Top 9 # Giải Bài Tập Toán Sgk Lớp 8 Hình Xem Nhiều Nhất, Mới Nhất 1/2023 # Top Trend | Caffebenevietnam.com

Giải Bài Tập Sgk Toán Lớp 8: Phần Hình Học

Giải bài tập SGK Toán lớp 8 Phần Hình học

Giải bài tập Toán lớp 8: Phần Hình học – Ôn tập cuối năm

Giải bài tập SGK Toán lớp 8: Phần Hình học – Ôn tập cuối năm với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán lớp 8. Lời giải hay bài tập Toán 8 này gồm các bài giải tương ứng với từng bài học trong sách giúp cho các bạn học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán. Mời các bạn tham khảo

Bài 1 (trang 131 SGK Toán 8 tập 2): Dựng hình thang ABCD (AB

Lời giải:

Dựng đoạn thẳng CD = 4cm.

– Dựng hai đường tròn (C, 5cm) và (D, 2cm) cắt nhau tại A.

– Dựng đường tròn (C, 2cm) và đường tròn (A, 4cm) cắt nhau tại B.

Đường thẳng AB kéo dài cắt đường tròn (C, 2cm) tại điểm B’ (ngoài điểm B đã kể ở trên)

Các tứ giác ABCD và AB’CD là những hình thang thỏa mãn đề bài.

Chứng minh: Vì B thuộc đường tròn (A, 4cm) nên AB = 4cm.

ΔABC = ΔDCA (AB = CD = 4cm, AD = BC = 2cm, AC chung) do đó góc BAC = góc DCA là cặp so le trong ta có: AB

Tứ giác ABCD có AB

Bài 2 (trang 131 SGK Toán 8 tập 2): Cho hình thang ABCD (AB

Lời giải:

Bài 3 (trang 131 SGK Toán 8 tập 2): Tam giác ABC có các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Tam giác ABC phải có điều kiện gì thì tứ giác BHCK là:

a) Hình thoi?; b) Hình chữ nhật?

Lời giải:

Bài 4 (trang 132 SGK Toán 8 tập 2): Cho hình bình hành ABCD. Các điểm M, N theo thứ tự là trung điểm của AB, CD. Gọi E là giao điểm của AN và DM, K là giao điểm BN và CM. Hình bình hình ABCD phải có điều kiện gì để tứ giác MENK là:

a) Hình thoi?; b) Hình chữ nhật?; c) Hình vuông?

Lời giải:

Bài 5 (trang 132 SGK Toán 8 tập 2): Trong tam giác ABC, các đường trung tuyến AA’ và BB’ cắt nhau ở G. Tính diện tích tam giác ABC biết rằng diện tích tam giác ABG bằng S.

Lời giải:

Bài 6 (trang 132 SGK Toán 8 tập 2): Cho tam giác ABC và đường trung tuyến BM. Trên đoạn thẳng BM lấy điểm D sao cho BD/DM = 1/2. Tia AD cắt BC ở K. Tìm tỉ số diện tích của tam giác ABK và tam giác ABC.

Lời giải:

Bài 7 (trang 132 SGK Toán 8 tập 2): Cho tam giác ABC (AB < AC). Tia phân giác của góc A cắt BC ở K. Qua trung điểm M của BC kẻ một tia song song với KA cắt đường thẳng AB ở D, cắt AC ở E. Chứng minh BD = CE.

Lời giải:

Bài 8 (trang 132 SGK Toán 8 tập 2): Trên hình 151 cho thấy ta có thể xác định chiều rộng BB’ của khúc sông bằng cách xét hai tam giác đồng dạng ABC và AB’C’. Hãy tính BB’ nếu AC = 100m, AC’ = 32cm, AB’ = 34m.

Hình 151

Lời giải:

Bài 9 (trang 132 SGK Toán 8 tập 2): Cho tam giác ABC có AB < AC, D là một điểm nằm giữa A và C. Chứng minh rằng:

Lời giải:

Ta chứng minh hai chiều:

Bài 10 (trang 132 SGK Toán 8 tập 2): 10. Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 12cm, AD = 16cm, AA’ = 25cm.

a) Chứng minh rằng các tứ giác ACCA’, BDD’B’ là những hình chữ nhật.

c) Tính diện tích toàn phần và thể tích của hình hộp chữ nhật.

Lời giải:

Bài 11 (trang 132 SGK Toán 8 tập 2): Cho hình chóp tứ giác đều chúng tôi có cạnh đáy AB = 20cm, cạnh bên SA = 24cm.

a) Tính chiều cao SO rồi tính thể tích của hình chóp.

b) Tính diện tích toàn phần của hình chóp.

Lời giải:

Giải Bài Tập Sgk Toán Lớp 8 Bài 11: Hình Thoi

Giải bài tập SGK Toán lớp 8 bài 11

Giải bài tập Toán lớp 8 bài 11: Hình thoi

Giải bài tập SGK Toán lớp 8 bài 11: Hình thoi với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán lớp 8. Lời giải hay bài tập Toán 8 này gồm các bài giải tương ứng với từng bài học trong sách giúp cho các bạn học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán. Mời các bạn tham khảo

Trả lời câu hỏi Toán 8 Tập 1 Bài 11 trang 104: Chứng minh rằng tứ giác ABCD trên hình 100 cũng là một hình bình hành.

Lời giải

ABCD có các cặp cạnh đối bằng nhau ⇒ ABCD là hình bình hành

Trả lời câu hỏi Toán 8 Tập 1 Bài 11 trang 104: Cho hình thoi ABCD, hai đường chéo cắt nhau tại O (h.101).

a) Theo tính chất của hình bình hành, hai đường chéo của hình thoi có tính chất gì?

b) Hãy phát hiện thêm các tính chất khác của hai đường chéo AC và BD.

Lời giải

a) Theo tính chất của hình bình hành, hai đường chéo của hình thoi có tính chất cắt nhau tại trung điểm mỗi đường

b) Xét ΔAOB và ΔCOB

AB = CB

BO chung

OA = OC (O là trung điểm AC)

⇒ ΔAOB = ΔCOB (c.c.c)

⇒ (AOB) = (COB) ,(ABO) = (CBO) (các cặp góc tương ứng)

(ABO) = (CBO) ⇒ BO là phân giác góc ABC

Chứng minh tương tự, ta kết luận được:

AC, BD là các đường phân giác của các góc của hình thang

và AC ⊥ BD tại O

Trả lời câu hỏi Toán 8 Tập 1 Bài 11 trang 105: Hãy chứng minh dấu hiệu nhận biết 3.

Lời giải

Dấu hiệu nhận biết 3: Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi

ABCD là hình bình hành ⇒ O là trung điểm AC và O là trung điểm BD

Xét hai tam giác vuông AOB và AOD có:

OA chung

OB = OD (O là trung điểm BD)

⇒ ΔAOB = ΔAOD (hai cạnh góc vuông)

⇒ AB = AD (hai cạnh tương ứng)

Hình bình hành ABCD ⇒ AB = CD và AD = BC

Do đó AB = BC = CD = DA ⇒ ABCD là hình thoi

Bài 73 (trang 105 SGK Toán 8 Tập 1): Tìm các hình thoi trên hình 102.

Lời giải:

Các tứ giác ở hình 102a, b, c, e là hình thoi.

– Hình 102a: ABCD là hình thoi (theo định nghĩa)

– Hình 102b: EFGH là hình thoi (theo dấu hiệu nhận biết 4)

– Hình 102c: KINM là hình thoi (theo dấu hiệu nhận biết 3)

– Hình 102e: ADBC là hình thoi (theo định nghĩa, vì AC = AD = AB = BD = BC)

Tứ giác trên hình 102d không là hình thoi vì 4 cạnh không bằng nhau.

Bài 74 (trang 106 SGK Toán 8 Tập 1): Hai đường chéo của một hình thoi bằng 8cm và 10cm. Cạnh của hình thoi bằng giá trị nào trong các giá trị sau:

A. 6cm; B. √41 cm ; c) √164cm ; d) 9cm

Lời giải:

– Chọn B.

– Gọi ABCD là hình thoi, O là giao điểm hai đường chéo.

Vậy chọn đáp án là B.

Bài 75 (trang 106 SGK Toán 8 Tập 1): Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của một hình thoi.

Lời giải:

Mà AB = DC (ABCD là hình chữ nhật)

Chứng minh tương tự ta có AH = HD = FB = FC

Xét ΔEAH và ΔGDH có:

AE = DG;

AH = HD

Chứng minh tương tự ta có: EH = EF = GH = GF

Vậy EFGH là hình thoi (theo định nghĩa)

Bài 76 (trang 105 SGK Toán 8 Tập 1): Chứng minh rằng các trung điểm của bốn cạnh của một hình thoi là các đỉnh của một hình chữ nhật.

Lời giải:

Ta có: EB = EA, FB = FA (gt)

Nên EF là đường trung bình của ΔABC.

Do đó EF

HD = HA, GD = GC (gt) nên HG là đường trung bình của ΔADC.

Do đó HG

Suy ra EF

Chứng minh tương tự EH

Từ (1) và (2) ta được EFGH là hình bình hành

Lại có: EF

EH

Bài 77 (trang 106 SGK Toán 8 Tập 1): Chứng minh rằng:

a) Giao điểm hai đường chéo của hình thoi là tâm đối xứng của hình thoi.

b) Hai đường chéo của hình thoi là hai trục đối xứng của hình thoi.

Lời giải:

a) Hình bình hành nhận giao điểm hai đường chéo là tâm đối xứng.

Hình thoi cũng là một hình bình hành nên giao điểm của hai đường chéo hình thoi là tâm đối xứng của hình.

b)

– BD là đường trung trực của AC (do BA = BC, DA = DC) nên A đối xứng với C qua BD.

– Mọi điểm trên BD đều đối xứng qua chính đường thẳng BD. (*)

– Tâm O là tâm đối xứng mà O ∈ BD

– Tương tự AC cũng là là trục đối xứng của hình thoi.

((*) Điểm đối xứng của điểm B qua BD chính là điểm B.

(**) Định nghĩa trục đối xứng: Đường thẳng d gọi là trục đối xứng của hình H nếu điểm đối xứng với mỗi điểm thuộc hình H qua đường thẳng d cũng thuộc hình H.)

Bài 78 (trang 106 SGK Toán 8 Tập 1): Đố. Hình 103 biểu diễn một phần của cửa xếp, gồm những thanh kim loại dài bằng nhau và được liên kết với nhau bởi các chốt tại hai đầu và tại trung điểm. Vì sao tại mỗi vị trí của cửa xếp, các tứ giác trên hình vẽ đều là hình thoi, các điểm chốt I, K, M, N, O nằm trên một đường thẳng?

Lời giải:

Các tứ giác IEKF, KGMH là hình thoi nên KI là phân giác của góc EKF, KM là phân giác của góc GKH.

Suy ra I, K, M thẳng hàng.

Chứng minh tương tự, các điểm I, K, M, N, O cùng nằm trên một đường thẳng.

Lưu ý: Để chứng minh 3 điểm thẳng hàng, ta có thể chứng minh tổng 3 góc kề nhau bằng 180 o.

Giải Bài Tập Sgk Toán Lớp 8 Bài 3: Hình Thang Cân

Giải bài tập SGK Toán lớp 8 bài 3

Giải bài tập Toán lớp 8 bài 3: Hình thang cân

Giải bài tập SGK Toán lớp 8 bài 3: Hình thang cân với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán lớp 8. Lời giải hay bài tập Toán 8 này gồm các bài giải tương ứng với từng bài học trong sách giúp cho các bạn học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán. Mời các bạn tham khảo

Trả lời câu hỏi Tập 1 Bài 3 trang 72: Hình thang ABCD (AB

Lời giải

Hình thang ABCD trên hình 23 có hai góc kề cạnh đáy lớn bằng nhau

Trả lời câu hỏi Toán 8 Tập 1 Bài 3 trang 72: Cho hình 24.

a) Tìm các hình thang cân.

b) Tính các góc còn lại của mỗi hình thang cân đó.

c) Có nhận xét gì về hai góc đối của hình thang cân?

Lời giải

a) Các hình thang cân là : ABDC, IKMN, PQST

b) Áp dụng định lí tổng các góc của một tứ giác bằng 360 0

Góc N = 70 o(so le trong với góc 70 o)

c) Hai góc đối của hình thang cân bù nhau

Trả lời câu hỏi Tập 1 Bài 3 trang 74: Cho đoạn thẳng CD và đường thẳng m song song với CD (h.29). Hãy vẽ các điểm A, B thuộc m sao cho ABCD là hình thang có hai đường chéo CA, DB bằng nhau. Sau đó hãy đo các góc C và D của hình thang ABCD đó để dự đoán về dạng của các hình thang có đường chéo bằng nhau.

Lời giải

Hai góc C và D bằng nhau

⇒ Hình thang có hai đường chéo bằng nhau là hình thang cân

Mẹo: Công thức tính diện tích hình thang, chu vi hình thang

Bài 11 (trang 74 SGK Toán 8 Tập 1): Tính độ dài các cạnh của hình thang cân ABCD trên giấy kẻ ô vuông (h.30, độ dài của cạnh ô vuông là 1cm).

Lời giải:

Theo hình vẽ, ta có: AB = 2cm, CD = 4cm.

Áp dụng định lí Pitago trong tam giác vuông AED ta được:

Suy ra AD = √10 cm

Vậy AB = 2cm, CD = 4cm, AD = BC = √10 cm

Bài 12 (trang 74 SGK Toán 8 Tập 1): Cho hình thang cân ABCD (AB

Lời giải:

Vì hình thang ABCD cân

Xét hai tam giác vuông AED và BFC có:

AD = BC

Nên ΔAED = ΔBFC (cạnh huyền – góc nhọn)

Suy ra: DE = CF

Bài 13 (trang 74 SGK Toán 8 Tập 1): Cho hình thang cân ABCD (AB//CD), E là giao điểm của hai đường chéo. Chứng minh rằng EA = EB, EC = ED.

Lời giải:

Do ABCD là hình thang cân nên:

AD = BC;

AC = BC;

Xét hai tam giác ADC và BCD, ta có:

AD = BC (gt)

AC = BD (gt)

DC cạnh chung

Nên ΔADC = ΔBCD (c.c.c)

Do đó tam giác ECD cân tại E, nên EC = ED

Ta lại có: AC = BD suy ra EA = EB

( Chú ý: Ngoài cách chứng minh ΔADC = ΔBCD (c.c.c) ta còn có thể chứng minh ΔADC = ΔBCD (c.g.c) như sau:

Bài 14 (trang 75 SGK Toán 8 Tập 1): Đố. Trong các tứ giác ABCD, EFGH trên giấy kẻ ô vuông (h.31), tứ giác nào là hình thang cân? Vì sao?

Lời giải:

Để xét xem tứ giác nào là hình thang cân ta dùng tính chất “Trong hình thang cân hai cạnh bên bằng nhau”.

Tứ giác ABCD là hình thang cân vì AD = BC.

Bài 15 (trang 75 SGK Toán 8 Tập 1): Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy theo thứ tự các điểm D, E sao cho AD = AE

a) Chứng minh rằng BDEC là hình thang cân.

b) Tính các góc của hình thang cân đó, biết rằng góc A = 50 o.

Bài 16 (trang 75 SGK Toán 8 Tập 1): Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D ∈ AC, E ∈ AB). Chứng minh rằng BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.

Lời giải:

a) ΔABD và ΔACE có:

AB = AC (gt)

Nên ΔABD = ΔACE (g.c.g)

Suy ra AD = AE.

Chứng minh BEDC là hình thang cân như câu a của bài 15.

b) Vì BEDC là hình thang cân nên DE

Do đó ΔEBD cân. Suy ra EB = ED.

Vậy BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.

Bài 17 (trang 75 SGK Toán 8 Tập 1): Hình thang ABCD (AB

Chứng minh rằng ABCD là hình thang cân.

Lời giải:

Gọi E là giao điểm của AC và BD.

Suy ra EC = ED (1)

Tương tự EA = EB (2)

Từ (1) và (2) suy ra AC = BD

Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.

Bài 18 (trang 75 SGK Toán 8 Tập 1): Chứng minh định lý: “Hình thang có hai đường chéo bằng nhau là hình thang cân” qua bài toán sau: Cho hình thang ABCD (AB

a) ΔBDE là tam giác cân.

b) ΔACD = ΔBDC

c) Hình thang ABCD là hình thang cân.

Lời giải:

a) Hình thang ABEC (AB//CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE (1)

Theo giả thiết AC = BD (2)

Từ (1) và (2) suy ra BE = BD do đó ΔBDE cân

Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

Bài 19 (trang 75 SGK Toán 8 Tập 1): Đố. Cho ba điểm A, D, K trên giấy kẻ ô vuông (h.32) Hãy tìm điểm thứ tư M giao điểm của các dòng kẻ sao cho nó cùng với ba diểm đã cho là bốn đỉnh của một hình thang cân.

Lời giải:

Có thể tìm được hai điểm M là giao điểm của các dòng kẻ sao cho nó cùng với ba điểm đã cho A, D, K là bốn đỉnh của một hình thang cân. Đó là hình thang AKDM1 (với AK là đáy) và hình ADKM 2(với DK là đáy).

Giải Bài Tập Sgk Toán Lớp 8 Bài 7: Hình Chóp Đều Và Hình Chóp Cụt Đều

Giải bài tập SGK Toán lớp 8 bài 7 Giải bài tập Toán lớp 8 bài 7: Hình chóp đều và hình chóp cụt đều Giải bài tập SGK Toán lớp 8 bài 7: Hình chóp đều và hình chóp cụt đều với lời giải chi tiết, rõ ràng theo …

Giải bài tập SGK Toán lớp 8 bài 7

Giải bài tập Toán lớp 8 bài 7: Hình chóp đều và hình chóp cụt đều

Giải bài tập SGK Toán lớp 8 bài 7: Hình chóp đều và hình chóp cụt đều với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán lớp 8. Lời giải hay bài tập Toán 8 này gồm các bài giải tương ứng với từng bài học trong sách giúp cho các bạn học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn Toán. Mời các bạn tham khảo

Trả lời câu hỏi Toán 8 Tập 2 Bài 7 trang 117: Cắt từ tấm bìa cứng thành các hình như ở hình 118 rồi gấp lại để có những hình chóp đều.

Lời giải

Bài 36 (trang 118 SGK Toán 8 tập 2): Quan sát hình 120 và điền cụm từ và số thích hợp vào các ô trống ở bảng sau, biết rằng các hình đã cho là những hình chóp đều.

Lời giải:

Bài 37 (trang 118 SGK Toán 8 tập 2): Hãy xét sự đúng sai của các phát biểu sau:

a) Hình chóp đều có đáy là hình thoi và chân đường cao trùng với giao điểm hai đường chéo của đáy.

b) Hình chóp đều có đáy là hình chữ nhật và chân đường cao trùng với giao điểm hai đường chéo của đáy.

Lời giải:

a) Sai, vì hình thoi không phải là tứ giác đều (các góc không bằng nhau).

b) Sai, vì hình chữ nhật không phải là tứ giác đều (các cạnh không bằng nhau).

Bài 38 (trang 119 SGK Toán 8 tập 2): Trong các tấm bìa ở hình 121, em gấp lại tấm bìa nào thì có được một hình chóp đều?

Hình 121

Lời giải:

Hình a khi gấp lại thì không được một hình chóp đều vì đáy là tứ giác đều nhưng chỉ có ba mặt bên thay vì phải có 4 mặt bên.

Hình b, c khi gấp lại thì được một hình chóp tứ giác đều.

Hình d khi gấp lại thì không được một hình chóp tứ giác đều vì ở trên cùng một cạnh đáy có đến 2 mặt bên còn trên một cạnh đáy thì không có mặt bên nào.

Bài 39 (trang 119 SGK Toán 8 tập 2): Thực hành: Từ tờ giấy cắt ra một hình vuông rồi thực hiện các thao tác theo thứ tự từ 1 đến 6 để có thể ghép được các mặt bên của một hình chóp tứ giác đều (h.122).

Hình 122

Lời giải:

Các bạn tự thực hành ở nhà để giúp mình dễ tưởng tượng hình chóp đều hơn.