxyxywyxwx zxyyxxyxw )( zxyyxyxw )( zxyyxywwx
    28. 50. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 49 b, zyxwzyxwzwxywxyzE2 zyxwzyxwzzwxy )( zyxwzyxwwxy Bài 13. Cho bảng giá trị x y z F(x, y, z) 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 a. Tìm dạng tuyển chuẩn tắc hoàn toàn (đầy đủ) của f. Tập các thể hiện làm cho giá trị của F(x,y,z) bằng 1 là: {000, 010, 100, 110, 111}. Từ tập các thể hiện này ta lập các từ tối thiểu tương ứng : zyx , zyx , zyx , zxy , xyz. Như vậy, dạng tuyển chuẩn tắc đầy đủ của F như sau: xyzzxyzyxzyxzyxzyxF ),,( b. Tìm dạng tuyển chuẩn tắc thu gọn của f bằng bảng Karnaugh. yz zy zy zy x 1 1 1 x 1 1 zxyzyxF ),,(
    29. 51. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 50 Bài 14. (Đề thi cao học ĐH CNTT TP HCM-2010) a. Tìm công thức dạng chính tắc và công thức tối thiểu của hàm Boole sau: xyzttxytzxzyxtzytzyxxztzyxtzyxF ),,,( xyztzztxyyytzxttzyxxxtzytzyxyyxztzyx )()()()()( xyzttxyztzxytzyxtzyxtzyxtzyxtzyxtzxytzyxzyxxyztzyx xyzttxyztzxytzyxtzyxtzyxtzyxtzxytzyxttzyxttxyztzyx )()( xyzttxyztzxytzyxtzyxtzyxtzyxtzxytzyxtzyxztyxtxyzxyzttzyx txyztzxytzyxtzyxtzyxtzyxtzxytzyxtzyxztyxxyzttzyx Công thức dạng chính tắc đầy đủ là: txyztzxytzyxtzyxtzyxtzyxtzxytzyxtzyxztyxxyzttzyxtzyxF ),,,( Ta dùng bảng Karnaugh để rút gọn hàm F(x,y,z,t) như sau: yz zy zy zy tx 1 1 1 1 xt 1 xt 1 1 1 xt 1 1 1 1 Vậy hàm tối thiểu : tyzyxtzyxF ),,,( b. Vẽ sơ đồ mạng các cổng logic tương ứng với f(x,y,z,t) dựa trên một công thức đa tối thiểu hóa của hàm Boole f Ta có: tyzyxtzyxF ),,,( y z t x F
    30. 52. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 51 a. , = 1. Xét bảng giá trị x,y,z có 23 = 8 trường hợp sau: khi x.y=1 : x = 1 x 1z z Dạng tuyển chuẩn tắc đầy đủ của F(x,y,z) như sau: zxyxyzzyxF ),,( : xyxyzzxyzxyxyzzyxF 1.)(),,( b. , y = 0. 1x , 1y 1z 1x , 1y 1z zyxzyx , Dạng tuyển chuẩn tắc đầy đủ của F(x,y,z) như sau: zyxzyxzyxF ),,( : yxyxzzyxzyxzyxzyxF 1.)(),,( x y z 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0
    31. 53. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 52 Đồ thị và cây Bài 1. (Đề thi cao học ĐH Đà Nẵng – 2/2009) Cho đồ thị a. Biểu diễn đồ thị trên bằng ma trận kề X1 X2 X3 X4 X5 X6 X1 0 1 1 ∞ ∞ ∞ X2 ∞ 0 ∞ 1 ∞ ∞ X3 ∞ ∞ 0 1 ∞ ∞ X4 ∞ ∞ ∞ 0 ∞ ∞ X5 ∞ ∞ ∞ ∞ 0 ∞ X6 ∞ ∞ 1 ∞ ∞ 0 b. Bậc vào của đỉnh X3 Đỉnh X3 có 2 cung đi vào, nên bậc của nó là: deg+ (x3) = 2 Bậc ra của đỉnh x6: Đỉnh X6 có 1 cung đi ra, nên bậc của nó là: deg- (x6) = 1 c. G có phải là đồ thị liên thông không ? Vì sao? Không liên thông vì trong G có 1 đỉnh cô lập là x5 X1` X2 X3 X4 X6X5
    32. 54. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 53 d. Tìm ổn định ngoài (G) Ta có tập đỉnh V={x1, x2, x3, x4, x5, x6} Xác định ánh xạ (x1) ={x1, x2, x3} (x2) ={x1, x2, x4} (x3) ={x1, x3, x4, x6} (x4) ={x2, x3, x4} (x5) ={x5} (x6) ={x3, x6} Từ các tập (xi) trên ta có: (x2) (x5) (x6) ={x1, x2, x4} {x5} {x3, x6} = V (x3) (x4) (x5) ={x1, x3, x4, x6} {x2, x3, x4} {x5} = V Vậy có 2 tập : B1 = {x2, x5, x6} và B2 = {x3, x4, x5} Là các tập ổn định ngoài có số phần tử ít nhất. Từ đó ta có số ổn định ngoài (G)=3 Bài 2. Cho đồ thị X1` X2 X3 X4 X6X5
    33. 55. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 54 a. Biểu diễn đồ thị trên bằng ma trận kề X1 X2 X3 X4 X5 X6 X7 X1 0 1 1 1 ∞ ∞ ∞ X2 1 0 1 ∞ ∞ ∞ ∞ X3 1 1 0 1 ∞ ∞ ∞ X4 1 ∞ 1 0 ∞ ∞ ∞ X5 ∞ ∞ ∞ ∞ 0 1 ∞ X6 ∞ ∞ ∞ ∞ 1 0 ∞ X7 ∞ ∞ ∞ ∞ ∞ ∞ 0 b. Tìm số ổn định trong của đồ thị Tập các ổn định trong 2 phần tử A1={x1, x5} A2={x1, x6} A3={x1, x7} A4={x2, x5} A5={x2, x6} A6={x2, x7} A7={x3, x5} A8={x3, x6} A9={x3, x7} A10={x4, x5} A11={x4,x6} A12={x4, x7} … Tập các ổn định trong 3 phần tử A13={x1, x5, x7} A14={x1, x6, x7} A15={x3, x5, x7} A16={x3, x6, x7} Tập các ổn định trong 4 phần tử A10 = {x2, x4, x5, x7}; A11 = {x2, x4, x6, x7} Và không có tập ổn định trong có trên 4 phần tử. Vậy số ổn định trong là (G) = 4. c. Tìm số ổn định ngoài của đồ thị Ta có tập đỉnh V={x1, x2, x3, x4, x5, x6, x7} Xác định ánh xạ (x1) ={x1, x2, x3, x4} (x2) ={x1, x2, x3} (x3) ={x1, x2, x3, x4}
    34. 56. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 55 (x4) ={x1, x3, x4} (x5) ={x5, x6} (x6) ={x5, x6} (x7) ={x7} Từ các tập (xi) trên ta có: (x1) (x5) (x7) = V (x1) (x6) (x7) = V (x3) (x5) (x7) = V (x3) (x6) (x7) = V Vậy ta có 4 tập : B1 = {x1, x5, x7} ; B2 = {x1, x6, x7} B3 = {x3, x5, x7} ; B4 = {x3, x6, x7} Là các tập ổn định ngoài có số phần tử ít nhất. Từ đó ta có số ổn định ngoài (G)=3 d. Tìm nhân của đồ thị Các tập : {x1, x5, x7} {x1, x6, x7} {x3, x5, x7} {x3, x6, x7} vừa là các tập ổn định trong vừa là các tập ổn định ngoài, nên nhân của đồ thị là: : {x1, x5, x7} {x1, x6, x7} {x3, x5, x7} {x3, x6, x7} Bài 3. Cho đồ thị a. Biểu diễn đồ thị trên bằng ma trận kề
    35. 57. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 56 X1 X2 X3 X4 X5 X6 X1 0 1 ∞ ∞ ∞ 1 X2 ∞ 0 ∞ ∞ 1 ∞ X3 ∞ 1 0 ∞ 1 ∞ X4 ∞ ∞ ∞ 0 1 ∞ X5 ∞ ∞ ∞ ∞ 0 ∞ X6 ∞ ∞ ∞ ∞ 1 0 b. Tìm số ổn định ngoài của đồ thị Ta có tập đỉnh V = {x1, x2, x3, x4, x5, x6} Xác định ánh xạ (x1) ={x1} (x2) ={x1, x2, x3} (x3) ={ x3} (x4) ={x4} (x5) ={x2, x3, x4, x5, x6} (x6) ={x1, x6} Từ các tập (xi) trên ta có: (x1) U (x5) = V (x2) U (x5) = V (x5) U (x6) = V Vậy các tập ổn định ngoài có số phần tử ít nhất là : B1= {x1, x5} B2={x2, x5} B3={x5, x6} Từ đó ta có số ổn định ngoài (G)=2 c. Số ổn định trong A1={x1, x3, x4} A2={x2, x4, x6} A3={x3, x4, x6} Và không có tập ổn định trong có trên 3 phần tử. Vậy số ổn định trong là (G) = 3. d. Nhân của đồ thị Tập B1= {x1, x5} vừa là ổn định ngoài, vừa là ổn định trong nên B1 là nhân của đồ thị.
    36. 58. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 57 Bài 4. Hãy xét xem các đồ thị cho bằng ma trận kề sau, đồ thị nào là đồ thị Euler hoặc nữa Euler và tìm chu trình Euler hoặc đường đi Euler (nếu có) a. Vô hướng Ta có bậc của các đỉnh như sau: Deg(x1) = 4, Deg(x2) = 4, Deg(x3) = 5, Deg(x4) = 6 Deg(x5) = 5, Deg(x6) = 4, Deg(x7) = 4 Đồ thị có 2 đỉnh bậc lẻ đó là đỉnh X3 và X5, các đỉnh còn lại bậc chẵn. Vì vậy, đồ thị trên là đồ thị bán Euler. b. Có hướng Ta có bậc của đồ thị: Deg- (1) = Deg+ (1)= 3; Deg- (2) = Deg+ (2)= 2; Deg- (3) = Deg+ (3)= 2; Deg- (4) = Deg+ (4)= 2; Deg- (5) = Deg+ (5)= 3; Deg- (6) = Deg+ (6)= 3; 1 1 2 7 X 6 6 X 6 2 4 X 3 3 X 4 5 X 5 2 1 1 2 4 X 3 3 X 4 7 X 6 5 X 5 6 X 6 8 X 6
    37. 60. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 59 b. Một đơn đồ thị phẳng liên thông có 9 đỉnh, bậc của các đỉnh là 2, 2, 2, 3, 3, 3, 4, 4, 5. Tìm số cạnh và số mặt của đồ thị. Tổng bậc của đồ thị là : 2 + 2 + 2 + 3 + 3 + 3 + 4 + 4 + 5 = 28. Số cạnh của đồ thị là : e = 28/2 = 14 cạnh Số mặt của đồ thị là : f = e – v + 2 = 14 – 9 + 2 = 7 mặt Bài 6. (Đề thi cao học ĐH Đà Nẵng – 8/2009) a. Trình bày thuật toán Kruskal tìm cây khung nhỏ nhất Các bước của thuật toán tìm cây phủ nhỏ nhất T của đồ thị liên thông có trọng số như sau: Bước 1: Đặt T= (T rỗng không có cạnh) Sắp xếp các cạnh của đồ thị theo thứ tự trọng số tăng dần vào tập Z Bước 2: Trong khi ( T <n-1) và Z ≠ ) thực hiện: – Tìm cạnh e có trọng số nhỏ nhất trong tập Z. Z= Z{e} – Nếu T {e} không tạo chu trình thì T = T U {e} b. Áp dụng thuật toán Kruskal xác định cây khung nhỏ nhất của đồ thị với trọng số như hình vẽ: T= , n=11. Sắp xếp các cạnh của đồ thị theo thứ tự trọng số tăng dần như sau: b e k c f l d g m a h 5 5 5 5 1 10 11 6 3 3 2 6 10 8 7 4 6 4
    38. 61. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 60 Cạnh c,d c,f d,g f,g a,e b,e a,b b,c g,m m,l a,k f,l g,h k,l e,k d,h e,f h,m Độ dài 1 2 3 3 4 4 5 5 5 5 6 6 6 7 8 10 10 11 Bước lặp Cạnh được chọn và đưa vào T Trọng số 1 C,D 1 2 C,F 2 3 D,G 3 4 Không chọn cạnh (F,G), vì tạo chu trình 5 A,E 4 6 B,E 4 7 Không chọn cạnh (A,B), vì tạo chu trình 8 B,C 5 9 G,M 5 10 L,M 5 11 A,K 6 12 Không chọn cạnh (F,L), vì tạo chu trình 13 G,H 6 Tổng trọng số: 41 Tập cạnh của cây khung nhỏ nhất cần tìm là T = {(C,D), (C,F), (D,G), (A,E), (B,E), (B,C), (G,M), (L,M), (A,K), (G,H)}, có tổng trọng số là: 41. Cây khung này như hình dưới : b e k c f l d g m a h 5 5 5 1 6 32 4 6 4
    39. 62. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 61 Bài 7. (Đề thi cao học ĐH Đà Nẵng – 9/2010) Cho đồ thị có trọng số G như hình vẽ a. Đồ thị G có phải là đồ thị Euler không? Nếu có thì hãy chỉ ra chu trình Euler? Nếu không hãy giải thích vì sao? Để một đồ thị vô hướng là đồ thị Euler thì bậc của các đỉnh của đồ thị đều chẵn. Nhưng bậc của các đỉnh a, c, d, k, h, m của đồ thị là số lẻ (deg(a) = 3, deg(c) =3, deg(d)=3, deg(k)=3, deg(m)=3, deg(h)=3). Vậy đồ thị G không phải là đồ thị Euler. b. Hãy sử dụng thuật toán Kruskal tìm cây bao trùm nhỏ nhất của đồ thị G có chứa cạnh bc nhưng không chứa cạnh dh. Cây bao trùm nhỏ nhất không chứa cạnh dh của đồ thị G, ta loại cạnh dh ra khỏi đồ thị, lúc này ta có đồ thị G’ với tập cạnh E’=E{dh} như sau: b e k c f l d g m a h 4 9 12 8 7 1 3 15 2 3 4 9 1 7 1 3 2 8 3 3 b e k c f l d g m a h 4 9 12 8 7 3 15 2 3 4 9 1 7 1 3 2 8 3 3
    40. 63. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 62 Khởi tạo T:= {(b,c)}. Sắp xếp các cạnh của đồ thị theo thứ tự trọng số tăng dần trừ cạnh bc, ta có: Z={(e,f), (k,l), (a,k), (d,g), (a,e), (b,f), (f,g), (h,m), (g,l), (a,b), (c,f), (c,d), (e,k), (b,c), (l,m), (f,l), (g,m), (h,g) }. Bước lặp Cạnh được chọn và đưa vào T Trọng số 1 E,F 1 2 K,L 1 3 A,K 2 4 D,G 2 5 A,E 3 6 B,F 3 7 F,G 3 8 H,M 3 9 Không chọn cạnh (G,L), vì tạo chu trình 10 Không chọn cạnh (A,B), vì tạo chu trình 11 Không chọn cạnh (C,F), vì tạo chu trình 12 Không chọn cạnh (C,D), vì tạo chu trình 13 Không chọn cạnh (E,K), vì tạo chu trình 14 Không chọn cạnh (B,C), vì tạo chu trình 15 (L,M) 8 Tập cạnh của cây khung nhỏ nhất cần tìm là T={(B,C), (E,F), (K,L), (A,K), (D,G), (A,E), (B,F), (F,G), (H,M), (L,M)}, trọng số nhỏ nhất bằng : 35. Cây khung được vẽ như sau:
    41. 64. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 63 Bài 8. a. Trình bày thuật toán Prim Các bước chính của thuật toán Prim tìm cây phủ nhỏ nhất T của đồ thị liên thông có trọng số G được mô tả như sau: Bước 1 : T := {v} v là đỉnh bất kỳ. Bước 2 : Lặp n-1 lần – Tìm đỉnh rìa v có cạnh e nối T với trọng số nhỏ nhất – Đưa e vào T b. Dùng thuật toán Prim tìm cây khung nhỏ nhất của đồ thị có ma trận trọng số sau: X1 X2 X3 X4 X5 X6 X7 X8 Tv Te Khởi tạo – (16,x1) (15,x1)* (23,x1) (19,x1) (18,x1) (32,x1) (20,x1) X1 1 – (13,X3)* – (13,X3) (19,x1) (18,x1) (20,X3) (19,X3) X1, X3 X1X3 b e k c f l d g m a h 9 8 3 2 31 1 3 2 3
    42. 65. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 64 2 – – – (13,X3) (19,×1) (18,×1) (19,X2) (11,X2) * X1, X3, X2 X1X3, X3X2 3 – – – (12,X8)* (19,×1) (14,×8) (18,X8) – X1, X3, X2, X8 X1X3, X3X2, X2X8 4 – – – – (19,×1) (14,×8)* (18,X8) – X1, X3, X2, X8, X4 X1X3, X3X2, X2X8, X8X4 5 – – – – (19,×1) – (17,×6)* – X1, X3, X2, X8, X4, X6 X1X3, X3X2, X2X8, X8X4, x8x6 6 – – – – (19,×1) * – – – X1, X3, X2, X8, X4, X6, X7 X1X3, X3X2, X2X8, X8X4, x8x6, x6x7 7 X1, X3, X2, X8, X4, X6, X7, X5 X1X3, X3X2, X2X8, X8X4, x8x6, x6x7, x1x5 Tập cạnh của cây khung nhỏ nhất cần tìm là T={(X1,X3), (X3,X2), (X2,X8), (X8,X4), (X8,X6), (X6,X7), (X1,X5)} trọng số nhỏ nhất bằng : 13+15+12+19+14+17+11 = 101. Cây khung được vẽ như sau: Bài 9. a. Trình bày thuật toán Dijkstra Các bước chính của thuật Dijkstra để tìm đường đi ngắn nhất từ đỉnh a đến đỉnh z trên đồ thị G=(V,E,W) được mô tả như sau: Bước 1 : T=V; Da = 0; Di = ∞, Vi ≠ a. Bước 2 : Lặp cho đến khi z T: – Lấy ra khỏi T đỉnh Vi có Di nhỏ nhất – Đánh nhãn lại cho mọi Vj kề Vi và Vj T theo công thức: Dj = min{Dj, Di+Wij} X1 X7 X5 X3 X6 X2 X8 X4
    43. 66. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 65 b. Tìm đường đi ngắn nhất từ đỉnh x1 đến các đỉnh còn lại của đồ thị vô hướng B.lặp X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 Khởi tạo 0, x1* ∞,x1 ∞, x1 ∞, x1 ∞, x1 ∞, x1 ∞, x1 ∞, x1 ∞, x1 ∞, x1 ∞,x1 1 – 9, x1 ∞, x1 9, x1 6, x1* ∞, x1 ∞, x1 ∞, x1 ∞, x1 ∞, x1 ∞, x1 2 – 8,x5* ∞, x1 9, x1 – 13, x5 ∞, x1 ∞, x1 14,x5 10,x5 ∞, x1 3 – – 13,x2 9, x1* – 13, x5Ux2 14,x2 ∞, x1 14,x5 10,x5 ∞, x1 4 – – 13,x2 – – 13, x5Ux2 14,x2 ∞, x1 13,x4 10,x5* ∞, x1 5 – – 13,x2* – – 13, x5Ux2 14,x2 ∞, x1 11,x10 – 17,x10 6 – – 13,x2* – – 13, x5Ux2 14,x2 16,x3 – – 17,x10 7 – – – – – 13, x5Ux2 14,x2 16,x3 – – 17,x10 8 – – – – – – 14,x2 16,x3 – – 17,x10 9 – – – – – – – 16,x3 – – 17,x10 10 – – – – – – – – – – 17,x10 Từ bảng trên ta có đường đi ngắn nhất từ x1 đến các đỉnh là: X1X5X2 (độ dài 8); X1X4 (9); X1X5X2X3 (13); X1X5 (6) X1X5X6 (13); X1X5X2X7 (14); X1X5X2X3X8 (16) X1X5X10X9 (11); X1X5X10 (10); X1X5X10X11 (17) Các đường đi được minh họa trên đồ thị sau:
    44. 67. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 66 c. Tìm đường đi ngắn nhất từ đỉnh A đến các đỉnh còn lại của đồ thị có hướng B.lặp A B C D E F G H I K M Khởi tạo 0, A* ∞,x1 ∞, x1 ∞, x1 ∞, x1 ∞, x1 ∞, x1 ∞, x1 ∞, x1 ∞, x1 ∞,x1 1 – 7, A ∞, A ∞, A 4,A ∞, A ∞, A 1, A* ∞, A ∞, A ∞, A 2 – 7, A ∞, A ∞, A 3,H* ∞, A ∞, A – 3,H ∞, A ∞, A 3 – 6, E ∞, A ∞, A – ∞, A ∞, A – 3,H* ∞, A ∞, A 4 – 6, E* ∞, A ∞, A – 7,I ∞, A – – 12,I ∞, A 5 – – 9,B ∞, A – 7,I* ∞, A – – 12,I ∞, A 6 – – 9,B F* ∞, A – – ∞, A – – 12,I ∞, A 7 – – – 17,C – – 15,C – – 11,C* ∞, A 8 – – – 17,C – – 14,K* – – – 16,K 9 – – – 16,G* – – – – – – 16,K 10 – – – – – – – – – – 16,K*
    45. 68. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 67 Từ bảng trên, ta có đường đi ngắn nhất từ A đến các đỉnh là: AHEB (6); AHIFC (9); AHIFKGD (16); AHE (3) AFHIF (7); AHIFCKG (14); AH (1); AHI (3); AHIFCK (11); AHIFCKM (16) Bài 10. Cho đồ thị a. Tìm đường đi ngắn nhất từ x1 đến x14 B.lặp X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 Khởi tạo X1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 – 7,x1 6,x1 ∞ ∞ 7,x1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 – 7,x1 – ∞ ∞ 7,x1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3 – – – 17,x2 12,x2 7,x1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4 – – – 17,x2 8,x6 – ∞ ∞ 10,x6 ∞ ∞ ∞ ∞ ∞ ∞ 5 – – – 15,x5 – – ∞ 10,x5 10,x6 ∞ ∞ ∞ ∞ ∞ ∞ 6 – – – 15,x5 – – 17,x8 – 10,x6 18,x8 ∞ ∞ ∞ ∞ ∞ 7 – – – 15,x5 – – 17,x8 – – 18,x8 ∞ 26,x9 ∞ ∞ ∞ 8 – – – – – – 17,x8 – – 18,x8 ∞ 26,x9 ∞ ∞ ∞ 9 – – – – – – – – – 18,x8 23,x7 25,x7 ∞ ∞ ∞ 10 – – – – – – – – – – 21,x10 25,x7 23,x10 ∞ ∞ 11 – – – – – – – – – – – 25,x7 23,x10 25,x11 28,x11 12 – – – – – – – – – – – 25,x7 – 25,x11 U x13 28,x11
    46. 69. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 68 Từ bảng trên ta có đường đi ngắn nhất từ x1 đến x14 là: X1X6X5X8X10X13X14 hoặc X1X6X5X8X10X11X14 và độ dài là: 25. b. Tìm đường đi ngắn nhất từ x1 đến x14 có chứa X8X9 B.lặp X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 Khởi tạo X1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 – 7,×1 6,×1 ∞ ∞ 7,×1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 – 7,×1 – ∞ ∞ 7,×1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3 – – – 17,×2 12,×2 7,×1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4 – – – 17,×2 8,×6 – ∞ ∞ 10,×6 ∞ ∞ ∞ ∞ ∞ ∞ 5 – – – 15,×5 – – ∞ 10,×5 10, x6 U x5 ∞ ∞ ∞ ∞ ∞ ∞ 6 – – – – – ∞ – 10, x6 U x5 ∞ ∞ ∞ ∞ ∞ ∞ 7 – – – – – 23, x9x8 – – 24, x9x8 32, x8x9 ∞ ∞ ∞ 8 – – – – – – – – 24, x9x8 29,×7 31,×7 ∞ ∞ 35,×12 9 – – – – – – – – – 27,×10 31,×7 29,×10 ∞ 35,×12 10 – – – – – – – – – – 31,×7 29,×10 31, x11 34, x11 11 – – – – – – – – – – 31,×7 – 31, x10 U x13 34, x11 Từ bảng trên ta có đường đi ngắn nhất từ x1 đến x14 có chứa X8X9 là: x1x6x5x9x8x10x11x14 , hoặc x1x6x5x9x8x10x13x14 , hoặc x1x6x9x8x10x11x14 , hoặc x1x6x9x8x10x13x14 với chiều dài là: 31 c. Tìm đường đi ngắn nhất từ x1 đến x14 có chứa đỉnh X7 B.lặp X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 Khởi tạo X1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 – 7,×1 6,×1 ∞ ∞ 7,×1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 – 7,×1 – ∞ ∞ 7,×1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3 – – – 17,×2 12,×2 7,×1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4 – – – 17,×2 8,×6 – ∞ ∞ 10,×6 ∞ ∞ ∞ ∞ ∞ ∞
    47. 70. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 69 5 – – – 15,x5 – – ∞ 10,x5 10,x6 ∞ ∞ ∞ ∞ ∞ ∞ 6 – – – 15,x5 – – 17,x8 – 10,x6 18,x8 ∞ ∞ ∞ ∞ ∞ 7 – – – 15,x5 – – 17,x8 – – 18,x8 ∞ 26,x9 ∞ ∞ ∞ 8 – – – – – – 17,x8 – – 18,x8 ∞ 26,x9 ∞ ∞ ∞ 9 – – – – – – – – – 21,x7 23,x7 25,x7 ∞ ∞ ∞ 10 – – – – – – – – – – 23,x7 25,x7 26,x10 ∞ ∞ 11 – – – – – – – – – – – 25,x7 26,x10 27,x11 30,x11 12 – – – – – – – – – – – – 26,x10 27,x11 28,x12 13 – – – – – – – – – – – – – 27,x11 28,x12 Vậy đường đi ngắn nhất từ x1 đến x14 có chứa đỉnh X7 là: X1 X6 X5 X8 X7 X11 X14, và độ dài đường đi bằng: 27 Bài 11. Cho đồ thị G=(V,E,W) a. Tìm đường đi ngắn nhất từ V1 đến các đỉnh của đồ thị. B.lặp V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Khởi tạo V1 V1,∞ V1,∞ V1,∞ V1,∞ V1,∞ V1,∞ V1,∞ V1,∞ V1,∞ 1 – 32,v1 V1,∞ 17,v1 V1,∞ V1,∞ V1,∞ V1,∞ V1,∞ V1,∞ 2 – 32,v1 35,v4 – 27,v4 V1,∞ V1,∞ 21,v4 V1,∞ V1,∞
    48. 71. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 70 3 – 32,v1 35,v4 – 27,v4 V1,∞ 80,v8 – 25,v8 V1,∞ 4 – 32,v1 35,v4 – 27,v4 V1,∞ 80,v8 – – 37,v9 5 – 32,v1 35,v4 – – 55,v5 80,v8 – – 37,v9 6 – – 35,v4 – – 55,v5 80,v8 – – 37,v9 7 – – – – – 55,v5 40,v3 – – 37,v9 8 – – – – – 55,v5 – – – 37,v9 9 – – – – – 43,v10 – – – – b. Tìm cây phủ nhỏ nhất của G. Sắp xếp các cạnh của đồ thị theo thứ tự trọng số tăng dần, như sau: (v4,v8), (v8,v9), (v3,v7), (v6,v10), (v4,v5), (v9,v10), (v1,v4), (v3,v4), (v5,v9), (v5,v6), (v1,v2), (v2,v5), (v7,v8). Trọng số tương ứng: 4, 4, 5, 6, 10, 12, 17, 18, 25, 28, 32, 45, 59. Bước lặp Cạnh được chọn và đưa vào T Trọng số 1 (v4,v8) 4 2 (v8,v9) 4 3 (v3,v7) 5 4 (v6,v10) 6 5 (v4,v5) 10 6 (v9,v10) 12 7 (v1,v4) 17 8 (v3,v4) 18 9 Không chọn (v5,v9), vì tạo chu trình 10 Không chọn (v5,v6), vì tạo chu trình 11 (v1,v2) 32 Tổng trọng số: 108
    49. 72. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 71 Bài 12. Tìm đường đi ngắn nhất giữa các cặp đỉnh của các đồ thị sau: a. Đồ thị có hướng – 14 11 67 57 0W ba d dc cb P0 – a c : C(d,a) + C(a,c) = 9 4 6 d 1 b a c 7 117 5
    50. 73. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 72 914 11 67 57 1W aba d dc cb P1 – : b d : C(a,b) + C(b,d) = 13 d b c : C(d,b) + C(b,c) = 8 < W1(d,c)=9 d b d : C(d,b) + C(b,d) = 7 7814 11 67 1357 2W bcba d dc bcb P2 – : 7814 11 67 1357 3W bcba d dc bcb P3 – : 7814 11191215 67710 135717 4W bcba dbdd dcdd bcbb P4 *=W4 4 : i1= P(b,a) = d, i2 = d c
    51. 74. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 73 b. Đồ thị có hướng 1 22 4 3 14 27 0 WW 1 4292 4 3 14 27 1W 251 104292 584 3 14 82117 2W 8251 5104292 11584 3 714 1482117 3W 8251 594282 11584 3 714 1372106 4W 726414 594282 1059747 3 615393 1272969 5W
    52. 75. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 74 726414 574262 1059747 359747 615373 1272969 * 6WW Bài 13. (Đề thi cao học ĐH Đà Nẵng – 8/2008) Đ ồ thị có hướng G = (V,E), được cho bởi ma trận trọng số như sau: 1 2 3 4 5 6 1 7 1 2 4 1 3 5 2 7 4 5 2 5 6 3 a. Vẽ đồ thị 1 1 3 3 4 6 5 5 7 4 2 2 5 7 1 2
    53. 77. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 76 2 4 = min(cf(1,2), cf(2, 4)) = min(c(1, 2) − f(1,2), c(2, 4) − f(2, 4)) = min(7− 1, 4 − 0) = 4 5; f(2,4) =4; 4. (Đề thi cao học 3/2011 – ĐH Đà Nẵng) Giả sự nước Nhật xây dựng lại mạng viễn thông như đồ thị đã cho, giữa hai thành phố có thể kết nối trực tiếp hoặc gián tiếp qua các thành phố khác. Ưu tiến các đường truyền trực tiếp từ các thành phố đến Tokyo hơn là gián tiếp nếu có cùng chi phí. Mỗi thành phố được biểu diễn bởi một đỉnh của đồ thị, trọng số của cung là ước tính chi phí xây dựng đường truyền. Chất lượng đường truyền giữa hai thành phố chính bằng số các thành phố trung gian giữa hai thành phố. Nếu hai thành phố được nối trực tiếp sẽ cho chất lượng tốt nhất. Chất lượng đường truyền của toàn hệ thống chính bằng chất lượng kết nối xấu nhất giữa hai thành phố nào đó. a. Tính chi phí tối thiểu để xây dựng hệ thống đường truyền liên thông giữa các thành phố. b. Chi phí tối thiểu để xây dựng hệ thống đường truyền liên thông mà tất cả các đường truyền xuất phát từ Tokyo đều được giữ lại. c. Hãy tính chất lượng đường truyền của toàn hệ thống. Hãy cho biết các cặp thành phố nào có chất lượng thấp nhất. d. Hãy đưa ra phương án tối ưu sao cho nếu có một cung nào đó bị xóa, thì đồ thị vẫn liên thông. 1 1 3 3 4 6 5 5 7 4 2 2 5 7 1 2 (5) (1) (1) (1) (4)
    54. 78. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 77 a. Chi phí tối thiểu để xây dựng hệ thống đường truyền liên thông giữa các thành phố chính bằng giá trị cây khung nhỏ nhất của đồ thị. Ta dùng thuật toán Kruskal để tìm cây bao trùm tối thiểu như sau: – Khởi tạo T= . – Sắp xếp các cạnh của đồ thị theo thứ tự trọng số tăng dần vào tập Z Z={(Ya,Se), (Nago,Yo), (Toky, Yo), (Fu,Se), (Toky,Fu), (Toky,Nago), (Toky,Ya), (Naga,Hi), (Yo,Fu), (Toky,To), (To,Ya), (Nago,Ko), (Toky,Se), (Se,Ao), (Nago,Hi), (Ko,Naga), (Ao,Ya), (Nago,Naga), (To,Hi), (Ko,Yo)} Trọng số tương ứng: 4, 6, 7, 7, 12, 15, 15, 15, 15, 17, 17, 17, 20, 20, 20, 25, 25, 30, 30, 30 Bước lặp Cạnh được chọn và đưa vào T Trọng số 1 (Ya,Se) 4 2 (Nago,Yo) 6 3 (Toky, Yo) 7 4 (Fu,Se) 7 5 (Toky,Fu) 12 Nagasaki 15 Hiroshima Toyama Yamagata Aomori Tokyo Yokoham a Nagoy a Kochi Sendai Fukushi ma 30 25 17 30 20 30 17 25 4 20 720 12 157 15 17 15 6
    55. 79. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 78 6 Không chọn (Toky,Nago), vì tạo chu trình 7 Không chọn (Toky,Ya), vì tạo chu trình 8 (Naga,Hi) 15 9 Không chọn (Yo,Fu), vì tạo chu trình 10 (Toky,To) 17 11 Không chọn (To,Ya), vì tạo chu trình 12 (Nago,Ko) 17 13 Không chọn (Toky,Se), vì tạo chu trình 14 (Se,Ao) 20 15 (Nago,Hi) 16 Không chọn (Ko,Naga), vì tạo chu trình 17 Không chọn (Ao,Ya), (Nago,Naga), (To,Hi), (Ko,Yo), vì tạo chu trình Tổng trọng số: 125 Chi phí tối thiểu để xây dựng hệ thống đường truyền liên thông giữa các thành phố là 125. Sơ đồ kết nối như hình dưới: Nagasaki 15 Hiroshima Toyama Yamagata Aomori Tokyo Yokoham a Nagoya Kochi Sendai Fukushim a 17 20 4 20 7 12 7 17 6
    56. 80. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 79 b. Khởi tạo T= {(Toky,Ya), (Toky, Se), (Toky, Fu), (Toky,Yo), (Toky,Nago)}. Z = ET. Sắp xếp các cạnh của đồ thị trong Z theo thứ tự trọng số tăng dần Z ={(Ya,Se), (Nago,Yo), (Fu,Se), (Naga,Hi), (Yo,Fu), (Nago,Ko), (Se,Ao), (Nago,Hi), (Ko,Naga), (Ao,Ya), (Nago,Naga), (To,Hi), (Ko,Yo)} Bước lặp Cạnh được chọn và đưa vào T Trọng số 1 Không chọn (Ya,Se), vì tạo chu trình 2 Không chọn (Nago,Yo), vì tạo chu trình 3 Không chọn (Fu,Se), vì tạo chu trình 4 (Naga,Hi) 15 5 Không chọn (Yo,Fu), vì tạo chu trình 6 (Nago,Ko) 17 7 (Se,Ao) 20 8 (Nago,Hi) 20 9 Không chọn (Ko,Naga), (Ao,Ya), (Nago,Naga) (To,Hi), (Ko,Yo), vì tạo chu trình Chi phí tối thiểu để xây dựng hệ thống đường truyền liên thông mà tất cả các đường truyền xuất phát từ Tokyo đều được giữ lại là : 158 và đường kết nối như hình sau:
    57. 81. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 80 c. Dùng thuật toán Floy tìm đường đi ngắn nhất giữa các cặp đỉnh, trọng số của đồ thị cij=1 (nếu đỉnh i có cạnh nối với đỉnh j: i,j = 1..11), cij = ∞ (nếu đỉnh i không có cạnh nối với đỉnh j). Ma trận liền kề của đồ thị Nagasaki 15 Hiroshima Toyama Yamagata Aomori Tokyo Yokohama Nagoya Kochi Sendai Fukushim a 17 20 20 20 12 7 15 17 15 Naga(1) 1 Hi (4) To (5) Ya (11) Ao (10) Toky(6) Yo (7) Nago(3) Ko(2) Se (9) Fu (8) 1 1 1 1 1 1 1 1 1 1 11 1 11 1 1 1 1
    58. 82. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 81 01111 101 11011 1011 10111 1111011 1101 1011 111011 1101 1110 0 WW 01111 101 11011 1011 10111 1111011 1101 10121 111011 12101 1110 1W 01111 101 11011 1011 101112 1111011 1101 10121 111011 12101 21110 2W 01111 101 11011 1011 1012112 1111012122 1101 2210121 111011 122101 221110 3W 01111 101 11011 1011 10132112 1111012122 13101232 2210121 1121011 1232101 2221110 4W 0114112343 101 11011 1011 410132112 1111012122 13101232 22210121 31121011 41232101 32221110 5W
    59. 83. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 82 01122112233 101 11012123233 2101123233 2210122112 1111012122 1222101232 2332210121 2221121011 3331232101 3332221110 6W 01122112233 101 11012123233 2101123223 2210122112 1111012122 1222101232 2332210121 2221121011 3321232101 3332221110 7W 01122112233 101 11012123233 2101123223 2210122112 1111012122 1222101232 2332210121 2221121011 3321232101 3332221110 8W 01122112233 10123234344 11012123233 22101123223 23210122112 12111012122 13222101232 24332210121 23221121011 34321232101 34332221110 9W 01122112233 10123234344 11012123233 22101123223 23210122112 12111012122 13222101232 24332210121 23221121011 34321232101 34332221110 10W 01122112233 10123233344 11012123233 22101123223 23210122112 12111012122 12222101232 23332210121 23221121011 34321232101 34332221110 11W Từ ma trận W11, ta có chất lượng đường truyền của toàn hệ thống là 4. Các cặp thành phố có chất lượng thấp nhất là: (Nagasaki, Aomori), (Kochi Aomori). c. Phương án tối ưu sao cho nếu có một cung nào đó bị xóa, thì đồ thị vẫn liên thông. Thêm cạnh để đồ thị thành đồ thị Euler (Tất cả các đỉnh của đồ thị có bậc chẳn). Khi đó nếu có 1 cạnh nào bị xóa đồ thị vẫn còn đường đi Euler.
    60. 84. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 83 Bài 15. (Đề thi cao học ĐH CNTT TP HCM – 2010) Cho đồ thị G như sau: a. Viết biểu diễn ma trận của đồ thị G. a b c d u v t y z a 0 5 10 ∞ 6 ∞ ∞ ∞ ∞ b 5 0 9 20 ∞ ∞ ∞ ∞ ∞ c 10 9 0 12 2 8 ∞ ∞ ∞ d ∞ 20 12 0 ∞ 5 ∞ 4 ∞ u 6 ∞ 2 ∞ 0 ∞ 22 ∞ ∞ v ∞ ∞ 8 5 ∞ 0 10 14 15 t ∞ ∞ ∞ ∞ 22 10 0 ∞ 4 y ∞ ∞ ∞ 4 ∞ 14 ∞ 0 9 z ∞ ∞ ∞ ∞ ∞ 15 4 9 0 1 4 5 11 10 6 7 3 2 9 8 a c d e f g h j f a b d y z tu c v 20 4 9 14 15 4 10 22 6 5 9 10 12 2 8 5
    61. 85. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 84 b. Trình bày một thuật toán để tìm cây bao trùm tối thiểu của một đồ thị có trọng số. Áp dụng thuật toán đó để tìm cây bao trùm tối thiểu của đồ thị G. Thuật toán Prim để tìm cây khung nhỏ nhất như sau: Các bước chính của thuật toán Prim tìm cây phủ nhỏ nhất T của đồ thị liên thông có trọng số G được mô tả như sau: Bước 1 : T := {v} v là đỉnh bất kỳ. Bước 2 : Lặp n-1 lần o Tìm đỉnh rìa v có cạnh e nối T với trọng số nhỏ nhất o Đưa e vào T a b c d u v t y z Tv Te Khở i tạo – 5,a 10,a ∞,a 6,a ∞,a ∞,a ∞,a ∞,a a 1 – – 9,b 20,b 6,a ∞,a ∞,a ∞,a ∞,a a,b ab 2 – – 2,u 20,b – ∞,a 22,u ∞,a ∞,a a, b, u ab, au 3 – – – 12,c – 8,c 22,u ∞,a ∞,a a, b, u, c ab, au, uc 4 – – – 5,v – – 10,v 14,v 15,v a, b, u, c, v ab, au, uc, cv 5 – – – – – – 10,v 4,d 15,v a, b, u, c, v, d ab, au, uc, cv, vd 6 – – – – – – 10,v – 9,y a, b, u, c, v, d, y ab, au, uc, cv, vd, dy 7 – – – – – – 4,z – – a, b, u, c, v, d, y, z ab, au, uc, cv, vd, dy, yz 8 – – – – – – – – – a, b, u, c, v, d, y, z, t ab, au, uc, cv, vd, dy, yz, zt Tập cạnh của cây khung nhỏ nhất cần tìm là T={(a,b), (a,u), (u,c), (c,v), (v,d), (d,y), (y,z) , (z,t)} trọng số nhỏ nhất bằng : 5+2+5+6+8+4+4+9 =43 . Cây khung được vẽ như sau: a c d e f g h j f a b d y z tu c v 4 9 4 6 5 2 8 5
    62. 86. Toán rời rạc – Tài liệu dùng để luyện thi cao học ngành Khoa học máy tính ấn Ngọc [email protected] 85 c. Giả sử e1 và e2 là hai cạnh của G. Hãy xây dựng một thuật toán tìm một cây bao trùm của đồ thị G thỏa mãn các điều kiện sau: T không chứa các cạnh e1 và e2, và tổng trọng số các cạnh của cây T là nhỏ nhất. Áp dụng thuật toán đó để tìm cây bao trùm tối thiểu của G không chứa các cạnh uc và dy. Bước 1: – Khởi tạo T:= . Z = E{e1,e2} – Sắp xếp tập các cạnh của đồ thị trong Z, theo thứ tự trọng số tăng dần. Bước 2: Trong khi ( T <n-1) và Z ≠ ) thực hiện: – Tìm cạnh e có trọng số nhỏ nhất trong tập Z. Z= Z{e} – Nếu T U {e} không tạo chu trình thì T = T U {e} Áp dụng thuật toán trên tìm cây bao trùm tối thiểu như sau: – Khởi tạo T:= . – Sắp xếp các cạnh của đồ thị theo thứ tự trọng số tăng dần, trừ cạnh uc và dy như sau: Z={(t,z ‘4’), (a,b ‘5’), (d,v ‘5’), (a,u ‘6’), (c,v ‘8’), (b,c ‘9’), (y,z ‘9’), (a,c ’10’), (v,t ’10’), (c,d ’12’), (v,y ’14’), (v,z ’15’), (b,d ’20’), (u,t ’22’)}. Bước lặp Cạnh được chọn và đưa vào T Trọng số 1 T,Z 4 2 A,B 5 3 D,V 5 4 A,U 6 5 C,V 8 6 B,C 9 7 Y,Z 9 8 Không chọn cạnh (A,C), vì tạo chu trình 9 V,T 10 10… Không chọn cạnh (c,d), (v,y), (v,z), (b,d), (u,t), vì tạo chu trình Tổng trọng số: 56

    --- Bài cũ hơn ---

  • Apache2 Ubuntu Default Page: It Works
  • Vtv Giải Trí: Kho Phim Truyền Hình Và Giải Trí Miễn Phí
  • Giải Quẻ Xăm Số 46
  • Giải Quẻ Xăm Số 68
  • Xem Bói Ngày Sinh: Luận Giải Quẻ Số 4
  • Bài Giải Toán Rời Rạc ( Đề Thi Sau Đại Học)

    --- Bài mới hơn ---

  • Bài Giải Toán Rời Rạc
  • Giải Bài Tập Robot Công Nghiệp
  • Giải Bài Tập Sinh Học 8 Bài 4: Mô
  • Giải Bài Tập Sức Bền Vật Liệu
  • 200 Câu Hỏi Trắc Nghiệm Môn Vật Lý Lớp 8
  • GIẢI ĐỀ THI TOÁN RỜI RẠC SAU ĐẠI HỌC

    Câu I

    1- Dùng quy tắc suy diễn chứng minh rằng :

    Giải

    , suy ra

    Vậy

    Vì nên mỗi hộp có đúng quả cầu đỏ, suy ra :

    : vô lý

    Câu II

    1- Giải hệ phương trình bool :

    Giải

    Kết quả :

    + x=1, y=1, u=0, z tùy ý

    + x=1, y=0, u=1, z tùy ý

    2- Tìm công thức tối tiểu bằng phương pháp Karnaugh của hàm bool 4 biến có dãy nhị phân được cho như sau :

    Giải

    Sơ đồ Karnaugh và cell lớn

    Ô (2,1) nằm duy nhất trong cell 3.

    Ô (4, 3) nằm duy nhất trong cell 4

    Chọn tiếp tục :

    3/4/1/6/8 :

    3/4/2/5/7 :

    Câu III

    1- Hỏi có bao nhiêu dãy nhị phân có chiều dài mà mỗi dãy hoặc bắt đầu bằng chữ số giống nhau hoặc kết thúc bằng chữ số giống nhau.

    Giải

    Số dãy nhị phân có chiều dài là :

    Số dãy nhị phân bắt đầu bằng chữ số khác nhau và kết thúc bằng chữ số khác nhau là :

    Số dãy nhị phân hoặc bắt đầu bằng chữ số giống nhau hoặc kết thúc bằng chữ số giống nhau :

    2- Có câu hỏi và câu trả lời đúng cho câu hỏi đó. Ghép ngẫu nhiên mỗi câu hỏi với một câu trả lời. Tính xác suất để ghép đúng với ít nhất câu trả lời.

    Giải

    Số cách ghép là :

    Số cách ghép đúng đúng 2 câu :

    Số cách ghép đúng đúng 3 câu :

    Số cách ghép đúng đúng 4 câu :

    Số cách ghép đúng đúng 5 câu :

    Xác suất ghép đúng ít nhất 2 câu là :

    Câu IV

    1- Một đồ thị vô hướng có cạnh, đỉnh. Mỗi đỉnh đều có bậc lớn hơn hoặc bằng . Chứng minh rằng :

    Giải

    Nhận xét : tổng số bậc = 2 lần số cạnh là

    Theo đề bài thì : tổng số bậc

    Suy ra :

    2- Dùng giải thuật Dijkstra tìm đường đi ngắn nhất từ đỉnh đến các đỉnh còn lại trên đồ thị có hướng có ma trận trọng số được cho như sau :

    1

    4

    1

    3

    5

    4

    5

    2

    5

    6

    Bảng kết quả :

    p(i)

    --- Bài cũ hơn ---

  • Một Ví Dụ Để Hiểu Thêm Về Giải Thuật Định Thời Round Robin
  • Cách Giải Bài Tập Về Hiện Tượng Quang Điện Hay, Chi Tiết
  • Bí Quyết Giải Nhanh Bài Tập Điện Quang Bi Quyet Giai Nhanh Bai Tap Quang Dien Doc
  • Bài Tập Tình Huống Quản Trị Nguồn Nhân Lực Đại Học Ngoại Thương: Làm Thế Nào Để Tuyển Ứng Viên ?
  • Tình Huống Quản Trị Nguồn Nhân Lực Có Lời Giải Thường Gặp Nhất
  • Đề Thi Trắc Nghiệm Toán Rời Rạc Có Lời Giải

    --- Bài mới hơn ---

  • Soạn Bài Rút Gọn Câu (Siêu Ngắn)
  • Giải Bài Tập Rút Gọn Câu
  • New Round Up 3 Giải
  • New Round Up 4 Giai
  • Đáp Án New Round Up 3
  • Đề Thi Trắc Nghiệm Toán Rời Rạc Có Lời Giải, Đề Thi Trắc Nghiệm Giải Phẫu 1, Giải Bài Tập Trắc Nghiệm Mai Lan Hương Lớp 7, Trắc Nghiệm Giải Phẫu, Trắc Nghiệm Giải Phẩu Hệ Tim, Trắc Nghiệm Giải Phẫu Bệnh, Trắc Nghiệm Giải Phẫu Hệ Tim Mạch, Trắc Nghiệm Giải Phẫu Hệ Mạch, Giải Bài Tập Trắc Nghiệm Tiếng Anh 7 Mai Lan Hương, Đề Thi Trắc Nghiệm Giải Phẫu Bệnh, Trắc Nghiệm Giải Phẫu Bệnh Yds, Đề Thi Trắc Nghiệm Công Nghệ Chế Tạo Máy Có Lời Giải, Trắc Nghiệm Thi Giải Quyết Tranh Chấp, Đề Thi Trắc Nghiệm Toán Lớp 3, Câu Hỏi Trắc Nghiệm Toán 6 Số Học Kì 2, Trắc Nghiệm Toán 3, Bài Tập Trắc Nghiệm Toán ôn Thi Đại Học, Đề Trắc Nghiệm Toán 10, Đề Thi Trắc Nghiệm Toán Lớp 3 Học Kỳ 2, Đề Trắc Nghiệm Toán 11, Đề Trắc Nghiệm Toán 12, Đề Thi Trắc Nghiệm Học Kì 2 Toán 10, Đề Thi Trắc Nghiệm Toán Lớp 2, Câu Hỏi Trắc Nghiệm Toán 6, Đề Thi Trắc Nghiệm Toán 10 Học Kì 2, Trắc Nghiệm Kế Toán, Đề Thi Trắc Nghiệm Vào 10 Môn Toán, Bài Thi Trắc Nghiệm Toán Lớp 5, Câu Hỏi Trắc Nghiệm Toán 6 Học Kì 2, Câu Hỏi Trắc Nghiệm Toán 7 Học Kì 2, Đề Thi Trắc Nghiệm Vào Lớp 10 Môn Toán, Đề Thi Trắc Nghiệm Môn Toán 3, Bài Thi Trắc Nghiệm Toán Lớp 1, Bài Thi Trắc Nghiệm Toán Lớp 2, Toán Lớp 6 Trắc Nghiệm, Đề Thi Trắc Nghiệm Toán Rời Rạc, Trắc Nghiệm Toán 9, Trắc Nghiệm 11 Toán, Đề Thi Trắc Nghiệm Kế Toán Kho Bạc, Bài Thi Trắc Nghiệm Môn Toán Lớp 1, Đề Thi Trắc Nghiệm Môn Toán Lớp 5, Đề Thi Trắc Nghiệm Học Kì 2 Toán 11, Trắc Nghiệm Toán 8, Đề Thi Trắc Nghiệm Môn Toán Lớp 3, Trắc Nghiệm Toán 12, Bài Thi Trắc Nghiệm Toán Lớp 3, Trắc Nghiệm Toán 4, Trắc Nghiệm Toán 5, Trắc Nghiệm Toán 6, Trắc Nghiệm Toán 6 Học Kì 2, Trắc Nghiệm Toán 7, Đề Thi Trắc Nghiệm Toán 9, Đề Thi Trắc Nghiệm Môn Toán Lớp 9, Đề Thi Trắc Nghiệm Môn Toán 4, Đề Thi Trắc Nghiệm Toán 8 Học Kì 2, Đề Thi Trắc Nghiệm Toán 4, Đề Thi Trắc Nghiệm Toán 6, Đề Thi Trắc Nghiệm Toán 6 Học Kì 2, Đề Thi Trắc Nghiệm Học Kì 1 Toán 10, Đề Thi Trắc Nghiệm Toán Lớp 5, Đề Thi Trắc Nghiệm Toán 9 Học Kì 2, Đề Thi Trắc Nghiệm Toán Lớp 5 Có Đáp án, Đề Thi Trắc Nghiệm Toán Lớp 1, Đề Thi Trắc Nghiệm Toán 9 Học Kì 1, Đề Thi Trắc Nghiệm Toán 8, Đề Thi Trắc Nghiệm Toán Lớp 6 Học Kì 1, Đề Thi Trắc Nghiệm Toán 7 Học Kì 1, Đề Thi Trắc Nghiệm Toán Lớp 4, Đề Thi Trắc Nghiệm Toán Lớp 7 Học Kì 2, Trắc Nghiệm Toán 1 Tập 1, Đề Thi Trắc Nghiệm Toán 5, Đề Thi Trắc Nghiệm Toán 7 Hk2, Đề Thi Trắc Nghiệm Toán 7, Đề Thi Trắc Nghiệm Toán 8 Học Kì 1, Đề Thi Trắc Nghiệm Toán Lớp 4 Học Kỳ 1, Đề Thi Trắc Nghiệm Học Kì 1 Toán 11, Trắc Nghiệm Giải Phẫu Bệnh Tuyến Giáp , Đề Thi Trắc Nghiệm Kế Toán Tài Chính, Đáp án 1500 Câu Trắc Nghiệm Toán 11, Trắc Nghiệm An Toàn Điện, Trắc Nghiệm Kế Toán Tài Chính 3, Đề Thi Trắc Nghiệm Toán Lớp 5 Violet, Trắc Nghiệm Tổng Hợp Toán 11, Đề Thi Trắc Nghiệm Kế Toán Tài Chính 1, Trắc Nghiệm Lý Thuyết Toán, Trắc Nghiệm Toán 11 Chương 3 Đại Số, Bài Thi Trắc Nghiệm An Toàn Điện, Đề Thi Trắc Nghiệm An Toàn Bảo Mật Thông Tin Có Đáp An, Đề Thi Trắc Nghiệm An Toàn Điện, Trắc Nghiệm Toán Hình, Trắc Nghiệm Toán Hình 10 Có Đáp án, Trắc Nghiệm Toán Thpt, Trắc Nghiệm An Toàn Điện Có Đáp án, Đề Kiểm Tra Trắc Nghiệm Môn Toán Lớp 6, Trắc Nghiệm Toán 6 Hay Nhất, Đề Thi Trắc Nghiệm Nguyên Lý Kế Toán, Đề Thi Trắc Nghiệm Môn Kiểm Toán Ueh, Trắc Nghiệm An Toàn Bảo Mật Thông Tin, Trắc Nghiệm Online Toán 12, Câu Hỏi Trắc Nghiệm Nguyên Lý Kế Toán,

    Đề Thi Trắc Nghiệm Toán Rời Rạc Có Lời Giải, Đề Thi Trắc Nghiệm Giải Phẫu 1, Giải Bài Tập Trắc Nghiệm Mai Lan Hương Lớp 7, Trắc Nghiệm Giải Phẫu, Trắc Nghiệm Giải Phẩu Hệ Tim, Trắc Nghiệm Giải Phẫu Bệnh, Trắc Nghiệm Giải Phẫu Hệ Tim Mạch, Trắc Nghiệm Giải Phẫu Hệ Mạch, Giải Bài Tập Trắc Nghiệm Tiếng Anh 7 Mai Lan Hương, Đề Thi Trắc Nghiệm Giải Phẫu Bệnh, Trắc Nghiệm Giải Phẫu Bệnh Yds, Đề Thi Trắc Nghiệm Công Nghệ Chế Tạo Máy Có Lời Giải, Trắc Nghiệm Thi Giải Quyết Tranh Chấp, Đề Thi Trắc Nghiệm Toán Lớp 3, Câu Hỏi Trắc Nghiệm Toán 6 Số Học Kì 2, Trắc Nghiệm Toán 3, Bài Tập Trắc Nghiệm Toán ôn Thi Đại Học, Đề Trắc Nghiệm Toán 10, Đề Thi Trắc Nghiệm Toán Lớp 3 Học Kỳ 2, Đề Trắc Nghiệm Toán 11, Đề Trắc Nghiệm Toán 12, Đề Thi Trắc Nghiệm Học Kì 2 Toán 10, Đề Thi Trắc Nghiệm Toán Lớp 2, Câu Hỏi Trắc Nghiệm Toán 6, Đề Thi Trắc Nghiệm Toán 10 Học Kì 2, Trắc Nghiệm Kế Toán, Đề Thi Trắc Nghiệm Vào 10 Môn Toán, Bài Thi Trắc Nghiệm Toán Lớp 5, Câu Hỏi Trắc Nghiệm Toán 6 Học Kì 2, Câu Hỏi Trắc Nghiệm Toán 7 Học Kì 2, Đề Thi Trắc Nghiệm Vào Lớp 10 Môn Toán, Đề Thi Trắc Nghiệm Môn Toán 3, Bài Thi Trắc Nghiệm Toán Lớp 1, Bài Thi Trắc Nghiệm Toán Lớp 2, Toán Lớp 6 Trắc Nghiệm, Đề Thi Trắc Nghiệm Toán Rời Rạc, Trắc Nghiệm Toán 9, Trắc Nghiệm 11 Toán, Đề Thi Trắc Nghiệm Kế Toán Kho Bạc, Bài Thi Trắc Nghiệm Môn Toán Lớp 1, Đề Thi Trắc Nghiệm Môn Toán Lớp 5, Đề Thi Trắc Nghiệm Học Kì 2 Toán 11, Trắc Nghiệm Toán 8, Đề Thi Trắc Nghiệm Môn Toán Lớp 3, Trắc Nghiệm Toán 12, Bài Thi Trắc Nghiệm Toán Lớp 3, Trắc Nghiệm Toán 4, Trắc Nghiệm Toán 5, Trắc Nghiệm Toán 6, Trắc Nghiệm Toán 6 Học Kì 2,

    --- Bài cũ hơn ---

  • Giải Quẻ Xăm Số 47
  • Giải Nghĩa Quẻ Xăm Số 91
  • Giải Quẻ Xăm Số 74 Thượng Thượng
  • Quẻ Xăm Số 74 Thượng Thượng
  • Ý Nghĩa Số 79? Giải Mã “thần Tài Lớn” Luôn Được “săn Đón”
  • 400 Câu Trắc Nghiệm Toán Rời Rạc Có Đáp Án

    --- Bài mới hơn ---

  • Ra Mắt Cuốn Sách: “101 Bài Tập Có Lời Giải Chi Tiết Sức Bền Vật Liệu 2”
  • Vở Bài Tập Địa Lí Lớp 7 (Tập Một)
  • Soccer Picks And Results For England Premier League 2 Division 1 League. Season 2021/2021
  • / Khoa Học Tự Nhiên / Vật Lý Học
  • Thành Thạo Lập Trình C#
  • ĐÊ CƢƠNG ÔN TẬP MÔN TOÁN RỜI RẠC

    1 2 3 4 5

    6

    7

    8 9 10 11 12 13 14 15

    16

    17

    18

    C. {(1,2), (2,2), (3,a)} Xác định tập lũy thừa của tập A={ôtô, Lan} D. {{ôtô}, {Lan},  , {ôtô, Lan}}

    19

    Xác định tích đề các của 2 tập A={1,a} và B={1,b}: B.{(1,1), (1,b), (a,1), (a,b)}

    20 21

    22

    23 24

    25

    26

    27

    28

    29 30 31 32 33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    Cho tập A={1,2,4,5,7,9}, tập B={2,4,6,8,10}. Tập A-B là: 3

    B. 20 C. 30

    44

    45

    B.100 C.50 D.0

    46

    Cho biết số phần tử của A  B  C nếu mỗi tập có 200 phần tử và nếu có 100 phần tử chung của mỗi cặp 2 tập và có 50 phần tử chung của cả 3 tập. A.100 B.200 C.250 D.350

    47

    Cho X={1, 2, 3, 4, 5, 6, 7, 8, 9} A = {3, 4, 6}, B={1, 2, 5, 8}, C={5, 6, 7, 8} Tìm xâu bit biểu diễn tập: (A C)  B A.010010010 B.000010010 C.000011000 D.111100000

    48

    Cho X={1,2,3,4,5,6,7,8,9}, A={2, 5, 6, 7, 8} Tìm xâu bit biểu diễn tập ̅ A.010011110 B.000111101 4

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    66

    D.1022 Số hàm từ tập A có k phần tử vào tập B có n phần tử là: chúng tôi B.(n-k)! chúng tôi D.(n!/k!) Có bao nhiêu xâu nhị phân độ dài là 8 hoặc bắt đầu bởi 00 hoặc kết thúc bởi 11 A.112 B.128 C.64 D.124 Có bao nhiêu xâu nhị phân độ dài bằng 8 và không chứa 6 số 0 liên tiếp A.246 B.248 C.256 D.254 Có bao nhiêu xâu nhị phân độ dài bằng 8 bắt đầu bởi 00 và kết thúc bởi 11 A.64 B.16 C.32 D.128 Một sinh viên phải trả lời 8 trong số 10 câu hỏi cho một kỳ thi. Sinh viên này có bao nhiêu sự lựa chọn nếu sinh viên phải trả lời ít nhất 4 trong 5 câu hỏi đầu tiên? A.35 B.75 C.25 D.20 Cho tập A = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} hỏi ta cần lấy ít nhất bao nhiêu phần tử từ tập A để chắc chắn rằng có một cặp có tổng bằng 20. A. 6 B. 7 C. 8 D. 9 Có 12 sinh viên trong một lớp học. Có bao nhiêu cách để 12 sinh viên làm 3 đề kiểm tra khác nhau nếu mỗi đề có 4 sinh viên làm. A.220 B.3465 C.34650 D.650 Một dãy XXXYYY độ dài 6. X có thể gán bởi một chữ cái. Y có thể gán một chữ số. Có bao nhiêu dãy được thành lập theo cách trên A.108 B.1000000 C.17576 D.17576000 Một phiếu trắc nghiệm đa lựa chọn gồm 10 câu hỏi. Mỗi câu có 4 phương án trả lời. Có bao nhiêu cách điền một phiếu trắc nghiệm nếu câu hỏi có thể bỏ trống. 6

    67

    68

    69

    70

    71

    72

    73

    74

    A.410 B.510 C.40 D.50 Kết quả của một cuộc điều tra ở Hà Nội cho thấy 96% các gia đình có máy thu hình, 98% có điện thoại và 95% có điện thoại và máy thu hình. Tính tỷ lệ % các gia đình ở Hà Nội không có thiết bị nào? A.4% B.5% C.1% D.2% Trong lớp CNTT có 50 sinh viên học tiếng Anh; 20 sinh viên học tiếng Pháp và 10 sinh viên học cả Anh và Pháp. Cho biết sĩ số của lớp là 80. Hỏi có bao nhiêu sinh viên không học tiếng Anh, Pháp. A.0 B.5 C.10 D. 20 Cho tập A gồm 10 phần tử. Số tập con của tập A là A.10 B.100 C.1024 D. 1000 Mỗi người sử dụng thẻ ATM đều có mật khẩu dài 4 hoặc 6 ký tự. Trong đó mỗi ký tự là một chữ số. Hỏi có bao nhiêu mật khẩu? A.10000 B.1010000 C.410+610 D. 1110000 Có bao nhiêu số nguyên dương không lớn hơn 1000 chia hết cho 7 hoặc 11? A. 220 B. 200 C. 142 D. 232 Có bao nhiêu số nguyên dương không lớn hơn 1000 không chia hết cho 7 hoặc 11. A. 220 B. 780 C. 768 D. 1768 Có 8 đội bóng thi đấu vòng tròn. Hỏi phải tổ chức bao nhiêu trận đấu? A. 64 B. 56 C. 28 D. 32 Một tập hợp 100 phần tử có bao nhiêu tập con có ít hơn ba phần tử? A. 2100 7

    75

    76

    77

    78

    79

    80

    B. 5050 C. 297 D. 5051 Một tập hợp 100 phần tử có bao nhiêu tập con có 2 phần tử ? A. 298 B. 4950 C. 50 D. 9900 Có 20 vé số khác nhau trong đó có 3 vé chứa các giải Nhất, Nhì, Ba. Hỏi có bao nhiêu cách trao giải thưởng cho 20 người, mỗi người giữ một vé? A. 1140 B. 8000 C. 2280 D. 6840 Một tổ bộ môn có 10 nam và 15 nữ. Có bao nhiêu cách chọn một hội đồng gồm 6 ủy viên, trong đó số ủy viên nam gấp đôi số ủy viên nữ? A. 22050 B. 315 C. 54600 D. 575 Công thức nào sau đây đúng. Cho n là số nguyên dương, khi đó ∑ là: A. 2n-1 B. 2n C. 2n+1 D. 2n -1 Công thức nào sau đây đúng. Cho n và k là các số nguyên dương với n k. Khi đó: A. C(n+1,k) = C(n,k-1) + C(n,k) B. C(n+1,k) = C(n-1,k) + C(n-1,k-1) C. C(n+1,k) = C(n,k) + C(n-1,k) D. C(n+1,k) = C(n-1,k-1) + C(n,k-1) Công thức nào sau đây đúng. Cho x, y là 2 biến và n là một số nguyên dương. Khi đó: A. (x+y)n = ∑ B. (x+y)n = ∑ C. (x+y)n = ∑ D. (x+y)n = ∑ Hệ số của x12y13 trong khai triển (x+y)25 là: A. 25!

    81

    82

    Cho n, r là các số nguyên không âm sao cho r

    83

    84

    85

    86

    87

    88

    89

    90

    A.C(n, r)=C(n+r-1, r) B.C(n, r)=C(n, r-1) C.C(n, r)=C(n, n-r) D.C(n, r)=C(n-r, r) Trong khai triển (x+y)200 có bao nhiêu số hạng? A.100 B. 101 C.200 D.201 Tìm hệ số của x9 trong khai triển của (2-x)20 A. C(20,10).210 B. C(20,9).211 C. –C(20,9)211 D. – C(20,10)29 Có bao nhiêu cách tuyển 5 trong số 10 cầu thủ của một đội quần vợt để đi thi đấu tại một trường khác? A. 252 B. 250 C 120 D. 30240 Có bao nhiêu khả năng có thể xảy ra đối với các vị trí thứ nhất, thứ nhì và thứ ba trong cuộc đua có 12 con ngựa, nếu mọi thứ tự tới đích đều có thể xảy ra? A. 220 B. 1320 C 123 D. 312 Có bao nhiêu số tự nhiên có 3 chữ số khác nhau được tạo từ tập các chữ số{1,3,5,7,9} A. 30 B. 60 C 90 D. 120 Có bao nhiêu số tự nhiên có 3 chữ số được tạo từ tập các chữ số {1,3,5,7,9} A. 125 B. 60 C. 65 D. 120 Có bao nhiêu số lẻ có 3 chữ số được tạo từ tập các chữ số {0,1,2,3,4,5} A. 48 B. 60 C.90 D. 75 Trong một khoa có 20 sinh viên xuất sắc về Toán và 12 sinh viên xuất sắc về CNTT. Hỏi có bao nhiêu cách lựa chọn hai đại diện sao cho một là sinh viên Toán, một là sinh viên CNTT? A. 20 9

    91

    92

    93

    94

    95

    96

    97

    98

    B. 12 C 32 D. 240 Có bao nhiêu xâu nhị phân có độ dài bằng 5 mà hoặc có 2 bít đầu tiên là 0 hoặc có 2 bít cuối cùng là 1? A.16 B. 14 C. 2 D.32 Mỗi thành viên trong câu lạc bộ Toán tin có quê ở 1 trong 20 tỉnh thành. Hỏi cần phải tuyển bao nhiêu thành viên để đảm bảo có ít nhất 5 người cùng quê? A. 81 B. 99 C. 101 D. 90 Số xâu nhị phân độ dài 4 có bít cuối cùng bằng 1 là: A. 8 B. 12 C. 16 D. 18 Một phiếu trắc nghiệm đa lựa chọn gồm 10 câu hỏi. Mỗi câu có 4 phương án trả lời. Có bao nhiêu cách điền một phiếu trắc nghiệm nếu mọi câu hỏi đều được trả lời. A.410 B.104 C.40 D.210 Có bao nhiêu hàm số khác nhau từ tập có 4 phần tử đến tập có 3 phần tử: A. 81 B. 64 C. 4 D. 12 Số các xâu nhị phân có độ dài là 8 là: A.1024 B.256 C.16 D.8 Số các xâu nhị phân có độ dài nhỏ hơn hoặc bằng 8 là: A.1024 B. 512 C. 510 D.1022 Số hàm từ tập A có 5 phần tử vào tập B có 4 phần tử là: A.1024 B. 625 C. 5 10

    99

    100

    101

    102

    103

    104

    105

    106

    D. 20 Có bao nhiêu xâu nhị phân độ dài là 10 bắt đầu bởi 00 A.112 B.128 C.64 D.256 Có bao nhiêu xâu nhị phân độ dài bằng 6 và chứa 4 số 0 liên tiếp A. 4 B. 8 C. 10 D. 12 Có bao nhiêu xâu nhị phân độ dài bằng 10 bắt đầu bởi 11 và kết thúc bởi 00 A.64 B.128 C.256 D.1024 Một sinh viên phải trả lời 20 câu hỏi cho một kỳ thi, mỗi câu hỏi có 4 phương án trả lời. Biết rằng sinh viên bắt buộc phải lựa chọn phương án nào đó cho 10 câu hỏi đầu tiên, còn 10 câu hỏi sau câu trả lời có thể bỏ trống. Hỏi sinh viên này có bao nhiêu sự lựa chọn? A. 430 B.410+510 C. 2010 D. 304 + 1 Trong 100 người có ít nhất mấy người cùng tháng sinh? A. 10 B. 9 C. 8 D. 7 Cần phải có tối thiểu bao nhiêu sinh viên ghi tên vào lớp Toán rời rạc để chắc chắn sẽ có ít nhất 6 sinh viên đạt cùng một điểm thi nếu thang điểm gồm 5 bậc? A.30 B. 25 C. 26 D. 27 Một dãy XXYYY độ dài 4. X có thể gán bởi một chữ số. Y có thể gán một chữ cái. Có bao nhiêu dãy được thành lập theo cách trên A.102 x 263 B. 102+263 C. 103 x 262 D. 103 + 262 Mỗi sinh viên trong lớp K38CNTT của khoa Công nghệ đều có quê ở một trong 61 tỉnh thành trong cả nước. Cần phải tuyển bao nhiêu sinh viên để đảm bảo trong lớp K38CNTT có ít nhất 2 sinh viên cùng quê? A. 62 B. 122 11

    107

    108

    109

    110

    111

    C. 123 D. 61 Cần phải tung một con xúc xắc bao nhiêu lần để có một mặt xuất hiện ít nhất 3 lần? A.12 B.13 C.18 D.19 Cần tuyển chọn tối thiểu ra bao nhiêu người để chắc chắn có ít nhất 2 người có cùng ngày sinh trong năm 2021? A. 365 B. 366 C. 367 D. 368 Trong lớp CNTT có 45 sinh viên học tiếng Anh; 25 sinh viên học tiếng Pháp và 5 sinh viên không học môn nào. Cho biết sĩ số của lớp là 60. Hỏi có bao nhiêu sinh viên học cả tiếng Anh, Pháp. A. 5 B. 10 C. 15 D. 20 Cho tập A = {1, 2, 3, 4, 5, 6, 7, 8, 9} . . Hỏi tập A có bao nhiêu tập con? A. 10 B. 128 C. 512 D. 256 Một quan hệ hai ngôi R trên một tập hợp X (khác rỗng) được gọi là quan hệ tương đương nếu và chỉ nếu nó có 3 tính chất sau: A. Phản xạ – Đối xứng – Bắc cầu B. Phản xạ- Phản đối xứng – Bắc cầu C . Đối xứng – Phản đối xứng – Bắc cầu D. Phản xạ – Đối xứng – Phản đối xứng.

    Một quan hệ hai ngôi R trên một tập hợp X (khác rỗng) được gọi là quan hệ thứ tự nếu và chỉ nếu nó có 3 tính chất sau: A. Phản xạ – Đối xứng – Bắc cầu 112 B. Phản xạ- Phản đối xứng – Bắc cầu C . Đối xứng – Phản đối xứng – Bắc cầu D. Phản xạ – Đối xứng – Phản đối xứng. Cho biết quan hệ nào là quan hệ tương đương trên tập {0, 1, 2, 3}: A. {(0,0),(1,1),(2,2),(3,3),(0,1),(0,2),(0,3)} 113 B. {(0,0),(1,1),(2,2),(3,3),(0,1),(1,0)} C .{(0,0),(0,2),(2,0),(2,2),(2,3),(3,2),(3,3)} D. {(0,0),(1,1),(1,3),(2,2),(2,3),(3,1),(3,2),(3,3)} Cho A ={1, 2, 3, 4, 5}. Quan hệ R được xác định: ⇔ 114 . Quan hệ R được biểu diễn là: A. {(1,1),(2,2),(3,3),(4,4), (1,3),(3,1),(1,5),(5,1), (2,4),(4,2)} 12

    ]

    B.

    D.

    C.

    D.

    Cho tập A = { 1, 2, 3, 4, 5, 6 } và quan hệ R ⊆ A x A với: R= {(1,1), (2,2), (3,3),(4,4), (5,5), (6,6), (1,3), (3,1),(1, 5), (5, 1),(2, 4), (4, 2), (2,6), (6,2), (3,5), (5,3), (4,6), (6,4)} Đồ thị biểu diễn quan hệ R là A. 1

    3

    2

    5

    6

    3

    2

    5

    6

    4

    138

    B. 1

    4

    C. 17

    1

    3

    2

    5

    6

    4

    Nhận xét nào sau đây là SAI A. Một quan hệ có tính phản xạ khi và chỉ khi ma trận biểu diễn nó có tất cả các phần tử trên đường chéo chính đều bằng 1 B. Một quan hệ có tính đối xứng khi và chỉ khi ma trận biểu diễn nó là một ma 139 trận đối xứng qua đường chéo chính C. Một quan hệ có tính phản xạ khi và chỉ khi đồ thị biểu diễn nó tại mỗi đỉnh đều có khuyên. D. Một quan hệ có tính bắc cầu khi và chỉ khi đồ thị biểu diễn nó có cung đi từ đỉnh a đến đỉnh b thì cũng có cung đi từ đỉnh b đến đỉnh c. Cho A là một tập hữu hạn khác rỗng. Quan hệ R⊆ AxA Phát biểu nào sau đây là ĐÚNG A. Quan hệ R có tính phản xạ nếu mọi phần tử a thuộc A đều có quan hệ R với 140 chính nó. B. Quan hệ R có tính đối xứng nếu mọi a, b thuộc A thì a phải có quan hệ R với b. C. Quan hệ R có tính bắc cầu nếu mọi a, b, c thuộc A thì a phải có quan hệ R với b và b phải có quan hệ R với c Cho biết quan hệ nào là quan hệ tương đương trên tập {a, b, c, d}: A. {(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d)} 141 B. {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a)} C .{(a, a), (a, c), (c, a), (c, c), (c, d), (d, c), (d, d)} D. {(a, a), (b, b), (c, c), (d, d) , (c, d), (d, c), (d, a), (b, d)} Cho A ={11, 12, 13, 14, 15}. Quan hệ R được xác định: ⇔ . Quan hệ R được biểu diễn là: A. {(11, 11), (12, 12), (13, 13), (14, 14), (11, 13), (13, 11), (11, 15), (15, 11), (12, 14), (14, 12)} 142 B. {(11, 11), (12, 12), (13, 13), (14, 14), (15, 15), (11, 13), (11, 15), (13, 15), (12, 14)} C. {(11, 13), (13, 11), (11, 15), (15, 11), (13, 15), (15, 13), (12, 14), (14, 12)} D. {(11,11), (12, 12), (13, 13), (14, 14), (15, 15), (11,13), (13, 11), (11, 15), (15, 11), (13, 15), (15, 13), (12, 14), (14, 12)} Cho A={11, 12, 13, 14, 15}. Trên A xác định quan hệ R như sau: ⇔ . Quan hệ R được biểu diễn là: 143

    A. {(11, 12), (11, 14), (12, 13), (12, 15)} B. {(11, 11), (12, 12), (13, 13), (14,14), (15,15), (11, 12), (11, 14), (12, 13), (12, 15)} C. {(11, 12), (12, 11), (11, 14), (14, 11), (12, 15), (15, 12)} D. {(11, 12), (12, 11), (11, 14), (14, 11), (12, 15), (15, 12), (13, 14), (14, 13), (12, 18

    13), (13, 12), (14, 15), (15, 14)} Cho tập A ={1, 2, 3, 4, 5, 6}. Cho A1={1}, A2={2}, A3={3, 4}, A4={5, 6}. Quan hệ tương đương R trên A sinh ra phân hoạch A1, A2, A3, A4 là: A. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (3, 4), (4, 3), (5, 6), (6, 5)} 144 B. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 2), (2, 1), (3, 4), (4, 3)} C. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (2, 3), (3, 2), (4, 5), (5, 4)} D. {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (4, 5), (5, 4), (1, 2), (2, 1), (1, 3), (3, 1)} Cho tập A ={1, 2, 3, 4, 5, 6}. Cho A1={1, 2, 3}, A2={4, 5}, A3={6}. Quan hệ tương đương R trên A sinh ra phân hoạch A1, A2, A3 là: A. {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,2), (2,1), (1,3), (3,1), (2,3), (3,2), (4,5), 145 (5,4)} B. {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,2), (2,1), (1,3),(3, 1),(5, 6), (6,5)} C. {(1,1), (1,2), (2,2), (3,4), (3,3), (5,6), (4,4), (5,5), (6,6)} D. {(1,1), (2,2), (3,3), (4,4), (5,5), (6, 6), (1,2), (2,1), (1,3), (3,1), (3,4), (4,3)} Cho tập A={1, 2, 3, 4, 5, 6} và quan hệ tương đương R trên A như sau: R = {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,2), (2,1), (4,5), (5,4)}. Xác định phân hoạch do R sinh ra: 146 A. A1 = {1, 2, 3}, A2={4, 5, 6} B. A1 = {1, 2}, A2={3}, A3={4,5}, A4 ={6} C. A1 = {1}, A2 = {2,4}, A3 = {3}, A4={5, 6} D. A1 = {1,2}, A2={3, 4}, A3={5, 6} Cho A ={1, 2, 3, 4, 5, 6}. Quan hệ R được xác định: ⇔ . Xác định phân hoạch do R sinh ra: A. A ={1,3}, A 1 2={2,4}, A3={5} 147 B. A1={1}, A2={2,4}, A3={3}, A4={5} C. A1={1}, A2={2}, A3={3}, A4={4},A5={5} D. A1={1,3,5}, A2={2,4} Cho tập A ={1,2,3,4,5}, hãy tìm ma trận biểu diễn quan hệ R trên A sau đây: R={(1,1),(2,2),(3,3),(4,4),(5,5),(1,3),(3,1),(3,2),(2,3)} A.

    148

    Hãy liệt kê quan hệ R trên tập hợp {1,2,3,4,5} biết ma trận biểu diễn như sau:

    149

    150

    151

    152

    153

    155

    156

    157

    158

    a

    159

    c

    d

    B. a

    d

    b

    c 21

    b

    a

    c

    d

    C. Cho tập A = { a, b, c, d } và quan hệ R ⊆ A x A với: R= {(a,b), (b,a), (a,c), (c,a), (a,d), (b,c), (c,d), (d, d)} Đồ thị biểu diễn quan hệ R là:

    A. a

    d

    b

    c

    160 B. a

    d

    b

    c

    C. a

    b

    22 d

    c

    Giả sử P và Q là 2 mệnh đề. Tuyển của 2 mệnh đề (P v Q) là một mệnh đề… ? A. Chỉ đúng khi cả P và Q cùng đúng 161 B. Chỉ sai khi cả P và Q cùng sai C. Chỉ đúng khi P đúng Q sai D. Chỉ sai khi P đúng Q sai Hãy cho biết khẳng định nào sau đây không phải là 1 mệnh đề ? A. 2+3

    B. Là 1 mệnh đề nhận chân trị đúng khi P và Q cùng đúng, sai khi P và Q cùng sai. C. Là một mệnh đề nhận chân trị đúng khi một trong hai hoặc cả 2 mệnh đề cùng đúng, nhận chân trị sai trong các trường hợp còn lại. D. Là một mệnh đề nhận chân trị đúng khi P sai hoặc cả P và Q cùng đúng. Nhận chân trị sai khi và chỉ khi P đúng Q sai. Biểu thức hằng đúng là… ? A. Biểu thức chỉ nhận chân trị đúng khi các biến mệnh đề nhận chân trị đúng. B. Biểu thức nhận chân trị đúng trong mọi trường hợp về chân trị của bộ biến 167 mệnh đề. C. Biểu thức nhận chân trị sai trong mọi trường hợp về chân trị của bộ biến mệnh đề D. Biểu thức chỉ nhận chân trị sai khi các biến mệnh đề nhận chân trị sai. Biểu thức hằng sai là… ? A. Biểu thức chỉ nhận chân trị đúng khi các biến mệnh đề nhận chân trị đúng. B. Biểu thức nhận chân trị đúng trong mọi trường hợp về chân trị của bộ biến 168 mệnh đề. C. Biểu thức nhận chân trị sai trong mọi trường hợp về chân trị của bộ biến mệnh đề D. Biểu thức chỉ nhận chân trị sai khi các biến mệnh đề nhận chân trị sai. Hai biểu thức mệnh đề E, F (có cùng bộ biến mệnh đề) được gọi là tương đương logic nếu … ? A. Nếu E có chân trị đúng thì F có chân trị sai và ngược lại. 169 B. E và F cùng có chân trị đúng. C. E và F cùng có chân trị sai. D. E và F có cùng chân trị trong mọi trường hợp về chân trị của bộ biến mệnh đề. Trong các luật sau, luật nào là luật hấp thụ ? A. p(pq)  p ; p(pq)p 170 B. p11 ; p00 C. p0p ; p1p D. ppp ; ppp Trong các luật sau, luật nào là luật thống trị? A. p(pq)  p ; p(pq)p 171 B. p11 ; p00 C. p0p ; p1p D. ppp ; ppp Trong các luật sau, luật nào là luật luỹ đẳng? A. p(pq)  p ; p(pq)p 172 B. p11 ; p00 C. p0p ; p1p D. ppp ; ppp 173 Trong các luật sau, luật nào là luật về phần tử trung hoà ? 24

    A. p(pq)  p ; p(pq)p B. p11 ; p00 C. p0p ; p1p D. ppp ; ppp Luật P→Q tương đương với luật nào sau đây ?   Q 174

    B.

    Q

    C. P D. P Luật nào trong các luật sau là luật phân bố (phân phối) ? A. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) B. p  (q  r)  (p  q)  r; p  (q  r)  (p  q)  r 175 C. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) D. Luật nào trong các luật sau là luật đối ngẫu (De Morgan) A. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) B. p  (q  r)  (p  q)  r; p  (q  r)  (p  q)  r 176 C. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) D. Luật nào trong các luật sau là luật kết hợp? A. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) B. p  (q  r)  (p  q)  r; p  (q  r)  (p  q)  r 177 C. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) D.

    25

    Luật nào sau đây là luật tương đương (kéo theo 2 chiều) ? A. p  q  (p  q)  (q  p) 178 B. p  q  (p  q)  (q  p) C. p  q  q  p D. p  q  q  p Một công thức được gọi là có dạng chuẩn tắc hội nếu …? A. Nó là hội của các biểu thức hội cơ bản 179 B. Nó là hội của các biểu thức tuyển cơ bản C. Nó là tuyển của các biểu thức hội cơ bản D. Nó là tuyển của các biểu thức tuyển cơ bản Một công thức được gọi là có dạng chuẩn tắc tuyển nếu …? A. Nó là hội của các biểu thức hội cơ bản 180 B. Nó là hội của các biểu thức tuyển cơ bản C. Nó là tuyển của các biểu thức hội cơ bản D. Nó là tuyển của các biểu thức tuyển cơ bản Giả sử p1, p2, … , pn là các biến mệnh đề. Một biểu thức logic F theo các biến mệnh đề p1, p2, … , pn được gọi là một biểu thức hội cơ bản nếu nó có dạng? 181

    A.F = q1  q2  …  qn với qj = pj hoặc qj = B. F = p1  p2  …  pn C. F = p1  p2  …  pn

    (j = 1, …, n)

    D. F = q1  q2  …  qn với qj = pj hoặc qj = (j = 1,… ,n) Giả sử p1, p2, … , pn là các biến mệnh đề. Một biểu thức logic F theo các biến mệnh đề p1, p2, … , pn được gọi là một biểu thức tuyển cơ bản nếu nó có dạng? 182

    A. F = q1  q2  …  qn với qj = pj hoặc qj = B. F = p1  p2  …  pn C. F = p1  p2  …  pn

    (j = 1, … , n)

    D. F = q1  q2  …  qnvới qj = pj hoặc qj = (j = 1, … , n) Biểu thức (P  Q)  (P  Q) tương đương logic với biểu thức nào sau đây? A. (P  Q)  (P  Q) 183 B. (P  Q)  ( C. (

    )

    ) (P  Q)

    D. ( ) (P  Q) Biểu thức (P  Q)  (P  Q) tương đương logic với biểu thức nào? 184

    A. (P  Q)  (P  Q)

    26

    B. (P  Q)  (

    )

    C.

     (P  Q)

    D.

     (P  Q)

    Biểu thức (P  Q)→Q tương đương logic với biểu thức nào sau đây? A. 1 B. 0 185

    C. (P  Q) D. ( 

    )Q

    Xác định chân trị của biểu thức ( P → Q ) Λ ( Q → R ) và (P → R) khi P = Q = 1, R=0? 186 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Biết chân trị của mệnh đề P→Q là 0, thì chân trị của các mệnh đề PΛQ và Q→P tương ứng là? A. 0 và 1 187 B. 1 và 0 C. 0 và 0 D. 1 và 1 Mệnh đề P(PQ) tương đương logic với mệnh đề nào sau đây? A. PQ 188 B. Q C. PQ D. P Mệnh đề A. PQ

    (PQ) tương đương logic với mệnh đề nào sau đây?

    189 B. P C. P D. Mệnh đề P→Q tương đương logic với mệnh đề nào sau đây? A.

    190 B. → C. PQ D. P 27

    Mệnh đề nào sau đây có dạng chuẩn tắc tuyển? A. (pqr)(p r) (pr ) 191 B. (pqr)(p r) (p ) C. (pqr)(p r) (pq ) D. (pqr)(p r) (pq ) Mệnh đề nào sau đây có dạng chuẩn tắc hội? A. (pqr)(p r) (pr ) 192

    B. (pqr)(p r) (p ) C. (pqr)  (p r)  (pq ) D. (pqr)(p r) (pq )

    Phương pháp phản chứng là phương pháp? A. Quy bài toán ban đầu về bài toán con đơn giản hơn. B. Giả sử điều cần chứng minh là sai để từ đó suy ra mâu thuẫn. 193 C. Liệt kê tất cả các khả năng để từ đó đưa ra quyết định. D. Biểu diễn nghiệm của bài toán bằng các dữ kiện ban đầu Quy tắc suy luận nào sau đây là Modus Tollens (Phủ định)? A. (P(P→Q))→Q 194 B. ( (P→Q))→Q C. (

    (P→Q))→

    D. ( (P→Q))→ Quy tắc suy luận nào sau đây là Modus Ponens (khẳng định)? A. (P(P→Q))→Q 195 B. ( (P→Q))→Q C. (

    (P→Q))→

    D. ( (P→Q))→ Quy tắc suy luận nào sau đây là quy tắc tam đoạn luận? A. (P(P→Q))→Q 196 B. ((P→Q)(Q→R)) →(P→R) C. ((P→Q)(Q→R)) →(Q→R) D. ((P→Q)(Q→R)) →(P→R) Qui tắc suy luận nào là cơ sở của suy diễn sau: ” Nếu hôm nay trời mưa thì cô ta không đến, 197 Nếu cô ta không đến thì ngày mai cô ta đến, Vậy thì, nếu hôm nay trời mưa thì ngày mai cô ta đến.” A. Modus Ponens (Khẳng định) 28

    B. Modus Tollens (Phủ định) C. Tam đoạn luận (Bắc cầu) D. Từng trường hợp Có bao nhiêu trường hợp về chân trị của bộ biến mệnh đề (q1,q2,..,qn)? A. 2n 198 B. 2n C. 2n+1 D. 2n-1 Bảng chân trị của biểu thức logic E(q1,q2,..,qn) là…? A. Bảng liệt kê tất cả các giá trị của biểu thức E theo từng trường hợp về chân trị của bộ biến mệnh đề q1,q2,..,qn. 199 B. Bảng giá trị của biểu thức E C. Bảng liệt kê các trường hợp của bộ biến mệnh đề q1,q2,..,qn. D. Bảng liệt kê các phép toán logic theo các trường hợp về chân trị của bộ biến mệnh đề. Cho mô hình suy diễn sau : Ā B ̅ C ̅

    200

    Công thức cơ sở của mô hình trên là : ̅ A. ((Ā B) ( ̅ C)) ̅ B. ((Ā B) ( ̅ C)) ̅ C. ((Ā B) ( ̅ C)) ̅ D. ((Ā B) ( ̅ C)) Cho mô hình suy diễn sau : A B C ̅ D

    B ) Công thức cơ sở của mô hình trên là : A. ((A B) ( C) ( ̅ D)) B ) B. ((A B) ( C) ( ̅ D) B )) C. ((A B) ( C) ( ̅ D)) B ) D.. ((A B) ( C) ( ̅ D)) B ) Quy tắc (luật )suy luận nào là cơ sở của suy diễn sau : Là phi công thì phải biết lái máy bay. An là phi công nên An biết lái máy bay 202 A. Luật cộng B. Luật rút gọn C. Luật khẳng định 201

    29

    D. Luât phủ định Quy tắc (luật )suy luận nào là cơ sở của suy diễn sau : Nếu là sinh viên CNTT của trường DHCN Việt Hung thì phải học Toán rời rạc. An không học Toán rời rạc nên An không phải là sinh viên CNTT của trường ĐHCN Việt Hung. 203 A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận D. Luật tam đoạn luận rời Quy tắc (luật )suy luận nào là cơ sở của suy diễn sau : Trường chất lượng cao thì có cán bộ giảng dạy giỏi. Trường có cán bộ giảng dạy giỏi thì có sinh viên giỏi. Vậy trường chất lượng cao thì có sinh viên giỏi 204 A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận D. Luật tam đoạn luận rời Quy tắc (luật )suy luận nào là cơ sở của suy diễn sau : Được khen thưởng nếu học giỏi hoặc công tác tốt. An được khen thưởng, nhưng An không học giỏi nên An phải công tác tốt. 205 A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận D. Luật tam đoạn luận rời Hãy cho biết quy tắc (Luật) nào là cơ sở của mô hình suy diễn sau : A

    206

    207

    A ) A. Luật rút gọn B. Luật cộng C. Luật khẳng đinh D. Luật tam đoạn luận Hãy cho biết quy tắc (Luật) nào là cơ sở của mô hình suy diễn sau : A B A A. Luật rút gọn B. Luật cộng C. Luật khẳng định D. Luật tam đoạn luận 30

    Hãy cho biết quy tắc (Luật) nào là cơ sở của mô hình suy diễn sau : A A 208

    B A. Luật rút gọn B. Luật cộng C. Luật khẳng định D. Luật tam đoạn luận Hãy cho biết quy tắc (Luật) nào là cơ sở của mô hình suy diễn sau : A ̅ ̅

    209

    A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận rời D. Luật tam đoạn luận (bắc cầu) Hãy cho biết quy tắc (Luật) nào là cơ sở của mô hình suy diễn sau : A ̅

    210

    211

    A A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận rời D. Luật tam đoạn luận (bắc cầu) Hãy cho biết quy tắc (Luật) nào là cơ sở của mô hình suy diễn sau : A B A

    A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận rời D. Luật tam đoạn luận Hãy cho biết quy tắc (Luật) nào là cơ sở của mô hình suy diễn sau : A 212 C 31

    (A A. Luật khẳng định B. Luật từng trường hợp C. Luật tam đoạn luận rời D. Luật tam đoạn luận Quy tắc (luật )suy luận nào là cơ sở của suy diễn sau : Nếu An học giỏi thì An sẽ được khen thưởng. Và nếu An nhiệt tình tham gia các hoạt động Đoàn thì An cũng được khen thưởng. Vậy Nếu An học giỏi hoặc tham gia nhiệt tình các hoạt động Đoàn thì An sẽ được khen thưởng. 213 A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận D. Luật từng trường hợp Quy tắc (luật )suy luận nào là cơ sở của suy diễn sau : Nếu An học giỏi thì An sẽ tốt nghiệp loại A. Và nếu An tốt nghiệp loại A thì An sẽ có nhiều cơ hội tìm việc làm khi ra trường. Vậy nếu An học giỏi thì An sẽ có nhiều cơ hội tìm việc làm khi ra trường. 214 A. Luật khẳng định B. Luật phủ định C. Luật tam đoạn luận D. Luật từng trường hợp Luật nào sau đây là luật kéo theo ? A. p 215 B. p C. p D. p

    q̅ q̅ qp qp

    q q q q

    Luật nào trong các luật sau là luật giao hoán? A. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) 216 B. p  q  q  p ; p  q  q  p C. p  q  q  p; p  q  q  p D. p q  ̅  ̅ ; p  q  ̅   ̅ Luật nào trong các luật sau là luật kết hợp? A. p  (q  r)  (p  q)  (p  r); p  (q  r)  (p  q)  (p  r) 217 B. p  q  q  p ; p  q  q  p C. (p  q)  r  ( p r)  q ; ( p q)  r  p r q) D.( p q)  r  p q  r ); ( p q)  r  p q r ) 218 Luật nào trong các luật sau là luật lũy đẳng? 32

    A. q  q  q ; q  q q B. q   q ; q   q C. p q  q p D. q   0 ; q    1 Luật nào trong các luật sau là luật hấp thụ? A. q  q  q ; q  q q 219 B. p q  q p C. pp  q)  p ; pp q)  p D.( p q)  r  p q  r ); ( p q)  r  p q r ) Xác định chân trị của biểu thức ( P → Q ) Λ ( Q → R ) và (P → R) khi P = Q = 0, R=1? 220 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức ( P → Q ) Λ ( Q → R ) và (P → R) khi P = R = 0, Q=1? 221 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức ( P → Q ) Q=1; R=0?

    ( Q → R ) và (P → R) khi P = 1,

    222 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức ( X→Y ) Y=Z=1?

    ( Y → Z ) và (X →Z) khi X =

    223 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức ( X→Y ) Y=Z=0?

    ( Y → Z ) và (X →Z) khi X =

    224 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 225 Xác định chân trị của biểu thức (

    X→Y ) 33

    (

    Y → Z ) và (X →Z) khi X =

    Y=Z=0? A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức (

    X→Y )

    (

    Y → Z ) và ( X →Z) khi X =

    Y=Z=1? 226 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức ( X→ Y ) v ( Y → Z ) và ( X → Z) khi X = Y=0, Z= 1? 227 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức ( X→ Y ) = Y=0, Z= 1?

    ( Y → Z ) và ( X → Z) khi X

    228 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Xác định chân trị của biểu thức ( Y=0, Z= 1?

    X→Y )

    229 A. 1 và 1 B. 0 và 0 C. 1 và 0 D. 0 và 1 Câu nào sau đây KHÔNG là một mệnh đề A. Hôm nay không phải Thứ hai 230 B. Lan học giỏi Tin học C. Không phải Hiếu được khen thưởng D. Thật vui vì Lan ở nhà. Câu nào sau đây KHÔNG là một mệnh đề A. Có ai ở nhà không? 231 B. Hà Nội là thủ đô của Việt Nam C. Hôm nay trời mưa D. 2+1=5 232

    Câu nào sau đây KHÔNG là một mệnh đề chúng tôi là sinh viên khoa CNTT 34

    (

    Y → Z ) và ( X →Z) khi X =

    B.An không phải học Trí tuệ nhân tạo C. X là sinh viên không phải học Trí tuệ nhân tạo D. An là sinh viên CNTT nhưng không phải học Trí tuệ nhân tạo. Câu nào sau đây là một mệnh đề A. Hãy cẩn thận! 233 B. X+Y=1 C. An hôm nay có phải đi học không? D. An là học sinh giỏi. Dạng chuẩn tắc HỘI của công thức: (A  B)  (B  A) là A. (A  B  C)  (B  B  A) 234 B. (A  B  C)  (B  B  A) C. ) D ) Dạng chuẩn tắc TUYỂN của công thức (A  B)  (B  A) là: A. 1 235 B. C. D

    )

    Dạng chuẩn tắc TUYỂN của công thức A. 1 236 B. C. D

    ) là:

    )

    Dạng chuẩn tắc TUYỂN của công thức A. A 237 B. C. D. ) Dạng chuẩn tắc HỘI của công thức A. A 238 B. C. D. )

    là:

    là:

    Dạng chuẩn tắc TUYỂN của công thức A. A 239 B. C. D. ) Dạng chuẩn tắc TUYỂN của công thức (A B) 240 A. B. 35

    là:

    B

    ) là:

    C. D. Dạng chuẩn tắc TUYỂN của công thức (A B) A. 241 B. C. D.

    B

    Dạng chuẩn tắc HỘI của công thức (A B)

    ) là:

    B

    ) là:

    A. 242 B. C. D. Dạng chuẩn tắc HỘI của công thức (A B) A. 243 B. C. D. Dạng chuẩn tắc HỘI của công thức ( A B) A. 244 B. C. D.

    B

    Dạng chuẩn tắc TUYỂN của công thức ( A B) A. 245 B. C. D.

    ) là:

    B

    ) là:

    B

    Cho công thức logic mệnh đề : A = với p = 1, q = 0, r =1, hãy cho biết giá trị của A là gì? 246 A. 0 B. 1 C. Không xác định được Cho công thức logic mệnh đề : A = với p = 1, q = 0, r =1, hãy cho biết giá trị của A là gì? 247 A. 0 B. 1 C. Không xác định được Cho công thức logic mệnh đề : A = với p = 1, q = 0, r =1, hãy cho biết giá trị của A là gì? 248 A. 0 B. 1 C. Không xác định được 36

    ) là:

    Cho công thức logic mệnh đề : A = với p = 1, q = 0, r =1, hãy cho biết giá trị của A là gì? 249 A. 0 B. 1 C. Không xác định được Cho biết giá trị của công thức sau: 250 A.1 B.0 Xác định hàm Boole f được cho bởi mạch sau?

    251 A. A.B.C+(A+D) B.

    .B.C(

    C.

    .B.C+(

    D. A.

    )

    .(

    ) )

    Xác định hàm Boole f được cho bởi mạch sau?

    252

    A. AC+BC+AB ̅ B. ̅C+BC+AB ̅ C. AC+B ̅ +BC ̅ D. A ̅ +B ̅ +̅BC 37

    253

    254

    255

    256

    257

    258

    Cho X là 1 biến Boole. Xác định biểu thức sai trong các biểu thức sau? A. X.0=0 B. X.1=1 C. X+0=X D. X+1=1 Cho X là 1 biến Boole. Xác định biểu thức sai trong các biểu thức sau? A. X+0=X B. X+1=X C. X + (Y + Z) = (X + Y) + Z = X + Y + Z D. (W + X)(Y + Z) = WY + XY + WZ + XZ Hàm Boole f=x+xy tương đương với hàm nào sau đây? A. f=xy B. f=y C. f=x+y D. f=x Đại số Boole là…? A. Một tập hợp với 2 phép toán cộng (+) và nhân (.) B. Một tập hợp với các phép toán cộng (+) và nhân (.) và lấy phần bù. C. Một tập hợp với các phép toán cộng (+) và nhân (.) và lấy phần bù; các phép cộng, nhân thoả các tính chất giao hoán, kết hợp, phân bố và có phần tử trung hoà. D. Một tập hợp với các phép toán cộng (+) và nhân (.); các phép cộng, nhân thoả các tính chất giao hoán, kết hợp, phân bố và có phần tử trung hoà. Giả sử x1,x2, …, xn là các biến Boole. Một từ đơn là…? A. Một hàm boole có dạng xi B. Một hàm boole có dạng ̅ C. Một hàm boole có dạng xi . ̅ D. Một hàm boole có dạng xi hoặc ̅ Một biểu thức Boole theo các biến x1,x2, …, xn là một tích cơ bản nếu…? A. Nó có dạng xi. ̅ B. Nó có dạng x1. x2… xn. C. Nó có dạng y1. y2… yn trong đó yi= xi hoặc yi = ̅ (i=1,2,..,n) D. Nó có dạng ̅ ̅ …̅ Đầu ra của cổng logic sau là gì?

    259 A. AB B.

    +

    C. . D. A+B 260 Đầu ra của cổng logic sau là gì? 38

    A. AB B.

    +

    C. . D. A+B Đầu ra của cổng logic sau là gì? A. 261 B.

    +

    C. . D. A+B Đầu ra của cổng logic sau là gì?

    262 A. B. A.B C. D. A+B Một đơn thức là? A. Một tích khác không của một số hữu hạn các từ đơn (xi hoặc ̅ ) 263 B. Một tổng khác không của một số hữu hạn các từ đơn (xi hoặc ̅ ) C. Một tích khác không của đúng n từ đơn D. Một tổng khác không của đúng n từ đơn Công thức đa thức là? A. Công thức biểu diễn hàm Boole thành tích của các tích cơ bản (từ tối tiểu) 264 B. Công thức biểu diễn hàm Boole thành tổng của các tích cơ bản (từ tối tiểu) C. Công thức biểu diễn hàm Boole thành tổng của các từ đơn D. Công thức biểu diễn hàm Boole thành tổng của các đơn thức Dạng chính tắc tuyển (nối rời chính tắc) của hàm Boole là…? A. Công thức biểu diễn hàm Boole thành tổng của các tích cơ bản (từ tối tiểu) 265 B. Công thức biểu diễn hàm Boole thành tích của các tích cơ bản (từ tối tiểu) C. Công thức biểu diễn hàm Boole thành tổng của các đơn thức 39

    Chọn đáp án đúng để điền vào dấu … trong câu sau: “Một tế bào là một tập hợp gồm …. ô kề nhau có giá trị bằng 1” 266 A. 2n (n = 0,1,2…) B. 2n (nZ+) C. n(nZ+) Trong bảng Karnaugh, 2 ô gọi là kề nhau nếu…? A. Chúng nằm trên cùng 1 hàng B. Chúng nằm trên cùng 1 cột 267 C. Nếu chúng cùng nằm trên 1 hàng, 1 cột hoặc chúng là ô đầu, ô cuối của cùng một hàng hoặc 1 cột nào đó D. Nếu chúng là hai ô liền nhau hoặc chúng là ô đầu và ô cuối của cùng một hàng hoặc 1 cột nào đó Tế bào sau là biểu đồ Karnaugh của đơn thức nào?

    268

    A. yt B. xt C. y ̅ D. z. ̅ Cho bảng Kar(f) như sau

    269

    A. xz B. zyt 40

    C. ̅ . ̅ z Cho bảng Kar(f) sau: Đơn thức nào sau đây không phải là một tế bào tối đại của bảng Kar(f)?

    270

    A. xy B. ̅ . ̅ ̅ C. xz D. x ̅ Cho hàm Boole như sau:

    Bảng Karnaugh sau là bảng Karnaugh của hàm Boole f ở trên đúng hay sai

    271

    A. Đúng B. Sai

    41

    272

    A. 3 B. 2 C. 1

    273

    A. 4 B. 5 C. 6

    274

    A. B. C. Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây 275 z

    x

    x

    1

    1

    ̅

    ̅

    1

    ̅ 42

    z

    1

    1

    ̅

    1

    1

    ̅

    1

    1

    ̅

    y

    1 1

    t 1

    y

    t

    ̅

    ̅

    A.3 B. 4 C. 5 D.6 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây x

    276

    ̅

    x

    ̅ ̅

    z

    1

    1

    z

    1

    1

    t

    ̅

    1

    1

    t

    ̅

    1

    1

    ̅

    y

    ̅

    ̅

    y

    A.1 B. 2 C. 3 D. 4 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây x x ̅ ̅ ̅ z 1 1 z 1 1 t ̅ 1 1 t 277 ̅ 1 1 ̅ y y ̅ ̅ A. 1 B. 2 C. 3 D. 4 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây 278

    x

    x

    ̅

    ̅

    43

    z

    1

    z

    1

    1

    1

    ̅

    1 t

    ̅

    t

    ̅ ̅

    1

    1

    1

    y

    y

    ̅

    ̅

    A. 1 B. 2 C. 3 D. 4 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây

    z

    x

    x

    ̅

    ̅

    1

    1

    1

    1

    1

    1

    z

    ̅

    t

    ̅

    279

    ̅

    t 1

    1

    1

    1

    ̅

    y

    y

    ̅

    ̅

    A. 1 B. 2 C. 3 D. 4 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây

    z 280

    x

    x

    1

    1

    z

    1

    ̅

    ̅

    ̅ ̅

    1 1

    ̅

    t 1 1

    ̅

    y

    y

    t ̅

    ̅

    A. 3 B. 4 44

    C. 5 D. 6 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây x

    x

    ̅

    1

    1

    1

    z

    1

    1

    ̅

    1

    1

    z

    281

    ̅ ̅

    t 1

    ̅

    t ̅

    1 ̅

    y

    ̅

    y

    A. 3 B. 4 C. 5 D. 6 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây x x ̅ ̅ ̅ z 1 1 1 1 z 1 1 t 1 1 t ̅ ̅ ̅ 1 1 1 1 282 y y ̅ ̅ A. 2 B. 3 C. 4 D. 5 Hãy cho biết có bao nhiêu tế báo tối đại trong bảng Karnaugh dươi đây

    283

    ̅

    ̅

    x

    x

    z

    1

    1

    z

    1

    1

    1

    1

    1

    1

    1

    1

    y

    ̅

    ̅ ̅ ̅

    y

    ̅

    t t ̅

    A. 2 B. 3 45

    284

    x

    x

    z

    1

    1

    z

    1

    1

    ̅

    ̅ ̅

    t

    ̅

    t ̅

    ̅ ̅

    y

    ̅

    y

    z

    285

    x

    x

    ̅

    ̅

    1

    1

    1

    1

    ̅

    z

    t

    ̅

    t ̅

    ̅ ̅

    y

    y

    ̅

    x

    ̅

    ̅

    286 z z

    1

    ̅

    1 t

    46

    ̅ ̅

    t 1 ̅

    ̅

    1 y

    ̅

    y

    287

    1

    1

    1

    ̅

    1

    z

    t

    ̅

    t

    ̅

    1

    1

    1

    1

    ̅

    y

    y

    ̅

    ̅

    288

    ̅

    ̅

    x

    x

    z

    1

    1

    z

    1

    1

    t

    ̅

    1

    1

    t

    ̅

    1

    1

    ̅

    y

    ̅

    ̅

    y

    ̅

    x

    x

    ̅

    ̅

    z

    1

    1

    1

    z

    1

    1

    1

    t

    ̅

    1

    1

    1

    t

    ̅

    1

    1

    1

    ̅

    y

    y

    ̅

    ̅ ̅

    290

    ̅

    ̅

    x

    x

    z

    1

    1

    1

    z

    1

    1

    1

    t

    ̅

    1

    1

    1

    t

    ̅

    1

    1

    1

    ̅

    y

    ̅

    ̅

    ̅

    y

    ̅

    ̅

    z

    1

    1

    1

    z

    1

    1

    1

    t

    ̅

    1

    1

    1

    t

    ̅

    1

    1

    1

    y

    y

    ̅

    x

    291

    ̅

    ̅

    ̅

    48

    292

    ̅

    z

    1

    1

    1

    z

    1

    1

    1

    t

    ̅

    1

    1

    1

    t

    ̅

    1

    1

    1

    y

    ̅

    ̅

    y

    ̅

    293

    x

    x

    ̅

    ̅

    z

    1

    1

    1

    1

    z

    1

    1

    1

    1

    t

    ̅

    1

    1

    1

    1

    t

    ̅

    ̅

    ̅ ̅

    y

    y

    ̅

    294

    x

    x

    ̅

    ̅

    Z

    1

    1

    1

    1

    z

    1

    1

    1

    1

    ̅ ̅

    ̅

    t t

    1

    1

    1

    1

    ̅

    y

    y

    ̅

    ̅

    49

    x

    ̅

    x

    ̅ ̅

    Z

    295

    z

    1

    1

    1

    1

    t

    ̅

    1

    1

    1

    1

    t

    ̅

    1

    1

    1

    1

    ̅

    y

    y

    ̅

    ̅

    z

    x

    x

    ̅

    ̅

    1

    1

    1

    1

    ̅

    z 296

    t

    ̅

    1

    1

    1

    1

    ̅

    1

    1

    1

    1

    ̅

    y

    y

    ̅

    t ̅

    z

    1

    ̅

    1 ̅

    1 1 y

    y

    ̅

    A. 1 50

    x

    ̅

    ̅

    1 1

    1

    ̅

    y

    1

    298 y

    ̅

    x

    ̅

    ̅

    z

    1

    ̅

    1

    1

    1

    y

    y

    ̅

    299 ̅

    ̅

    ̅

    z

    1

    1

    1

    ̅

    1

    1

    y

    y

    x

    300 ̅

    ̅

    x

    x

    ̅

    ̅ 51

    z

    1

    ̅ ̅

    1

    1

    1

    1

    y

    y

    1

    ̅

    x

    z

    1

    1

    ̅

    1

    ̅

    ̅

    1 1

    302 ̅

    y

    ̅

    y

    x

    ̅

    ̅

    z

    1

    1

    ̅

    1

    1

    303

    ̅

    y

    y

    ̅

    x

    ̅

    ̅

    z

    1

    1

    1

    1

    ̅

    1

    1

    ̅

    y

    304 1 y

    ̅ 52

    x

    ̅

    z

    1

    1

    1

    ̅

    1

    ̅

    1

    305 ̅

    y

    y

    ̅

    ̅

    ̅

    z

    1

    1

    1

    ̅

    1

    x

    1

    306 ̅

    y

    y

    ̅

    x

    z

    1

    1

    ̅

    1

    1

    ̅

    y

    ̅

    ̅

    y

    ̅

    307

    x

    ̅

    z

    1

    1

    ̅

    1

    1

    y

    y

    x

    ̅

    ̅

    ̅

    z 309

    x

    x

    ̅

    ̅

    1

    1

    1

    1

    ̅

    y

    y

    ̅

    ̅

    x

    ̅

    ̅

    1

    1

    1

    1

    ̅

    y

    y

    ̅

    z ̅

    310

    ̅

    z

    1

    1

    ̅

    1

    1

    x 311

    x

    54

    ̅

    y

    y

    ̅

    312

    x

    ̅

    ̅

    z

    1

    1

    ̅

    1

    1

    ̅

    y

    y

    ̅

    1

    ̅

    1

    x

    ̅

    ̅

    y

    y

    ̅

    313 ̅

    x

    ̅

    z

    1

    ̅

    1

    ̅

    314 ̅

    y

    y

    ̅

    A. ̅ B. x. ̅ C. x D. ̅ 55

    315

    x

    z

    1

    ̅

    1 ̅

    y

    ̅

    ̅

    y

    ̅

    x

    ̅

    ̅

    z

    1

    ̅

    1

    316 ̅

    y

    y

    ̅

    x

    z

    ̅

    ̅

    1

    1

    y

    ̅

    ̅

    317 ̅

    y

    318

    x

    x

    1

    1

    ̅

    ̅

    z ̅

    56

    ̅

    y

    y

    ̅

    z 319

    x

    x

    1

    1

    ̅

    y

    ̅

    ̅

    y

    ̅

    ̅

    x

    ̅

    ̅

    1

    1

    y

    ̅

    z 320

    ̅ ̅

    y

    x

    ̅

    1

    ̅

    1

    321 ̅ ̅

    y

    y

    ̅

    x

    ̅

    1

    1

    y

    y

    ̅

    z 322

    ̅ ̅

    ̅

    57

    x

    ̅

    1

    1

    y

    y

    ̅

    ̅ ̅

    ̅

    x

    ̅

    ̅

    z 324 ̅

    1 ̅

    1 y

    y

    ̅

    ̅

    y

    1

    ̅

    1

    58

    331

    B. G không có đường đi Euler Nếu G = (V, E) là một đơn đồ thị vô hướng thì? 332 C. 2 cặp đỉnh bất kỳ được nối với nhau bởi nhiều nhất là 1 cạnh Giả sử G=(V,E) là đồ thị vô hướng. Đỉnh x gọi là đỉnh treo nếu? 333 B. x có bậc 1 Cho G là đơn đồ thị có hướng. Cho biết đâu là tính chất đúng của G? 334 C. Giữa 2 đỉnh bất kỳ i,j có nhiều nhất là 1 cung nối; có kể đến thứ tự các đỉnh i,j Cho đồ thị G=(V,E). Ta nói hai đỉnh u,v V là kề nhau nếu? 335 B. Có cung (cạnh) nối u với v Đồ thị vô hướng G=(V,E) được gọi là liên thông nếu? D. Giữa 2 cặp đỉnh u,v E bất kỳ của đồ thị G đều có đường đi Ma trận kề của đồ thị vô hướng G=(V,E) có tính chất? 337 A. Là ma trận đối xứng. 336

    59

    Đồ thị vô hướng G có n đỉnh, mỗi đỉnh có bậc bằng 6 thì có bao nhiêu cạnh? 338 C. 3n cạnh D. n cạnh Đồ thị đầy đủ n đỉnh có bao nhiêu cạnh? 339 D. n(n-1)/2 Cho biết đâu là chu trình đơn của đồ thị?

    340

    A. a,b,c,d,e,c,a Cho biết đâu là chu trình sơ cấp của đồ thị?

    341

    Đồ thị vô hướng liên thông G=(V,E) là đồ thị nửa Euler khi và chỉ khi? 346 C. Có đúng 2 đỉnh bậc lẻ, các đỉnh khác bậc chẵn. Đồ thị vô hướng liên thông G=(V,E) là đồ thị Euler khi và chỉ khi? D. Tất cả các đỉnh đều bậc chẵn Một đơn đồ thị vô hướng liên thông có 9 đỉnh, các đỉnh có bậc lần lượt là 2, 2, 2, 348 3, 3, 3, 4, 4, 5. Tìm số cạnh của đồ thị? D. 14 349 Cho đồ thị G có trọng số như hình sau: 347

    60

    G là đồ thị có phải đồ thị Euler không? Vì sao? A. Có vì các đỉnh của đồ thị đều có bậc chẵn B. Không, vì nó chứa các đỉnh bậc lẻ (a,k,m,c,d,h) C. Không, vì nó chứa các đỉnh bậc chẵn (a,k,m,c,d,h) D. Có, vì nó chứa các đỉnh bậc chẵn (a,k,m,c,d,h) Tìm đường đi ngắn nhất từ đỉnh A đến các đỉnh còn lại trong đồ thị sau. Đỉnh E được gán trọng số nhỏ nhất là?

    350

    A. 6 Chu trình Hamilton là…? 351 D. Là chu trình sơ cấp đi qua tất cả các đỉnh của đồ thị, mỗi đỉnh đúng 1 lần Hãy cho biết đồ thị nào sau đây là đồ thị Euler?

    352

    353

    354

    355 356 357

    A. Đồ thị A Cây là đồ thị vô hướng liên thông…? C. Không có chu trình Giả sử G=(V,E) là đồ thị vô hướng liên thông có n đỉnh. T là cây khung (cây bao trùm) của đồ thị G. Khẳng định nào sau đây không tương đương với các khẳng định còn lại? D. T liên thông và các đỉnh đều có bậc chẵn Giả sử G=(V,E) là đồ thị vô hướng liên thông có n đỉnh. T=(V,H) được gọi là cây khung (cây bao trùm) của đồ thị G nếu…? C. T liên thông, có n-1 cạnh và HE Cây là đồ thị vô hướng liên thông…? C. Không có chu trình Cho ma trận kề của đồ thị G= (V,E) như sau: 61

    Cho ma trận kề của đồ thị G= (V,E) như sau:

    C.

    359 Cho đồ thị G như hình vẽ: 62

    Tìm cây bao trùm nhỏ nhất theo thuật toán Prim?

    D. T={(3,4),(3,6),(2,3),(6,7), (5,6),(5,8), (8,11),(8,9),(9,10),(1,2)}

    Cho đồ thị G như hình vẽ: Tìm cây bao trùm nhỏ nhất theo thuật toán Kruskal?

    360

    D. T={(3,4),(3,6),(2,3),(6,7), (8,11), (8,9),(5,6),(9,10),(5,8), (1,2)}

    364

    Tìm cây khung của đồ thị theo thuật toán DFS(f) (ưu tiên theo chiều sâu gốc f) A.

    63

    Cho đồ thị G như hình vẽ:

    Tìm cây khung của đồ thị theo thuật toán BFS(f) (ưu tiên theo chiều rộng gốc f)? C. 365

    366 Tìm cây bao trùm của đồ thị G được xây dựng bằng thuật toán DFS(1)

    64

    A. T={(1,2),(2,3),(3,4),(4,5),(5,7),(7,6)} Tìm cây bao trùm của đồ thị G được xây dựng bằng thuật toán BFS(1)

    367

    B. T={(1,2),(1,3),(1,4),(2,6),(3,5),(3,7)} Cho đồ thị như hình vẽ:

    368

    Tìm chu trình Hamilton của đồ thị? A. 1,2,3,6,7,8,9,10,5,4,1. Cho đồ thị G như hình vẽ

    369 Thuật toán Dijkstra tìm đường đi ngắn nhất từ đỉnh 1 đến các đỉnh còn lại, nhãn cực tiểu của đỉnh 4 là bao nhiêu? C. 9 65

    Cho đồ thị G như hình vẽ

    370 Thuật toán Dijkstra tìm đường đi ngắn nhất từ đỉnh 1 đến đỉnh 9 cho kết quả đường đi ngắn nhất là? B. 1→3→4→8→9 Cho đồ thị như hình vẽ:

    371

    Thuật toán Dijkstra tìm đường đi ngắn nhất từ đỉnh 1 đến các đỉnh còn lại, nhãn cực tiểu của đỉnh 5 là bao nhiêu? B. 11 Cho đồ thị như hình vẽ:

    372

    Đường đi ngắn nhất từ đỉnh 1 đến đỉnh 9 là…? C. 1→3→5→8→9 Thuật toán Dijkstra áp dụng cho? 373 C. Đồ thị vô hướng, có hướng có trọng số không âm 374 Thuật toán Dijkstra được dùng để? 66

    D. Tìm đường đi ngắn nhất từ 1 đỉnh đến các đỉnh còn lại của đồ thị Thuật toán Prim dùng để…? 375 D. Tìm cây khung nhỏ nhất của đồ thị Có thể xây dựng cây khung của đồ thị (không trọng số) bằng thuật toán….? 376 A. BFS,DFS

    377

    378

    379

    380

    381

    Phát biểu nào sau đây là đúng: A. Đồ thị G là đơn đồ thị khi và chỉ khi G không có khuyên và bất kỳ hai đỉnh phân biệt nào cũng được nối với nhau bởi không quá một cạnh. B. Đồ thị G là đơn đồ thị khi và chỉ khi G có khuyên và bất kỳ hai đỉnh phân biệt nào cũng được nối với nhau bởi không quá một cạnh. C. Đồ thị G là đơn đồ thị khi và chỉ khi G không có khuyên và trong G có tồn tại một cặp đỉnh phân biệt được nối với nhau bởi nhiều hơn một cạnh. D. Đồ thị G là đơn đồ thị khi và chỉ khi G có khuyên và trong G có tồn tại một cặp đỉnh phân biệt được nối với nhau bởi nhiều hơn một cạnh. Phát biểu nào sau đây là đúng: A. Đồ thị G là đa đồ thị khi và chỉ khi G không có khuyên và bất kỳ hai đỉnh phân biệt nào cũng được nối với nhau bởi không quá một cạnh. B. Đồ thị G là đa đồ thị khi và chỉ khi G có khuyên và bất kỳ hai đỉnh phân biệt nào cũng được nối với nhau bởi không quá một cạnh. C. Đồ thị G là đa đồ thị khi và chỉ khi G không có khuyên và trong G có tồn tại một cặp đỉnh phân biệt được nối với nhau bởi nhiều hơn một cạnh. D. Đồ thị G là đa đồ thị khi và chỉ khi G có khuyên và trong G có tồn tại một cặp đỉnh phân biệt được nối với nhau bởi nhiều hơn một cạnh Phát biểu nào sau đây là đúng: A. Đồ thị G là giả đồ thị khi và chỉ khi G không có khuyên và bất kỳ hai đỉnh phân biệt nào cũng được nối với nhau bởi không quá một cạnh. B. Đồ thị G là giả đồ thị khi và chỉ khi G có khuyên và bất kỳ hai đỉnh phân biệt nào cũng được nối với nhau bởi không quá một cạnh. C. Đồ thị G là giả đồ thị khi và chỉ khi G không có khuyên và trong G có tồn tại một cặp đỉnh phân biệt được nối với nhau bởi nhiều hơn một cạnh. D. Đồ thị G là giả đồ thị khi và chỉ khi G có khuyên và trong G có tồn tại một cặp đỉnh phân biệt được nối với nhau bởi nhiều hơn một cạnh Cho G là đồ thị có hướng, phát biểu nào sau đây là chính xác nhất: A. G là đơn đồ thị có hướng khi và chỉ khi trong G đối với mỗi cặp đỉnh khác nhau có không quá một cung (cùng chiều) nối với nhau và có thể có khuyên. B.G là đơn đồ thị có hướng khi và chỉ khi trong G đối với mỗi cặp đỉnh khác nhau có không quá một cung nối với nhau và không có khuyên. C.G là đơn đồ thị có hướng khi và chỉ khi trong G có một cặp đỉnh khác nhau được nối với nhau bởi nhiều hơn một cung (cùng chiều) và không có khuyên. D.G là đơn đồ thị có hướng khi và chỉ khi trong G có một cặp đỉnh khác nhau được nối với nhau bởi nhiều hơn một cung (cùng chiều) và có thể có khuyên Cho G là đồ thị có hướng, phát biểu nào sau đây là chính xác nhất: A. G là đa đồ thị có hướng khi và chỉ khi trong G đối với mỗi cặp đỉnh khác nhau có không quá một cung (cùng chiều) nối với nhau và có thể có khuyên. B.G là đa đồ thị có hướng khi và chỉ khi trong G đối với mỗi cặp đỉnh khác nhau 67

    Phát biểu nào sau đây là chính xác nhất: A. Cho G là đồ thị bất kỳ. Một đường đơn trong G là đường Euler khi và chỉ khi đường đơn đó đi qua tất cả các cạnh trong G và mỗi cạnh xuất hiện đúng một lần. chúng tôi G là đồ thị bất kỳ. Một đường đơn trong G là đường Euler khi và chỉ khi 390 đường đơn đó đi qua tất cả các đỉnh trong G và mỗi đỉnh xuất hiện đúng một lần. C. Cho G là đồ thị bất kỳ. Một đường đi trong G là đường Euler khi và chỉ khi đường đơn đó đi qua các cạnh trong G. chúng tôi G là đồ thị bất kỳ. Một đường đơn trong G là đường Euler khi và chỉ khi đường đơn đó đi qua tất cả các đỉnh trong G. Phát biểu nào sau đây là chính xác nhất: A. Cho G là đồ thị bất kỳ. Một đường đi trong G là đường Hamilton khi và chỉ khi đường đi đó đi qua tất cả các cạnh trong G và mỗi cạnh xuất hiện đúng một lần. chúng tôi G là đồ thị bất kỳ. Một đường sơ cấp trong G là đường Hamilton khi và chỉ 391 khi đường đi đó đi qua tất cả các đỉnh trong G và mỗi đỉnh xuất hiện đúng một lần. C. Cho G là đồ thị bất kỳ. Một đường sơ cấp trong G là đường Hamilton khi và chỉ khi đường đi đó đi qua tất cả các cạnh trong G. chúng tôi G là đồ thị bất kỳ. Một đường đi trong G là đường Hamilton khi và chỉ khi 68

    đường đi đó đi qua tất cả các đỉnh trong G. 392 Phát biểu nào sau đây là chính xác nhất: 393 Cho đồ thị G =. Chu trinh sơ cấp trong G là: B. Chu trình mà trong chu trình đó mỗi đỉnh xuất hiện đúng một lần.. Cho đồ thị G bất kỳ, số đỉnh bậc lẻ trong G luôn luôn là một số: 394 A. Số chẵn Cho G= là đồ thị bất kỳ. Bậc của đồ thị G bằng … 395 A. Hai lần số cạnh Cho đồ thị G có bậc là 10. Số cạnh của đồ thị G là: 396 B. 5 Cho đồ thị G có 5 đỉnh có bậc lần lượt là 2, 2, 3, 4, 5 397 Bậc của đồ thị G là: B. 16 Cho đồ thị vô hướng cạnh có trọng số như hình vẽ.

    398

    Cây khung nhỏ nhất có tổng trọng số là: B. 10 Một cây có ít nhất mấy đỉnh treo? 399 B. 2 Cho đồ thị G có 9 đỉnh có bậc lần lượt là 1, 2, 2, 3, 3, 4, 4, 4,5 400 Số cạnh của đồ thị G là: C. 14

    69

    --- Bài cũ hơn ---

  • Tổng Hợp Bài Tập Toán Rời Rạc Có Đáp Án Rời Rạc Có Lời Giải, Bài Tập Toán Rời Rạc Có Lời Giải
  • Bài 4(Tt): Chiến Lược Điều Phối Cpu 2 Rr (Round Robin)
  • Giải Bài Tập Nguyên Lý Thống Kê Trang 1 Tải Miễn Phí Từ Tailieuxanh
  • Bài Giảng1.6 Chương 6 – Kế Toán Các Quá Trình Kinh Doanh Chủ Yếu
  • Đáp Án Bài Tập Nguyên Lý Kế Toán Chương 6 Đại Học Thương Mại (Tmu)
  • Web hay
  • Guest-posts
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100