Top 6 # Giải Phương Trình Bậc 4 Dạng Đặc Biệt Xem Nhiều Nhất, Mới Nhất 6/2023 # Top Trend | Caffebenevietnam.com

Các Dạng Hệ Phương Trình Đặc Biệt

Chuyên đề: Phương trình – Hệ phương trình

Các dạng hệ phương trình đặc biệt

Lý thuyết & Phương pháp giải

DẠNG TOÁN 1: HỆ GỒM MỘT PHƯƠNG TRÌNH BẬC NHẤT VÀ MỘT BẬC HAI

1. Phương pháp giải

Sử dụng phương pháp thế

– Từ phương trình bậc nhất rút một ẩn theo ẩn kia.

– Thế vào phương trình bậc hai để đưa về phương trình bậc hai một ẩn.

– Số nghiệm của hệ tuỳ theo số nghiệm của phương trình bậc hai này.

DẠNG TOÁN 2: HỆ PHƯƠNG TRÌNH ĐỐI XỨNG

1. Phương pháp giải

a. Hệ đối xứng loại 1

Hệ phương trình đối xứng loại 1 là hệ phương trình có dạng:

(Có nghĩa là khi ta hoán vị giữa x và y thì f(x, y) và g(x, y) không thay đổi).

Cách giải

– Đặt S = x + y, P = xy

– Đưa hệ phương trình (I) về hệ (I’) với các ẩn là S và P.

– Giải hệ (I’) ta tìm được S và P

– Tìm nghiệm (x; y) bằng cách giải phương trình: X 2 – SX + P = 0

b. Hệ đối xứng loại 2

Hệ phương trình đối xứng loại 2 là hệ phương trình có dạng:

(Có nghĩa là khi hoán vị giữa x và y thì (1) biến thành (2) và ngược lại)

– Trừ (1) và (2) vế theo vế ta được: (II) ⇔

– Biến đổi (3) về phương trình tích: (3) ⇔ (x-y).g(x,y) = 0 ⇔

– Như vậy (II) ⇔

– Giải các hệ phương trình trên ta tìm được nghiệm của hệ (II)

c. Chú ý: Hệ phương trình đối xứng loại 1, 2 nếu có nghiệm là (x 0; y 0) thì (y 0; x 0) cũng là một nghiệm của nó

DẠNG TOÁN 3: HỆ PHƯƠNG TRÌNH ĐẲNG CẤP BẬC HAI

1. Phương pháp giải

Hệ phương trình đẳng cấp bậc hai là hệ phương trình có dạng:

– Giải hệ khi x = 0 (hoặc y = 0)

– Khi x ≠ 0, đặt y = tx. Thế vào hệ (I) ta được hệ theo k và x. Khử x ta tìm được phương trình bậc hai theo k. Giải phương trình này ta tìm được k, từ đó tìm được (x; y)

Ví dụ minh họa

Bài 1: Giải hệ phương trình

Hướng dẫn:

a. Đặt S = x + y, P = xy (S 2 – 4P ≥ 0)

Ta có :

⇒ S = -5; S = 3

S = -5⇒ P = 10 (loại)

S = 3⇒ P = 2(nhận)

Khi đó : x, y là nghiệm của phương trình X 2 – 3X + 2 = 0

⇔ X = 1; X = 2

Vậy hệ có nghiệm (2; 1), (1; 2)

b. ĐKXĐ: x ≠ 0

Hệ phương trình tương đương với

Vậy hệ phương trình có nghiệm (x; y) là (1; 1) và (2; -3/2)

Bài 2: Giải hệ phương trình

Hướng dẫn:

a. Hệ phương trình tương đương

Với x-y = 4 ⇒ x = y + 4 ⇒ y(y+4) + y + 4 – y = -1

Vậy nghiệm của hệ phương trình là (x; y) = {(0; 1), (-1; 0)}

b. Đặt S = x+y; P = xy, ta có hệ:

– Với S = 2 + √2; P = 2√2 ta có x, y là nghiệm phương trình:

Với S = -4-√2; P = 6 + 4√2 ta có x, y là nghiệm phương trình:

X 2 + (4+√2)X + 6 + 4√2 = 0 (vô nghiệm)

Vậy hệ có nghiệm (x; y) là (2; √2) và (√2; 2)

Bài 3: Giải hệ phương trình

Hướng dẫn:

a. Hệ phương trình tương đương

Vậy tập nghiệm của hệ phương trình là: (x; y) = {(0;0), (2;2)}

b. Trừ vế với vế của phương trình đầu và phương trình thứ hai ta được:

Thay x = y vào phương trình đầu ta được:

Vậy hệ phương trình có ba nghiệm: (0; 0); (2+√2; 2+√2) và (2-√2; 2-√2)

Bài 4: Giải hệ phương trình

Hướng dẫn:

Khi x = y thì hệ có nghiệm

Vậy hệ phương trình đã cho có 2 nghiệm

b. Hệ phương trình tương đương

Bài 5: Giải hệ phương trình

Hướng dẫn:

a. Ta có

Nếu x = 0 thay vào (1)⇒ y = 0, thay vào (2) thấy (x; y) = (0; 0) là nghiệm

của phương trình (2) nên không phải là nghiệm của hệ phương trình

Nếu x ≠ 0, đặt y = tx , thay vào hệ ta được

Với t = 1/2 thay vào (**) ta được 4x 2 + x 2 + 6x = 27 ⇔ 5x 2 + 6x – 27 = 0

Với t = 1/3 thay vào (**) ta được 4x 2 + (2/3)x 2 + 6x = 27

⇔ 14x 2 + 18x – 81 = 0

Vậy hệ phương trình có nghiệm (x; y) là:

b. Dễ thấy x = 0 không thoả hệ

Với x ≠ 0, đặt y = tx, thay vào hệ ta được

Suy ra 3(t 2 – t + 1) = 2t 2 – 3t + 4 ⇒ t = ±1

Thay vào (*) thì

Vậy hệ phương trình có nghiệm (x; y) là (1/√3;(-1)/√3), ((-1)/√3;1/√3), (-1;-1) và (1;1)

Bài 6: Cho hệ phương trình. Tìm giá trị thích hợp của tham số a sao cho hệ có nghiệm (x; y) và tích x.y nhỏ nhất.

Hướng dẫn:

Đặt S = x + y, P = xy (S 2 – 4P ≥ 0)

Ta có

Đẳng thức xảy ra khi a = -1 (nhận)

Bài 7: Xác định m để hệ phương trìnhcó nghiệm

Hướng dẫn:

Hệ phương trình tương đương

Để hệ phương trình có nghiệm Δ ≥ 0 ⇔ 1 – 4(m-1) ≥ 0 ⇔ 5 – 4m ≥ 0

⇔ m ≤ 5/4

Từ phương trình thứ 2 ta có(x-y) 2 = m + 1 ⇒ m + 1 ≥ 0 ⇔ m ≥ -1

Do đó -1 ≤ m ≤ 5/4

Chuyên đề Toán 10: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k5: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

phuong-trinh-he-phuong-trinh.jsp

Phương Pháp Giải Phương Trình Bậc Ba, Bậc Bốn Đặc Biệt Môn Toán Lớp 10

1. Phương trình trùng phương

– Là phương trình có dạng (a{x^4} + b{x^2} + c = 0left( {a ne 0} right),,,,,,,,,left( * right))

– Phương pháp:

+) Đặt (t = {x^2}left( {t ge 0} right)) thì (left( * right) Leftrightarrow a{t^2} + bt + c = 0,,,,,,,,,left( {**} right))

+) Để xác định số nghiệm của $( * ),$ ta dựa vào số nghiệm của $( *  * )$ và dấu của chúng, cụ thể:

$ bullet $ Phương trình $( * )$ vô nghiệm ( Leftrightarrow left( {**} right)) vô nghiệm hoặc có nghiệm kép âm hoặc có hai nghiệm phân biệt âm.

$ bullet $ Phương trình $( * )$ có $1$ nghiệm ( Leftrightarrow left( {**} right)) có nghiệm kép ({t_1} = {t_2} = 0) hoặc (left( {**} right)) có (1) nghiệm bằng (0), nghiệm còn lại âm.

$ bullet $ Phương trình $( * )$ có $2$ nghiệm phân biệt ( Leftrightarrow left( {**} right)) có nghiệm kép dương hoặc (left( {**} right)) có (2) nghiệm trái dấu.

$ bullet $ Phương trình $( * )$ có $3$ nghiệm $ Leftrightarrow ( *  * )$ có $1$ nghiệm bằng $0$ và nghiệm còn lại dương.

$ bullet $ Phương trình $( * )$ có $4$  nghiệm $ Leftrightarrow ( *  * )$ có $2$ nghiệm dương phân biệt.

2. Một số dạng phương trình bậc bốn quy về bậc hai

Loại 1:  $a{x^4} + b{x^3} + c{x^2} + dx + e = 0$ với $dfrac{e}{a} = {left( {dfrac{d}{b}} right)^2} ne 0$

 Phương pháp giải:

– Bước 1: Chia hai vế cho ${x^2} ne 0$

– Bước 2: Đặt $t = x + dfrac{alpha }{x} Rightarrow {t^2} = {left( {x + dfrac{alpha }{x}} right)^2}$ với $alpha  = dfrac{d}{b}$ và thay vào phương trình.

Loại 2:  $(x + a)(x + b)(x + c)(x + d) = e$ với $a + c = b + d$

 Phương pháp giải:

– Bước 1: Biến đổi:

$left[ {(x + a)(x + c)} right] cdot left[ {(x + b)(x + d)} right] = e Leftrightarrow left[ {{x^2} + (a + c)x + ac} right] cdot left[ {{x^2} + (b + d)x + bd} right] = e$

– Bước 2: Đặt $t = {x^2} + (a + c)x$ và thay vào phương trình.

Loại 3:  $(x + a)(x + b)(x + c)(x + d) = e{x^2}$ với $a.b = c.d.$

 Phương pháp giải:

– Bước 1: Đặt $t = {x^2} + ab + dfrac{{a + b + c + d}}{2} cdot x$

– Bước 2: Phương trình$ Leftrightarrow left( {t + dfrac{{a + b – c – d}}{2} cdot x} right) cdot left( {t – dfrac{{a + b – c – d}}{2} cdot x} right) = e{x^2}$ (có dạng đẳng cấp)

Loại 4:  ${(x + a)^4} + {(x + b)^4} = c$

Phương pháp giải:

– Bước 1: Đặt $x = t – dfrac{{a + b}}{2} Rightarrow {(t + alpha )^4} + {(t – alpha )^4} = c$ với $alpha  = dfrac{{a – b}}{2} cdot $

– Bước 2: Giải phương trình trên tìm (t) rồi suy ra (x).

Loại 5:  ${x^4} = a{x^2} + bx + c,,,,,left( 1 right)$

Phương pháp giải:

– Bước 1: Tạo ra dạng ${A^2} = {B^2}$ bằng cách thêm hai vế cho một lượng $2k.{x^2} + {k^2}$

– Bước 2: Phương trình (1) tương đương:

${({x^2})^2} + 2k{x^2} + {k^2} = (2k + a){x^2} + bx + c + {k^2} Leftrightarrow {({x^2} + k)^2} = (2k + a){x^2} + bx + c + {k^2}.$

Loại 6:  ${x^4} + a{x^3} = b{x^2} + cx + d,,,,,left( 2 right)$

Phương pháp giải:

– Bước 1: Tạo ${A^2} = {B^2}$ bằng cách thêm ở vế trái 1 biểu thức để tạo ra dạng bình phương: ${left( {{x^2} + dfrac{a}{2}x + k} right)^2} = {x^4} + a{x^3} + left( {2k + dfrac{{{a^2}}}{4}} right){x^2} + kax + {k^2}.$

Do đó ta sẽ cộng thêm hai vế của phương trình (2) một lượng: $left( {2k + dfrac{{{a^2}}}{4}} right){x^2} + kax + {k^2},$ thì phương trình

$(2) Leftrightarrow {left( {{x^2} + dfrac{a}{2}x + k} right)^2} = left( {2k + dfrac{{{a^2}}}{4} + b} right){x^2} + (ka + c)x + {k^2} + d.$

– Bước 2: Cần vế phải có dạng bình phương nên phải có số $k$ thỏa:

Khi gặp bài toán chứa tham số trong phương trình bậc ba, ta thường dùng nguyên tắc nhẩm nghiệm sau đó chia Hoocner.

Nguyên tắc nhẩm nghiệm:

$ bullet $    Nếu tổng các hệ số bằng $0$ thì phương trình sẽ có $1$ nghiệm $x = 1.$

$ bullet $    Nếu tổng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ thì PT có $1$ nghiệm $x =  – 1.$

$ bullet $    Nếu phương trình chứa tham số, ta sẽ chọn nghiệm $x$ sao cho triệt tiêu đi tham số $m$ và thử lại tính đúng sai.

Chia Hoocner: đầu rơi – nhân tới – cộng chéo.

Các Dạng Phương Trình Quy Về Phương Trình Bậc Hai

Chuyên đề: Phương trình – Hệ phương trình

Các dạng phương trình quy về phương trình bậc hai

Lý thuyết & Phương pháp giải

Phương trình trùng phương: ax 4 + bx 2 + c = 0, (a ≠ 0) (*)

– Đặt t = x 2 ≥ 0 thì (*) ⇔ at 2 + bt + c = 0 (**)

– Để xác định số nghiệm của (*), ta dựa vào số nghiệm của (**) và dấu của chúng, cụ thể:

+ Để (*) vô nghiệm ⇔

+ Để (*) có 1 nghiệm

+ Để (*) có 2 nghiệm phân biệt ⇔

+ Để (*) có 3 nghiệm ⇔ (**) có 1 nghiệm bằng 0 và nghiệm còn lại dương.

+ Để (*) có 4 nghiệm ⇔ (**) có 2 nghiệm dương phân biệt.

Một số dạng phương trình bậc bốn quy về bậc hai

Phương pháp giải: Chia hai vế cho x 2 ≠ 0, rồi đặt t = x + α/x ⇒ t 2 = (x + α/x) 2 với α = d/b

Loại 2. (x+a)(x+b)(x+c)(x+d) = e với a + c = b + d

Phương pháp giải: [(x+a)(x+c)]⋅[(x+b)(x+d)] = e

Loại 3. (x+a)(x+b)(x+c)(x+d) = ex 2 với a.b = c.d

Phương pháp giải: Đặt t = x 2 + ab + ((a+b+c+d)/2)x thì phương trình

⇔ (t + ((a+b-c-d)/2)x)(t – ((a+b-c-d)/2)x) = ex 2 (có dạng đẳng cấp)

Phương pháp giải: Đặt x = t-(a+b)/2 ⇒ (t + α) 4 + (t – α) 4 = c với α = (a-b)/2

Phương pháp giải: Tạo ra dạng A 2 = B 2 bằng cách thêm hai vế cho một lượng 2k.x 2 + k 2, tức phương trình (1) tương đương:

Cần vế phải có dạng bình phương

Phương pháp giải: Tạo A 2 = B 2 bằng cách thêm ở vế phải 1 biểu thức để tạo ra dạng bình phương: (x 2 + (a/2)x + k) 2 = x 4 + ax 3 + (2k + a 2/4)x 2 + kax + k 2. Do đó ta sẽ cộng thêm hai vế của phương trình (2) một lượng: (2k + a 2/4)x 2 + kax + k 2, thì phương trình

Lúc này cần số k thỏa:

Lưu ý: Với sự hổ trợ của casio, ta hoàn toàn có thể giải được phương trình bậc bốn bằng phương pháp tách nhân tử. Tức sử dụng chức năng table của casio để tìm nhân tử bậc hai, sau đó lấy bậc bốn chia cho nhân tử bậc hai, thu được bậc hai. Khi đó bậc bốn được viết lại thành tích của 2 bậc hai

Phân tích phương trình bậc ba bằng Sơ đồ Hoocner

Khi gặp bài toán chứa tham số trong phương trình bậc ba, ta thường dùng nguyên tắc nhẩm nghiệm sau đó chia Hoocner.

Nguyên tắc nhẩm nghiệm:

+ Nếu tổng các hệ số bằng 0 thì phương trình sẽ có 1 nghiệm x = 1

+ Nếu tổng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ thì PT có 1 nghiệm x = -1

+ Nếu phương trình chứa tham số, ta sẽ chọn nghiệm x sao cho triệt tiêu đi tham số m và thử lại tính đúng sai

Chia Hoocner: đầu rơi – nhân tới – cộng chéo

Ví dụ minh họa

Hướng dẫn:

Ta thấy x = 0 không phải là nghiệm của phương trình nên chia hai vế phương trình cho x 2 ta được: 2(x 2 + 1/x 2) – 5(x + 1/x) + 6 = 0

Ta có phương trình: 2(t 2 – 2) – 5t + 6 = 0 ⇔ 2t 2 – 5t + 2 = 0 ⇔

+ t = 1/2 ⇒ x + 1/x = 1/2 ⇔ 2x 2 – x + 2 = 0 (vô nghiệm)

+ t = 2 ⇒ x + 1/x = 2 ⇔ x 2 – 2x + 1 = 0 ⇔ x = 1

Vậy phương trình có nghiệm duy nhất x = 1

Bài 2: Giải phương trình x(x+1)(x+2)(x+3) = 24

Hướng dẫn:

Phương rình tương đương với (x 2 + 3x)(x 2 + 3x + 2) = 24

Đặt t = x 2 + 3x, phương trình trở thành

t(t+2) = 24 ⇔ t 2 + 2t – 24 = 0 ⇔

+ t = -6 ⇒ x 2 + 3x = -6 ⇔ x 2 + 3x + 6 = 0 (Phương trình vô nghiệm)

+ t = 4 ⇒ x 2 + 3x = 4 ⇔ x 2 + 3x – 4 = 0 ⇔

Vậy phương rình có nghiệm là x = -4 và x = 1

Bài 3: Giải phương trình 4(x+5)(x+6)(x+10)(x+12) = 3x 2

Hướng dẫn:

Phương trình tương đương với 4(x 2 + 17x + 60)(x 2 + 16x + 60) = 3x 2 (*)

Ta thấy x = 0 không phải là nghiệm của phương trình.

Xét x ≠ 0, chia hai vế cho x 2 ta có

(*)⇔ 4(x + 17 + 60/x)(x + 16 + 60/x) = 3

Đặt y = x + 16 + 60/x phương trình trở thành

4(y+1)y = 3 ⇔ 4y 2 + 4y – 3 = 0 ⇔

Với y = 1/2 ta có x + 16 + 60/x = 1/2 ⇔ 2x 2 + 31x + 120 = 0

Với y = -3/2 ta có x + 16 + 60/x = -3/2 ⇔ 2x 2 + 35x + 120 = 0

Vậy phương trình có nghiệm là x = -8, x = -15/2 và

Hướng dẫn:

Suy ra x = -2

Vậy phương trình có nghiệm duy nhất x = -2

Bài 5: Giải phương trình

Hướng dẫn:

Điều kiện: x ≠ 2; x ≠ 3

Đặt u = (x+1)/(x-2); v = (x-2)/(x-3) ta được u 2 + uv = 12v 2

⇔(u – 3v)(u + 4v) = 0 ⇔ u = 3v; u = -4v

+) u = 3v ⇔ (x+1)/(x-2) = 3(x-2)/(x-3) ⇔ x 2 + 4x + 3 = 3x 2 – 12x + 12

⇔2x 2 – 16x + 9 = 0 ⇔ x = (8 ± √46)/2

+) u = -4v ⇔ (x+1)/(x-2) = -4(x-2)/(x-3) ⇔ x 2 + 4x + 3 = -4x 2 + 16x – 16

⇔ 5x 2 – 12x + 19 = 0(Vô nghiệm)

Vậy phương trình đã cho có hai nghiệm là x = (8 ± √46)/2

Chuyên đề Toán 10: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k5: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

phuong-trinh-he-phuong-trinh.jsp

Phương Trình Và Hàm Số Bậc 4

PHƯƠNG TRÌNH VÀ HÀM SỐ BẬC 4 I. CÁCH GIẢI PHƯƠNG TRÌNH BẬC BỐN Ta thường gặp các dạng đặc biệt sau : Dạng 1: Phương trình trùng phương ax4 + bx2 + c = 0 (1) Đặt t = x2, ta có phương trình : at2 + bt + c = 0 (1’) Nghiệm dương của (1’) ứng với 2 nghiệm của (1) Vậy điều kiện cần và đủ để (1) có nghiệm là phương trình (1’) có ít nhất một nghiệm không âm. ax4 + bx2 + c = 0 (a ≠ 0) ⇔ 2 2 0 ( ) 0 t x f t at bt c ⎧ = ≥⎨ = + + =⎩ t = x2 ⇔ x = ± t (1) có 4 nghiệm ⇔(1/ ) có 2 nghiệm dương ⇔ ; ⎪⎩ ⎪⎨ ⎧ > > >Δ 0S 0P 0 (1) có 3 nghiệm ⇔(1/ ) có 1 nghiệm dương và 1 nghiệm bằng 0 ⇔ ⎩⎨ ⎧ > = 0S 0P (1) có 2 nghiệm ⇔(1/ ) có 1 nghiệm dương ⇔ P < 0 hay ; 0 / 2 0S (1) có 1 nghiệm ⇔( (1/ ) có nghiệm thỏa t1 < 0 = t2 ) hay ( (1/ ) có nghiệm thỏa t1 = t2 = 0 ) ⇔ hay 0 0 P S =⎧⎨ <⎩ 0 / 2 0S Δ =⎧⎨ =⎩ (1) vô nghiệm ⇔(1/ ) vô nghiệm hay ( 1/ ) có 2 nghiệm âm ⇔ Δ < 0 ∨ ⇔ Δ < 0 ∨ ⎪⎩ ⎪⎨ ⎧ < > ≥Δ 0S 0P 0 0 0 P S >⎧⎨ <⎩ ( 1 ) có 4 nghiệm là CSC ⇔ ⎩⎨ ⎧ = << 12 21 t3t tt0 Giải hệ pt : ⎪⎩ ⎪⎨ ⎧ = += = 21 21 12 t.tP ttS t9t Dạng 2 : Phương trình bậc 4 có tính đối xứng : ax4 + bx3 + cx2 + bx + a = 0 (2) * Nếu a = 0, ta có phương trình x(bx2 + cx + b) = 0 * Nếu a ≠ 0, ta có phương trình tương đương : 0c x 1xb x 1xa 2 2 =+⎟⎠ ⎞⎜⎝ ⎛ ++⎟⎠ ⎞⎜⎝ ⎛ + Đặt t = x + x 1 phương trình cho viết thành a(t2 – 2) + bt + c = 0 (2’) với ⏐t⏐≥ 2 Chú ý : Khi khảo sát hàm số : t = x + x 1 , ta có : * Một nghiệm lớn hơn 2 của phương trình (2’) sẽ tương ứng với 2 nghiệm dương của phương trình (2). * Một nghiệm nhỏ hơn 2 của phương trình (2’) sẽ tương ứng với 2 nghiệm âm của phương trình (2) * Một nghiệm t = 2 của phương trình (2’) sẽ tương ứng với nghiệm x = 1 của phương trình (2) * Một nghiệm t = – 2 của phương trình (2’) sẽ tương ứng với nghiệm x = –1 của phương trình (2) * phương trình t = x + x 1 vô nghiệm khi ⏐t⏐< 2 Dạng 3 : ax4 + bx3 + cx2 – bx + a = 0 (3) * Nếu a = 0, ta có phương trình x(bx2 + cx – b) = 0 * Nếu a ≠ 0, có phương trình tương đương 0c x 1xb x 1xa 2 2 =+⎟⎠ ⎞⎜⎝ ⎛ −+⎟⎠ ⎞⎜⎝ ⎛ + Đặt t = x – x 1 , phương trình cho viết thành : a(t2 + 2) + bt + c = 0 (3’) với t ∈ R. Chú ý : phương trình t = x – x 1 có 2 nghiệm trái dấu với mọi t Dạng 4 : (x + a)4 + (x + b)4 = c (C) Đặt t = 2 bax ++ , t ∈ R thì với α = 2 ba − pt (C) viết thành : (t – α)4 + (t + α)4 = c ⇒ phương trình trùng phương đã biết cách giải và biện luận. Dạng 5 : (x + a)(x + b)(x + c)(x + d) = e với a + b = c + d. Đặt : t = x2 + (a + b)x. Tìm đk của t bằng BBT. I I . TRỤC ĐỐI XỨNG CỦA HÀM BẬC 4 Cho hàm bậc 4 : y = ax4 + bx3 + cx2 + dx + c có đồ thị (C). ax4 + bx3 + cx2 + dx + e = (αx2 + βx + γ)2 + m ∀x ∈ R. Dùng đồng nhất thức cho ta có được các hệ số α, β, γ, m. III . CỰC TRỊ CỦA HÀM BẬC BỐN TRÙNG PHƯƠNG : y = ax4 + bx2 + c y’ = 4ax3 + 2bx y’ = 0 ⇔ 2x(2ax2 + b) = 0 ⇔ x ax b = + = ⎡ ⎣⎢⎢ 0 1 2 02 ( ) ( )2 3 1. Hàm số có 3 cực trị ⇔ (2) có 2 nghiệm phân biệt khác 0 ⇔ a.b < 0 2. Hàm số có đúng 1 cực trị ⇔ (2) vô nghiệm hoặc có nghiệm kép hoặc có nghiệm bằng 0. ⇔ a vàb a vàab = ≠ ≠ ≥ ⎡ ⎣⎢ 0 0 0 0 IV.CỰC TRỊ HÀM BẬC BỐN DẠNG : y = ax4 + bx3 + cx2 + d y’ = 4ax3 + 3bx2 + 2cx y’ = 0 ⇔ x(4ax2 + 3bx + 2c) = 0 ⇔ x ax bx c = + + = ⎡ ⎣⎢⎢ 0 4 3 2 02 ( ) ⇔ (3) vô nghiệm hay (3) có nghiệm kép hay (3) có nghiệm x = 0. 2. Khi a < 0, ta có: Hàm số chỉ có 1 cực đại mà không có cực tiểu. ⇔ (3) vô nghiệm hay (3) có nghiệm kép hay (3) có nghiệm x = 0. TOÁN ÔN VỀ HÀM SỐ BẬC 4 Cho hàm số bậc 4 có đồ thị (C a ) với phương trình : y = x4 + 8ax3 – 4(1 + 2a)x2 + 3 I. Trong phần này ta khảo sát hàm số ứng với a = 0 1) Khảo sát sự biến thiên và vẽ đồ thị (Co). Xác định tọa độ điểm uốn. 2) Định m để tiếp tuyến với (Co) tại M có hoành độ m, cắt (Co) tại hai điểm P, Q khác điểm M. Có giá trị nào của m để M là trung điểm đoạn PQ. 3) Tìm quỹ tích trung điểm I của đoạn PQ khi m thay đổi trong điều kiện câu 2. II. Trong phần này ta khảo sát hàm số ứng với a = 2 1− 4) Khảo sát sự biến thiên và vẽ đồ thị (C) 5) Cho đường thẳng ( D ) có phương trình y = ax + b. Tìm a, b để phương trình hoành độ giao điểm của (C) và (D) có hai nghiệm kép phân biệt α và β. Tìm tọa độ hai điểm chung. 6) Viết phương trình tiếp tuyến với (C) và có hệ số góc bằng –8. Tìm tọa độ các tiếp điểm. III. Trong phần này ta khảo sát hàm số trong trường hợp tổng quát. 7) Biện luận theo a số điểm cực trị của hàm số. Định a để hàm số chỉ có điểm cực tiểu mà không có điểm cực đại. 8) Trong trường hợp đồ thị hàm số có ba điểm cực trị hãy viết phương trình parabol đi qua ba điểm cực trị này. 9) Định a để đồ thị có hai điểm uốn. Viết phương trình đường thẳng đi qua hai điểm uốn này. BÀI GIẢI PHẦN I: 1) Khảo sát sự biến thiên và vẽ đồ thị ( )0C Khi a = 0 hàm số thành y = x4 – 4x2 + 3 y′= 4x3 – 8x, / /y = 12x2 – 8 y′= 0 ⇔ x = 0 x∨ 2 = 2 ⇔ x = 0 ∨ x = ± 2 y ( )0 = 3, y ( 2± ) = –1 y′′= 0 ⇔ =2 2x 3 ⇔ x = ± 6 3 ; y 6 3 ⎛ ⎞±⎜ ⎟⎝ ⎠ = 7 9 ( )0C có 2 điểm cực tiểu là ( )2 , -1± và 1 điểm cực đại là ( ) 0,3 ( )0C có 2 điểm uốn là 6 7, 3 9 ⎛ ⎞±⎜ ⎟⎝ ⎠ Bảng biến thiên và đồ thị : bạn đọc tự làm. 2) Tiếp tuyến ( tại M ()D )− +4 2m , m 4m 3 thuộc ( )0C có phương trình: y = y′ ( )m ( Mx - x ) ( )x - m + yM hay y = ( + m)34m - 8m 4 – 4m2 + 3 Phương trình hoành độ giao điểm của ( )D và ( )0C là x4 – 4x2 + 3 = ( )34m - 8m ( )x - m + m4 – 4m2 + 3 (1) ( Nhận xét: pt (1) chắc chắn nhận m làm nghiệm kép nên ta có: (1) ⇔ ( )2x - m ( ) =2Ax + Bx + C 0 ) (1) ⇔ x4 – m4 – 4 ( )2 2x - m = ( )x - m ( )34m - 8m ⇔ x – m = 0 ∨ x3 + mx2 + m2x + m3 – 4 ( )x + m = 4m3 – 8m ⇔ x = m ∨ x3 + mx2 + ( )2m - 4 x – 3m3 + 4m = 0 (2) ⇔ x = m ∨ ( )x - m ( )2 2x + 2mx + 3m - 4 = 0 ⇔ x = m ∨ x2 + 2mx + 3m2 – 4 = 0 (3) Do đó, ( cắt ()D )0C tại 2 điểm P, Q khác m ⇔ (3) có 2 nghiệm phân biệt khác m. ⇔ 2 2 2 2 2 m + 2m + 3m - 4 0 ⎧ ≠⎪⎨ ′Δ⎪⎩ ⇔ 2 2 2m 3 m < 2 ⎧ ≠⎪⎨⎪⎩ (4)⇔ 6m 3 m < 2 ⎧ ≠ ±⎪⎨⎪⎩ Để M là trung điểm của PQ thì xM = P Q x + x 2 m = –m m = 0 ⇒ ⇒ (m = 0 thoả (4) nên nhận) Nhận xét: pt (2) chắc chắn có nghiệm x = m. 3) I là trung điểm của PQ nên: ta có xI = –m và 2yI = yP + yQ = 2 ( )4 2m - 4m + 3 ⇒ yI = – 4 + 3 4Ix 2Ix Vậy quĩ tích của I là 1 phần đồ thị của hàm số y = x4 – 4x2 + 3 với x < 2 và x ≠ ± 6 3 PHẦN II: Khảo sát hàm số với a = – 1 2 4) Khảo sát và vẽ đồ thị ( )C khi a = – 1 2 : độc giả tự làm. a = – 1 2 , hàm số thành y = x4 – 4x3 + 3; y / = 4x3 – 12x2 5) Tìm a, b để phương trình hoành độ giao điểm của y = x4 – 4x3 + 3 ( )C và đường thẳng: y = ax + b ( )1D có 2 nghiệm kép phân biệt α , β . Phương trình hoành độ giao điểm của ( )C và ( )1D là x4 – 4x3 + 3 = ax + b x⇔ 4 – 4x3 – ax + 3 – b = 0 Do đó, yêu cầu bài toán x⇔ 4 – 4x3 – ax + 3 – b = ( )2x - α ( )2x - β ∀x mà ( )2x-α ( )2x-β = x4 –2 ( )+ α β x3 + ( )2 2+ +4α β αβ x2 –2 x+αβ ( )α +β 2α 2β Do đó, yêu cầu bài toán ⇔ ( ) ( ) ⎧− α + β⎪α β αβ = α +β + α⎪⎨ αβ α β⎪⎪α β⎩ 2 2 2 2 2 2 = -4 + + 4 = 0 ( ) 2 2 + = a = 3 - b β ⇔ α β⎧⎪ αβ αβ⎪⎨⎪⎪⎩ + = 2 4 + 2 = 0( =-2) a = -8 3 - b = 4 a = – 8 và b = –1. ⇒ α β αβ ⇒ α β + β α + với + = 2 và =-2 ( = 1- 3 và =1 3 )hay( = 1- 3 và =1 3 ) Khi đó, thế = ±x 1 3 và y = – 8 x – 1, ta có 2 điểm chung là A ( )1 - 3, -9 + 8 3 và B ( )1 + 3, -9 - 8 3 6) Gọi x là hoành độ tiếp điểm của tiếp tuyến có hệ số góc bằng –8, ta có: 4x3 – 12x2 = – 8 4x⇔ 3 – 12x2 + 8 = 0 ⇔ x3 – 3x2 + 2 = 0 ⇔ ( )x - 1 ( )2x - 2x -2 = 0 ⇔ x = 1 hay x = 1± 3 y ( )1 = 0, y (1 - 3 ) = – 9 + 8 3 , y ( )1 + 3 = –9 – 8 3 Tiếp tuyến tại ( là y = – 8)1,0 ( )x - 1 hay y = –8x + 8 Theo câu 5, 2 tiếp điểm tại A và B có cùng 1 tiếp tuyến là y = – 8x – 1 Tóm lại có 2 tiếp tuyến thỏa ycbt là : y = –8x + 8 hay y = – 8x – 1. Các tiếp điểm là : ( , A)1,0 ( )1 - 3, -9 + 8 3 và B ( )1 + 3, -9 - 8 3 PHẦN III: 7) Số điểm cực trị của hàm số là nghiệm đơn hay nghiệm bội ba của đa thức: f′ ( )x = 4x3 + 24ax2 – 8 ( )x 1 + 2a = 4x ( )2x + 6ax - 2 1 + 2a⎡ ⎤⎣ ⎦ Tam thức g(x) = x2 + 6ax – 2(1 + 2a) có : i) Khi a ≠ 1 2 − , g(x) = 0 có 2 nghiệm phân biệt khác 0, suy ra có 3 nghiệm đơn phân biệt ( )f x = 0′ ⇒ có 3 cực trị. ii) Khi a = 1 2 − thì g(x) = 0 có 1 nghiệm bằng 0 và 1 nghiệm khác 0 có 1 nghiệm kép x = 0 và 1 nghiệm đơn ⇒ ( )f x = 0′ ⇒ có 1 cực trị Điều kiện cần để hàm chỉ có 1 cực trị là a = 1 2 − . Khi a = 1 2 − , hàm đạt cực tiểu tại x = 3. (Khi a = 1 2 − , g(x) = 0 ⇔ x2 = 0 x = 3 ∨ với x = 0 là nghiệm kép và x = 3 là nghiệm đơn). Vậy khi a = 1 2 − thì hàm chỉ có cực tiểu và không có cực đại. 8) Khi a ≠ 1 2 − , hàm số có 3 cực trị. Gọi x1, x2, x3 là hoành độ 3 điểm cực trị khi a ≠ 1 2 − , ta có : x1, x2, x3 là nghiệm của f′ ( )x = 0. Chia đa thức f ( )x cho 1 4 f′ ( )x ta có: f ( )x = 1 4 f′ ( )x [ ]x + 2a – 2 ( )26a + 2a + 1 x2 + 4 ( )2a + 2a x + 3 Vậy 3 điểm cực trị thoả phương trình: y = –2 ( )26a + 2a + 1 x2 + 4 ( )2a + 2a x + 3 vì = = ff′ ( )1x f′ ( )2x ′ ( )3x = 0 Vậy, phương trình Parabol đi qua 3 điểm cực trị là : y = –2 ( )26a + 2a + 1 x2 + 4 ( )2a + 2a x + 3 9) y′ = 4x3 + 24ax2 – 8 ( )x 1 + 2a y′′ = 12x2 + 48ax – 8 ( ) 1 + 2a y′′ = 0 3x⇔ 2 + 12ax – 2 ( )1 + 2a = 0 (9) Vì (9) có = 36a′Δ 2 + 6 ( ) 1 + 2a nên đồ thị luôn có 2 điểm uốn I, J có hoành độ là nghiệm của phương trình (9) Hướng dẫn: giả sử chia f ( )x cho 1 4 f′′ ( )x (vế trái của (9)) Ta có : f ( )x = 1 4 f′′ ( )x ( )h x⎡⎣ ⎤⎦ + Ax + B thì phương trình đường thẳng qua 2 điểm uốn là: y = Ax + B. ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM HỌC 2002 KHỐI B: (ĐH: 2,0đ; CĐ: 2,5đ): Cho hàm số : y = mx4 + (m2 – 9)x2 + 10 (1) (m là tham số) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m=1 . 2. Tìm m để hàm số (1) có ba điểm cực trị . BÀI GIẢI 1) m = 1, y = x4 – 8x2 + 10 (C). MXĐ : D = R y’ = 4x3 – 16x; y’ = 0 ⇔ x = 0 ∨ x = ±2 y” = 12x2 – 16; y” = 0 ⇔ x = 3 2± x −∞ − 3 2 3 2 +∞ y" + 0 − 0 + (C) lõm lồi lõm Điểm uốn I1 ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ − 9 10, 3 2 , I2 ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ 9 10, 3 2 x −∞ −2 0 2 +∞ y' − 0 + 0 − 0 + y +∞ 10 +∞ −6 CĐ −6 CT CT 2) y = mx4 + (m2 – 9)x2 + 10 y’ = 4mx3 + 2(m2 – 9)x y’ = 0 ⇔ ⎢⎢⎣ ⎡ =−+ = (*)0)9m(mx2 0x 22 y có 3 cực trị ⇔ (*) có 2 nghiệm phân biệt ≠ 0 −6 x y 10 −2 2 O ⇔ m(m2 – 9) < 0 ⇔ m < −3 ∨ 0 < m < 3 ĐỀ DỰ BỊ 1 - NĂM 2002 – KHỐI A (2,0 điểm) Cho hàm số: y = x4 – mx2 + m – 1 (1) (m là tham số) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 8. 2) Xác định m sao cho đồ thị của hàm số (1) cắt trục hoành tại bốn điểm phân biệt. BÀI GIẢI 1) Khi m = 8 ⇒ y = x4 – 8x2 + 7 • MXĐ : D = R. •y' = 4x3 – 16x = 4x(x2 – 4) y' = 0 ⇔ 4x(x2 – 4) = 0 ⇔ x = 0 hay x = ±2 • y'' = 12x2 – 16; y'' = 0 ⇔ 12x2 – 16 = 0 ⇔ x2 = =16 4 12 3 ⇔ x = ± 2 3 3 x −∞ −2 0 2 +∞ y' − 0 + 0 − 0 + y +∞ 7 +∞ - 9 −9 x −∞ 2 3 3 − 2 3 3 +∞ y'' + 0 − 0 + y +∞ lõm -17/9 lồi - 17/9 lõm +∞ O 2−2 7 −9 x y 2) Xác định m để đồ thị hàm số cắt trục hoành tại 4 điểm phân biệt. • Phương trình hoành độ giao điểm : x4 – mx2 + m – 1 = 0 (1) Đặt t = x2 ≥ 0, t2 – mt + m – 1 = 0 (2) Phương trình (1) có 4 nghiệm phân biệt . ⇔ Phương trình (2) có 2 nghiệm dương phân biệt. ⇔ ⇔ 2 2 1 2 1 2 m 4(m 1) (m 2) S t t m 0 P t t m 1 0 0 m 1 m 2 >⎧⎨ ≠⎩ ĐẠI HỌC, CAO ĐẲNG - DỰ BỊ 1 - NĂM 2004 - KHỐI A (2 điểm) Cho hàm số : y = x4 – 2m2x2 + 1 (1) với m là tham số 1) Khảo sát hàm số (1) khi m = 1. 2) Tìm m để đồ thị hàm số (1) có ba điểm cực trị là ba đỉnh của một tam giác vuông cân. BÀI GIẢI 1) Khi m = 1 thì y = x4 – 2x2 + 1 MXĐ : D = R y’ = 4x3 – 4x = 4x(x2 - 1) , y’ = 0 ⇔ x = 0 hay x = ± 1 y’’=12x2 – 4 , y’’ = 0 ⇔ x = 3 3 ± y(0) = 1 ; y (± 1) = 0 ; y( 3 3 ± ) = 4 9 x −∞ –1 0 1 +∞ y’ – 0 + 0 – 0 + y +∞ +∞ 0000000000000000000000000000000000000000000000000000000000000000000000000000000000 x −∞ 3 3 − 3 3 +∞ y’’ + 0 – 0 + y +∞ lõm 4 9 lồi 4 9 lõm +∞ y 1 -1 0 x1 2) y’ = 4x3 – 4 m x; y’ = 0 ⇔ x = 0 hay x = 2 m± . Hàm có 3 cực trị ⇔ m ≠ 0. Gọi A (0;1) ; B, C là 2 điểm cực trị có hoành độ là m± suy ra tung độ của B và C là 1 – m4 ⇒ 4AB ( m ; m )= − −uuur và 4AC ( m ; m )= −uuur .Vì y là hàm chẵn nên AC = AB. Do đó, yêu cầu bt ⇔ m ≠ 0 và chúng tôi 0 → → = ⇔ m ≠ 0 và – m2 + m8 = 0 ⇔ m6 = 1 ⇔ m = 1± DỰ BỊ 1 KHỐI B NĂM 2005: (2 điểm). 1. Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số 4 26 5y x x= − + 2. Tìm m để phương trình sau có 4 nghiệm phân biệt : 4 2 26 logx x m 0− − = . 1/ Khảo sát 4 2y x 6x 5= − + MXĐ: D= R ( )= − = − = ⇔ = = ±/ 3 2 /y 4x 12x 4x x 3 ,y 0 x 0 hay x 3 = − = ⇔ = ±/ / 2 / /y 12x 12,y 0 x 1 BBT x −∞ 3− -1 0 1 3 +∞ y ' - 0 + + 0 - - 0 + y '' + + 0 - - 0 + + y +∞ 5 +∞ -4 0 0 -4 Đồ thị 2/ Tìm m để pt 4 2 2x 6x log m 0− − = có 4 nghiệm phân biệt. 4 2 4 2 2 2x 6x log m 0 x 6x 5 log m 5− − = ⇔ − + = + Đặt 2k log m 5= + Ycbt đường thẳng y= k cắt (C) tại 4 điểm phân biệt ⇔ 4 k 5⇔ − < < ⇔ − < + <24 log m 5 5 ⇔ − < <29 log m 0 ⇔ < <9 1 m 1 2 BÀI TẬP ĐỀ NGHỊ : I . ( ĐH KT QUỐC DÂN HÀ NỘI, NĂM 1 9 9 7 ) Cho hàm số : y = (1) − 2 2(2 x ) 1) Khảo sát và vẽ đồ thị (C) của hàm số (1). 2) Viết phương trình tiếp tuyến với (C) biết tiếp tuyến đi qua điểm A (0; 4 ). II . ( ĐH QG TP HCM ( đợt 3 ) , NĂM 1 9 9 8) Cho hàm số : y = m2 x4 – 2 x2 + m (1) với m là tham số khác không. 1) Khảo sát và vẽ đồ thị của hàm số (1) khi m = 1. 2) Khảo sát sự biến thiên của hàm số (1) khi m ≠ 0. Từ đó xác định m sao cho m2 x4 – 2 x2 + m ≥ 0 với mọi số thực x. III . ( ĐH Y DƯỢC TP HCM , NĂM 1 9 9 8) Cho hàm số : y = –x4 + 2 (m + 1) x2 – 2m –1 (1) với m là tham số 1) Tìm m để đồ thị hàm số (1) cắt trục hoành tại 4 điểm có hoành độ tạo thành 1 cấp số cộng. 2) Gọi (C ) là đồ thị của hàm số (1) khi m = 0. Tìm tất cả các điểm trên trục tung sao cho từ đó có thể kẻ được 3 tiếp tuyến với ( C ). ThS. PHẠM HỒNG DANH TT luyện thi chất lượng cao Vĩnh Viễn