Top 10 # Giải Tích 1 Hàm Số Xem Nhiều Nhất, Mới Nhất 1/2023 # Top Trend | Caffebenevietnam.com

Giáo Án Môn Đại Số &Amp; Giải Tích 11 Tiết 1: Hàm Số Lượng Giác

Tiết dạy: 01 Bài 1: HÀM SỐ LƯỢNG GIÁC

– Nắm được định nghĩa hàm số sin và côsin, từ đó dẫn tới định nghĩa hàm số tang và hàm số côtang như là những hàm số xác định bởi công thức.

– Nắm được tính tuần hoàn và chu kì của các HSLG sin, côsin, tang, côtang.

– Biết tập xác định, tập giá trị của 4 HSLG đó, sự biến thiên và biết cách vẽ đồ thị của chúng.

– Diễn tả được tính tuần hoàn, chu kì và sự biến thiên của các HSLG.

– Biểu diễn được đồ thị của các HSLG.

– Xác định được mối quan hệ giữa các hàm số y = sinx và y = cosx, y = tanx và y = cotx.

Ngày soạn: 15/08/2008 Chương I: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC Tiết dạy: 01 Bàøi 1: HÀM SỐ LƯỢNG GIÁC I. MỤC TIÊU: Kiến thức: Nắm được định nghĩa hàm số sin và côsin, từ đó dẫn tới định nghĩa hàm số tang và hàm số côtang như là những hàm số xác định bởi công thức. Nắm được tính tuần hoàn và chu kì của các HSLG sin, côsin, tang, côtang. Biết tập xác định, tập giá trị của 4 HSLG đó, sự biến thiên và biết cách vẽ đồ thị của chúng. Kĩ năng: Diễn tả được tính tuần hoàn, chu kì và sự biến thiên của các HSLG. Biểu diễn được đồ thị của các HSLG. Xác định được mối quan hệ giữa các hàm số y = sinx và y = cosx, y = tanx và y = cotx. Thái độ: Biết phân biệt rõ các khái niệm cơ bản và vận dụng từng trường hợp cụ thể. Tư duy các vấn đề của toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập kiến thức đã học về lượng giác ở lớp 10. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: H. Đ. 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung Hoạt động 1: Ôn tập một số kiến thức đã học về lượng giác 15' H1. Cho HS điền vào bảng giá trị lượng giác của các cung đặc biệt. H2. Trên đtròn lượng giác, hãy xác định các điểm M mà sđ = x (rad) ? · Các nhóm thực hiện yêu cầu. Hoạt động 2: Tìm hiểu khái niệm hàm số sin và côsin 18' · Dựa vào một số giá trị lượng giác đã tìm ở trên nêu định nghĩa các hàm số sin và hàm số côsin. H. Nhận xét hoành độ, tung độ của điểm M ? Đ. Với mọi điểm M trên đường tròn lượng giác, hoành độ và tung độ của M đều thuộc đoạn [-1; 1] I. Định nghĩa 1. Hàm số sin và côsin a) Hàm số sin Qui tắc đặt tương ứng mỗi số thực x với số thực sinx sin: R ® R x sinx đgl hàm số sin, kí hiệu y = sinx Tập xác định của hàm số sin là R. b) Hàm số côsin Qui tắc đặt tương ứng mỗi số thực x với số thực cosx cos: R ® R x cosx đgl hàm số côsin, kí hiệu y = cosx Tập xác định của hàm số cos là R. Chú ý:Với mọi x Ỵ R, ta đều có: -1 £ sinx £ 1, -1 £ cosx £ 1 . Hoạt động 3: Củng cố 10' · Nhấn mạnh: - Đối số x trong các hàm số sin và côsin được tính bằng radian. · Câu hỏi: 1) Tìm một vài giá trị x để sinx (hoặc cosx) bằng ; ; 2 2) Tìm một vài giá trị x để tại đó giá trị của sin và cos bằng nhau (đối nhau) ? 1) sinx = Þ x =; sinx = Þ x = ; sinx = 2 Þ không có 2) sinx = cosx Þ x = ; 4. BÀI TẬP VỀ NHÀ: Bài 2 SGK. Đọc tiếp bài "Hàm số lượng giác". IV. RÚT KINH NGHIỆM, BỔ SUNG:

Học Viện Công Nghệ Bưu Chính Viễn Thông: Giải Tích Hàm Một Biến Số (Giải Tích 1)

Thông tin tài liệu

Title: Giải tích hàm một biến số (Giải tích 1) Authors: Phạm, Ngọc Anh

Publisher: Học viện công nghệ Bưu chính Viễn thông URI: http://dlib.ptit.edu.vn/HVCNBCVT/1307 Appears in Collections:Khoa cơ bản

ABSTRACTS VIEWS

122

VIEWS & DOWNLOAD

14

Files in This Item:

Xin lỗi! Thư viện chưa thể cung cấp tài liệu bạn yêu cầu vì bạn không thuộc đối tượng phục vụ tài liệu số dạng toàn văn. Bạn có thể tham khảo bản in của tài liệu này tại Phòng đọc Thư viện (Tầng 1 – Nhà A3 hoặc gửi email yêu cầu về địa chỉ: ilc@ptit.edu.vn)

Giải Tích Hàm Là Gì ?

(Trích từ trang http://vi.wikipedia.org/wiki/Gi%E1%BA%A3i_t%C3%ADch_h%C3%A0m)

Giải tích hàm là một ngành của giải tích toán học nghiên cứu các không gian vector được trang bị thêm một cấu trúc tôpô phù hợp và các toán tử tuyến tính liên tục giữa chúng.

Chính việc nghiên cứu phổ của các toán tử đã dẫn đến việc nghiên cứu các đại số topo, một đối tượng khác của giải tích hàm. Các kết quả và phương pháp của nó thâm nhập vào nhiều ngành khác nhau như lý thuyết phương trình vi phân thường, phương trình đạo hàm riêng, lý thuyết các bài toán cực trị và biến phân, phương pháp tính, lý thuyết biểu diễn, …

Ra đời vào những năm đầu của thế kỷ 20, bắt nguồn từ các công trình về phương trình tích phân của Hilbert, Fredholm, …, đến nay giải tích hàm tích lũy được những thành tựu quan trọng và nó đã trở thành chuẩn mực trong việc nghiên cứu và trình bày các kiến thức toán học.

Các khái niệm cơ bản

Các toán tử tuyến tính liên tục giữa các không gian (còn gọi là đồng cấu). 2 trường hợp đặc biệt quan trọng là các phiếm hàm tuyến tính liên tục (dạng tuyến tính liên tục) và các tự đồng cấu.

Giống như với các không gian, ta có các đại số tương ứng. Các đại số này dựa trên mô hình của đại số các tự đồng cấu, vì thế nên lý thuyết tổng quát về các đại số còn được gọi là lý thuyết đại số toán tử. Chú ý là khác với các không gian, các đại số thường chỉ xét trên trường số phức. Điều này là tự nhiên vì các tự đồng cấu chỉ có thể nghiên cứu “tốt” khi trường cơ sở là đóng đại số. Ngoài ra, dựa trên các tự đồng cấu tự liên hợp, người ta định nghĩa một lớp đại số định chuẩn rất quan trọng là các C*-đại số, không có sự tương ứng với các không gian!

Vào năm 1932, Banach xuất bản cuốn sách “Lý thuyết toán tử”, nội dung bao gồm những kết quả được biết vào thời đó về lý thuyết các không gian định chuẩn, đặc biệt là các định lý của Banach đã công bố trong các bài báo từ năm 1922-1929… Cuốn sách này làm cho Giải tích hàm có một tác động như cuốn sách của Van der Waerden về đại số, được xuất bản hai năm trước đó. Các nhà giải tích trên thế giới bắt đầu nhận thức được sức mạnh của phương pháp mới và áp dụng chúng vào các lĩnh vực khác nhau; các ký hiệu và thuật ngữ của Banach được chấp nhận rộng rãi, không gian định chuẩn đầy đủ được gọi là không gian Banach rồi chẳng bao lâu, lý thuyết này trở thành một phần bắt buộc trong chương trình đại học… (Theo J. Dieudonné (1981))

Giải Bài Tập Trang 17, 18 Sgk Giải Tích 11: Hàm Số Lượng Giác

Giải bài tập trang 17, 18 SGK Giải tích 11: Hàm số lượng giác Giải bài tập trang 17, 18 SGK Giải tích 11: Hàm số lượng giác. Đây là tài liệu tham khảo hay được chúng tôi sưu tầm và chọn lọc để gửi tới quý thầy cô cùng các bạn học sinh. Hi vọng rằng với tài liệu này việc dạy và học môn Toán lớp 11 sẽ trở nên thuận tiện hơn. Mời các bạn tham khảo. Đề thi giữa học kì 1 môn Toán lớp 11 trường THPT Giao Thủy, Nam Định năm học 2016 – 2017 Đề kiểm tra 45 phút học kì 1 …

Giải bài tập trang 17, 18 SGK Giải tích 11: Hàm số lượng giác

Giải bài tập trang 17, 18 SGK Giải tích 11: Hàm số lượng giác. Đây là tài liệu tham khảo hay được chúng tôi sưu tầm và chọn lọc để gửi tới quý thầy cô cùng các bạn học sinh. Hi vọng rằng với tài liệu này việc dạy và học môn Toán lớp 11 sẽ trở nên thuận tiện hơn. Mời các bạn tham khảo.

Giải 1, 2, 3, 4, 5, 6 trang 17, 18 SGK Giải tích 11: Hàm số lượng giác

Bài 1: (Trang 17 SGK Giải tích lớp 11) Hãy xác định các giá trị của x trên đoạn [-π; 3π/2] để hàm số y = tanx a) Nhận giá trị bằng 0b) Nhận giá trị bằng 1c) Nhận giá trị dươngd) Nhận giá trị âm.

Hướng dẫn giải bài 1:

a) Trục hoành cắt đoạn đồ thị y = tanx (ứng với x ∈ [-π; 3π/2]) tại ba điểm có hoành độ -π; 0; π. Do đó trên đoạn [-π; 3π/2] chỉ có ba giá trị của x để hàm số y = tanx nhận giá trị bằng 0, đó là x = -π; x = 0; x = π.

b) Đường thẳng y = 1 cắt đoạn đồ thị y = tanx (ứng với x ∈ [-π; 3π/2]) tại ba điểm có hoành độ π/4; π/4; ±π. Do đó trên đoạn [-π; 3π/2] chỉ có ba giá trị của x để hàm số y = tanx nhận giá trị bằng 1, đó là x = -3π/4; x = π/4; x = 5π/4

c) Phần phía trên trục hoành của đoạn đồ thị y = tanx (ứng với x ∈ [-π; 3π/2]) gồm các điểm của đồ thị có hoành độ thuộc một trong các khoảng (-π; -π/2); (0; π/2); (π; 3π/2). Vậy trên đoạn [-π; 3π/2], các giá trị của x để hàm số y = tanx nhận giá trị dương là x ∈ (-π; -π/2) ∪ (0; π/2) ∪ (π; 3π/2).

d) Phần phía dưới trục hoành của đoạn đồ thị y = tanx (ứng với x ∈ [-π; 3π/2]) gồm các điểm của đồ thị có hoành độ thuộc một trong các khoảng (-π/2; 0); (π/2; π). Vậy trên đoạn [-π; 3π/2], các giá trị của x để hàm số y = tanx nhận giá trị dương là x ∈ (-π/2; 0) ∪ (π/2; π)

Bài 2: (Trang 17 SGK Giải tích lớp 11)

Tìm tập xác định của các hàm số:

Hướng dẫn giải bài 2:

a) Hàm số đã cho không xác định khi và chỉ khi sinx = 0. Từ đồ thị của hàm số y = sinx suy ra các giá trị này của x là x = kπ. Vậy hàm số đã cho có tập xác định là R{kπ, (k ∈ Z)}.

b) Vì -1 ≤ cosx ≤ 1, ∀x nên hàm số đã cho không xác định khi và chỉ khi cosx = 1. Từ đồ thị của hàm số y = cosx suy ra các giá trị này của x là x = k2π. Vậy hàm số đã cho có tập xác định là R{k2π, (k ∈ Z)}.

c) Hàm số đã cho không xác định khi và chỉ khi x – π/3 = π/2 + kπ ⇔ x = 5π/6 + kπ (k ∈ Z) . Hàm số đã cho có tập xác định là R{5π/6 + kπ, (k ∈ Z)}

d) Hàm số đã cho không xác định khi và chỉ khi x + π/6 = kπ ⇔ x = -π/6 + kπ, (k ∈ Z). Hàm số đã cho có tập xác định là R{-π/6 + kπ, (k ∈ Z)}.

Do tính chất trên, để vẽ đồ thị của hàm số y = sin2x, chỉ cần vẽ đồ thị của hàm số này trên một đoạn có độ dài π (đoạn [-π/2; π/2] chẳng hạn, rồi lại tịnh tiến dọc theo trục hoành sang bên phải và bên trái từng đoạn có độ dài π.

Với mỗi x 0 ∈ [-π/2; π/2] thì x = 2x 0 ∈ [-π; π], điểm M(x; y = sinx) thuộc đoạn đồ thị (C) của hàm số y = sinx, (x ∈ [-π; π]) và điểm M'(x 0; y 0 = sin2x 0) thuộc đoạn đồ thị (C’) của hàm số y = sin2x, (x ∈[-π/2; π/2]) (h.5).

Bài 5: (Trang 18 SGK Giải tích lớp 11) Dựa vào đồ thị hàm số y = cosx, tìm các giá trị của x để cosx = 1/2. Hướng dẫn giải bài 5:

Cosx = 1/2 là phương trình xác định hoành độ giao điểm của đường thẳng y = 1/2 và đồ thị y = cosx.

Từ đồ thị đã biết của hàm số y = cosx, ta suy ra x = ±π/3 + k2π, (k ∈Z), (Các em học sinh nên chú ý tìm giao điểm của đường thẳng với đồ thị trong đoạn [-π; π] và thấy ngay rằng trong đoạn này chỉ có giao điểm ứng với x = ±π/3 rồi sử dụng tính tuần hoàn để suy ra tất cả các giá trị của x là x = ±π/3 + k2π, (k ∈Z)).

Bài 6: (Trang 18 SGK Giải tích lớp 11) Dựa vào đồ thị hàm số y = sinx, tìm các khoảng giá trị của x để hàm số đó nhận giá trị dương. Hướng dẫn giải bài 6:

Nhìn đồ thị y = sinx ta thấy trong đoạn [-π; π] các điểm nằm phía trên trục hoành của đồ thị y = sinx là các điểm có hoành độ thuộc khoảng (0; π). Từ đó, tất cả các khoảng giá trị của x để hàm đó nhận giá trị dương là (0 + k2π; π + k2π) hay (k2π; π + k2π) trong đó k là một số nguyên tùy ý.

Cho thuê phòng trọ Cho thuê phòng trọ hà nội Cho thuê phòng quận 7 Cho thuê nhà trọ phòng trọ giá rẻ Cho thuê nhà trọ phòng trọ giá rẻ Cho thuê nhà trọ phòng trọ giá rẻ Cho thuê nhà trọ phòng trọ giá rẻ Cho thuê nhà trọ phòng trọ giá rẻ Cho thuê nhà trọ phòng trọ giá rẻ Cho thuê nhà trọ phòng trọ giá rẻ Cho thuê nhà trọ phòng trọ giá rẻ Cho thuê nhà trọ phòng trọ giá rẻ