Top 9 # Giải Toán 8 Bài 7 Xem Nhiều Nhất, Mới Nhất 4/2023 # Top Trend | Caffebenevietnam.com

Giải Bài Tập Toán Lớp 7 Tập 2 Trang 100 Bài 7, 8 Giải Sbt Toán Lớp 7

Giải sách bài tập Toán 7 trang 20 Giải bài tập sách giáo khoa Toán 7 trang 72

Giải vở bài tập Toán 7 trang 100 tập 2 câu 7, 8

a) Vẽ đồ thị của hàm số trên;

b) Bằng đồ thị hãy tìm các giá trị f(-2), f(1), f(2) (và kiểm tra lại bằng cách tính).

Hãy sưu tầm một biểu đồ hình quạt (trong sách, báo hoặc tại một cuộc triển lãm) rồi nêu ý nghĩa của biểu đồ đó

Giải sách bài tập toán lớp 7 tập 2 trang 100 câu 7, 8

a) Vẽ hệ trục tọa độ Oxy

Với x= 2 ta được y = -3; điểm A(2; -3) thuộc đồ thị hàm số y = -1,5x.

Vậy đường thẳng OA là đồ thị của hàm số đã cho.

b)

+) Dựa vào đồ thị ta có:

f(-2) = 3; f(1) = -1,5 và f(2)= -3

+) Kiểm tra lại bằng phép tính:

f(-2) = – 1,5. (-2)= 3.

f(1) = -1,5.1 = -1,5

f(2) = -1,5. 2 = – 3.

Giải sách bài tập Toán 7 trang 100 tập 2 câu 8

Học sinh tự tìm.

+ Dành thời gian hướng dẫn con cách tham khảo sách như thế nào chứ không phải mua sách về và để con tự đọc. Nếu để con tự học với sách tham khảo rất dễ phản tác dụng.

+ Sách tham khảo rất đa dạng, có loại chỉ gợi ý, có loại giải chi tiết, có sách kết hợp cả hai. Dù là sách gợi ý hay sách giải thì mỗi loại đều có giá trị riêng. Phụ huynh có vai trò giám sát định hướng cho con trong trường hợp nào thì dùng bài gợi ý, trường hợp nào thì đọc bài giải.

Ví dụ: Trước khi cho con đọc bài văn mẫu thì nên để con đọc bài gợi ý, tự làm bài; sau đó đọc văn mẫu để bổ sung thêm những ý thiếu hụt và học cách diễn đạt, cách sử dụng câu, từ.

+ Trong môn Văn nếu quá phụ thuộc vào các cuốn giải văn mẫu, đọc để thuộc lòng và vận dụng máy móc vào các bài tập làm văn thì rất nguy hiểm.

Phụ huynh chỉ nên mua những cuốn sách gợi ý cách làm bài chứ không nên mua sách văn mẫu, vì nó dễ khiến học sinh bắt chước, làm triệt tiêu đi tư duy sáng tạo và mất dần cảm xúc. Chỉ nên cho học sinh đọc các bài văn mẫu để học hỏi chứ tuyệt đối không khuyến khích con sử dụng cho bài văn của mình.

+ Trong môn Toán nếu con có lực học khá, giỏi thì nên mua sách giải sẵn các bài toán từ sách giáo khoa hoặc toán nâng cao để con tự đọc, tìm hiểu. Sau đó nói con trình bày lại. Quan trọng nhất là phải hiểu chứ không phải thuộc.

Nếu học sinh trung bình, yếu thì phải có người giảng giải, kèm cặp thêm. Những sách trình bày nhiều cách giải cho một bài toán thì chỉ phù hợp với học sinh khá giỏi.

Tags: bài tập toán lớp 7 học kỳ 2, vở bài tập toán lớp 7 tập 2, toán lớp 7 nâng cao, giải toán lớp 7, bài tập toán lớp 7, sách toán lớp 7, học toán lớp 7 miễn phí, giải toán 7 trang 100

Giải Toán 8 Vnen Bài 7: Luyện Tập

D. Hoạt động vận dụng

1 (Trang 93 Toán 8 VNEN Tập 1)

a) Em hãy chứng tỏ phát biểu sau đây là sai:

“Nếu một hình thang có hai cạnh bên bằng nhau thì đó là một hình thang cân”.

b) Cho tam giác ABC có ba góc nhọn. Gọi O là trung điểm của BC. Gọi D là điểm đối xứng của A qua BC; E là điểm đối xứng của A qua O.

Chứng minh rằng BCED là hình thang cân.

Lời giải:

a) Hình thang có hai cạnh bên bằng nhau chưa chắc là hình thang cân.

Hình thang cân khi và chỉ khi:

– Hình thang có hai góc kề đáy bằng nhau.

– Hình thang có hai đường chéo bằng nhau.

b)

Gọi giao điểm của AD với BC là I.

Ta có:

A đối xứng với D qua BC ⇒ AD ⊥ BC tại I và I là trung điểm của AD.

E đối xứng với A qua O ⇒ O là trung điểm AE.

Xét tam giác ADE, có: I là trung điểm của AD và O là trung điểm AE (cmt)

⇒ IO là đường trung bình của tam giác ADE

⇒ IO

Dễ dàng chứng minh được ⊥OAB = ⊥OEC (c.g.c) ⇒

Có AD ⊥ BI tại trung điểm I của AD ⇒ Tam giác BAD cân tại B ⇒

Từ (1) và (2) ⇒ BCED là hình thang cân.

2 (Trang 93 Toán 8 VNEN Tập 1)

a) Hình thang vuông có thể là hình thang cân được không? Vì sao?

b) Hình thang cân thì có thể là hình thang vuông được không? Vì sao?

Lời giải:

a) Hình thang vuông là hình thang cân khi và chỉ khi nó là hình chữ nhật.

b) Hình thang cân là hình thang vuông khi và chỉ khi nó là hình chữ nhật.

E. Hoạt động tìm tòi mở rộng

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k7: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải bài tập Toán 8 VNEN của chúng tôi được biên soạn bám sát sách Hướng dẫn học Toán 8 Tập 1 & Tập 2 chương trình mới.

Giải Sbt Toán 8 Bài 7: Hình Bình Hành

Giải SBT Toán 8 Bài 7: Hình bình hành

Bài 73 trang 89 SBT Toán 8 Tập 1: Các tứ giác ABCD, EFGH & hình vẽ bên dưới có phải là hình bình hành hay không?

Lời giải:

Tứ giác ABCD là hình bình hành vì có cạnh đối AD

Tứ giác EFGH là hình bình hành vì có các cạnh đối bằng nhau.

EH = FG là đường chéo hình chữ nhật có cạnh 1 ô vuông và cạnh 3 ô vuông

Bài 74 trang 89 SBT Toán 8 Tập 1: Cho hình bình hành ABCD. Gọi E là trung điểm của AB, F là trung điểm của CD. Chứng minh rằng: DE = BF

Lời giải:

Ta có: AB = CD (tính chất hình bình hành)

EB = 1/2 AB (gt)

FD = 1/2 CD (gt)

Suy ra: EB = FD (1)

Mà AB

⇒ BE

Từ (1) và (2) suy ra tứ giác BEDF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ DE = BF (tính chất hình bình hành)

Bài 75 trang 89 SBT Toán 8 Tập 1: Cho hình bình hành ABCD. Tia phân giác của góc A cắt CD ở M. Tia phân giác của góc C cắt AB ở N. Chứng minh rằng AMCN là hình bình hành.

Lời giải:

Ta có: ∠A = ∠C (tính chất hình bình hành)

AB

Hay AN

AM

Từ (1) và (2) suy ra tứ giác AMCN là hình bình hành.

Bài 76 trang 89 SBT Toán 8 Tập 1: Hình bên cho ABCD là hình bình hành. Chứng minh rằng AECF là hình bình hành.

Lời giải:

Gọi O là’giao điểm của AC và BD, ta có:

OA = OC (tính chất hình bình hành) (1)

Xét hai tam giác vuông AEO và CFO, ta có:

∠(AEO) = ∠(CFO) = 90 o

OA = OC (chứng minh trên)

∠(AOE) = ∠(COF) (đối đỉnh)

Do đó ΔAEO = ΔCFO (cạnh huyền, góc nhọn)

⇒ OE = OF’ (2)

Từ (1) và (2) suy ra tứ giác AECF là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).

Bài 77 trang 89 SBT Toán 8 Tập 1: Tứ giác ABCD có E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì? Vì sao?

Lời giải:

Nối đường chéo AC.

Trong ΔABC ta có:

E là trung điểm của AB (gt)

F là trung điểm của BC (gt)

Nên EF là đường trung bình của ΔABC

⇒EF//AC và EF = 1/2 AC

(tính chất đường trung hình tam giác) (1)

Trong ΔADC ta có:

H là trung điểm của AD (gt)

G là trung điểm của DC (gt)

Nên HG là đường trung bình của ΔADC

⇒ HG

Từ (1) và (2) suy ra: EF

Vậy tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).

Bài 78 trang 89 SBT Toán 8 Tập 1: Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB, Đường chéo BD cắt AI, UK theo thứ tự ở E, F. Chứng minh rằng DE = EF = FB

Lời giải:

Ta có: AB = CD (tính chất hình bình hành)

AK = 1/2 AB (gt)

CI = 1/2 CD (gt)

Suy ra: AK = CI (1)

Mặt khác: AB

⇒ AK

Từ (1) và (2) suy ra tứ giác AKCI là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).

⇒ AI

Trong ΔABE, ta có:

K là trung điểm của AB (gt)

AI

Trong ΔDCF, ta có:

I là trung điểm của DC (gt)

AI

Suy ra: DE = EF = FB

Bài 79 trang 89 SBT Toán 8 Tập 1: Tính các góc của hình bình hành ABCD biết:

Lời giải:

a. Tứ giác ABCD là hình bình hành.

⇒ ∠C = ∠A = 110 o (tính chất hình bình hành)

∠A + ∠B = 180 o (2 góc trong cùng phía bù nhau)

∠D = ∠B = 70 o (tính chất hình bình hành)

b. Tứ giác ABCD là hình bình hành.

⇒∠A + ∠B = 180 o (2 góc trong cùng phía bù nhau)

∠C = ∠A = 100 o (tính chất hình bình hành)

∠D = ∠B = 80 o (tính chất hình bình hành)

Lời giải:

* Tứ giác ABCD là hình bình hành vì AB

* Tứ giác IKMN là hình bình hành vì có ∠I = ∠M = 70 o và ∠K = ∠N = 110 o

Bài 81 trang 90 SBT Toán 8 Tập 1: Chu vi hình bình hành ABCD bằng l0cm, chu vi tam giác ABD bằng 9cm. Tính độ dài BD.

Lời giải:

Chu vì hình bình hành ABCD bằng 10cm nên (AB + AD).2 = 10(cm)

⇒ AB + AD = 10 : 2 = 5(cm)

Chu vi của ΔABD bằng:

AB + AD + BD = 9(cm)

⇒ BD = 9 – (AB + AD) = 9 – 5 = 4(cm)

Bài 82 trang 90 SBT Toán 8 Tập 1: Hình bên dưới, cho ABCD là hình bình hành. Chứng minh rằng AE

Lời giải:

Gọi O là giao điểm của AC và BD, ta có:

OA = OC (tính chất hình bình hành)

OB = OD

Xét ΔAEB và ΔCFD, ta có:

AB = CD (tính chất hình bình hành)

∠(ABE) = ∠(CDF) (so le trong)

BE = DF (gt)

Do đó: ΔAEB = ΔCFD (c.g.c) ⇒ BE = DF

Tacó: OB = OE + BE

OD = OF + BF

Suy ra: OE = OF

Suy ra tứ giác AECF là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường) ⇒ AE

Bài 83 trang 90 SBT Toán 8 Tập 1: Cho hình hình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng:

a. EMNF là hình bình hành

b. Các đường thẳng AC, EF, MN đồng quy.

Lời giải:

a. Xét tứ giác AECF, ta có:

AB

Hay AE

AE = 1/2 AB

AB = CD (tính chất hình bình hành)

Suy ra: AE = CF

Tứ giác AECF là hình bình hành (vì có một cặp cạnh đối diện song song và bằng nhau) ⇒ AF

Xét tứ giác BFDE ta có:

AB

BE = 1/2 AB (gt)

DF = 1/2 CD (gt)

AB = CD (tính chất hình bình hành)

Suy ra: BE = DF

Tứ giác BFDE là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau) ⇒ BF//DE hay EM

Từ (1) và (2) suy ra tứ giác EMNF là hình bình hành (theo định nghĩa hình bình hành).

b. Gọi O là giao điểm của AC và EF

Tứ giác AECF là hình bình hành ⇒ OE = OF

Tứ giác EMFN là hình bình hành trên hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Suy ra: MN đi qua trung điểm O của EF.

Vậy AC, EF, MN đồng quy tại O.

Bài 84 trang 90 SBT Toán 8 Tập 1: Hình dưới cho ABCD là hình bình hành. Chứng minh rằng:

a. EGFH là hình bình hành.

b. Các đường thẳng AC, BD, EF, GH đồng quy.

Lời giải:

a. Xét ΔAEH và ΔCFG:

AE = CF (gt)

∠A = ∠C (tính chất hình bình hành)

AE = CF (vì AD = BC và DH = BG)

Do đó: ΔAEH = ΔCFG (c.g.c)

⇒ EH = FG

Xét ΔBEG và ΔDFH, ta có:

DH = BG (gt)

∠B = ∠D (tính chất hình bình hành)

BE = DF (vì AD = CD và AE = CF)

Do đó: ΔBEG = ΔDFH (c.g.c) ⇒ EG = FH

Suy ra: Tứ giác EGFH là hình bình hành (vì có các cặp cạnh đối bằng nhau)

b. Gọi O là giao điểm của AC và EF

Xét tứ giác AECF, ta có: AB

AE = CF (gt)

Suy ra: Tứ giác AECF là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau)

⇒ O là trung điểm của AC và EF

Tứ giác ABCD là hình bình hành có O là trung điểm AC nên O cũng là trung điểm của BD.

Tứ giác EFGH là hình bình hành có O là trung điểm EF nên O cũng là trung điểm của GH.

Vậy AC, BD, EF, GH đồng quy tại O.

Bài 85 trang 90 SBT Toán 8 Tập 1: Cho hình hình hành ABCD. Qua C kẻ đường thẳng xy chỉ có một điểm chung C với hình bình hành. Gọi AA’, BB’, DD’ là các đường vuông góc kẻ từ A, B, D đến đường thẳng xy. Chứng minh rằng AA’ = BB’ + DD’

Lời giải:

Gọi O là giao điểm của hai đường chéo AC và BD.

Kẻ OO’ ⊥ xy

Ta có: BB’ ⊥ xy (gt)

DD’ ⊥ xy (gt)

Suy ra: BB

Tứ giác BB’D’D là hình thang .

OB = OD (t/chất hình bình hành)

Nên O’B’ = O’D’

Do đó OO’ là đường trung bình của hình thang BB’D’D

⇒ OO’ = (BB’ + DD’) / 2 (tính chất đường trung hình hình thang) (1)

AA’ ⊥ xy (gt)

OO’ ⊥ xy (theo cách vẽ)

Suy ra: AA’

Trong ΔACA’ tacó: OA = OC (tính chất hình bình hành)

OO’

⇒ OO’ = 1/2 AA’ (tính chất đường trung bình của tam giác)

⇒ AA’ = 2OO’ (2)

Tử (1) và (2) suy ra: AA’ = BB’ + DD’

Bài 86 trang 90 SBT Toán 8 Tập 1: Cho hình bình hành ABCD và đường thẳng xy không có điểm chung với hình bình hành. Gọi là các đường vuông góc kẻ từ A, B, C, D đến đường thẳng xy.

Tìm mối liên hệ độ dài giữa AA’, BB’, CC’, DD’

Lời giải:

Gọi O là giao điểm của AC và BD

⇒ OA = OC, OB = OD (tính chất hình bình hành)

Kẻ OO’ ⊥ xy

AA’ ⊥ xy (gt)

CC’ ⊥ xy (gt)

Suy ra: AA’

Tứ giác ACC’A’ là hình thang có:

OA = OC (chứng minh trên)

OO’

⇒ OO’ = (AA’ + CC’) / 2 (t/chất đường trung bình của hình thang) (1)

BB’ ⊥ xy

DD’ ⊥ xy (gt)

OO’ ⊥ xy (gt)

Suy ra: BB’// OO’

Tứ giác BDD’B’ là hình thang có:

OB = OD (Chứng minh trên)

OO’

⇒ OO’ = (BB’ + DD’) / 2 (tính chất đường trung bình của hình thang) (2)

a. Tính góc (EAF)

b. Chứng minh rằng tam giác CEF là tam giác đều.

Lời giải:

a. Vì ∠(BAD) + ∠(BAE) + ∠(EAF) + ∠(FAD) = 360 o

⇒ ∠(EAF) = 360 o – (∠(BAD) + ∠(BAE) + ∠(FAD) )

Mà ∠(BAD) = α o (gt)

∠(BAE) = 60 o (ΔBAE đều)

∠(FAD) = 60 o (ΔFAD đều)

b. Ta có:

∠(BAD) + ∠(ADC) = 180 o (hai góc trong cùng phía bù nhau)

Suy ra: ∠(CDF) = ∠(EAF)

Xét ΔAEF và ΔDCF: AF = DF ( vì ΔADF đều)

AE = DC (vì cùng bằng AB)

∠(CDF) = ∠(EAF) (chứng minh trên)

Do đó: ΔAEF = ΔDCF (c.g.c) ⇒ EF = CF (1)

Xét ΔBCE và ΔDCF: BE = CD ( vì cùng bằng AB)

∠(CBE) = ∠(CDF) = 240 o – α

BC = DF (vì cùng bằng AD)

Do đó ΔBCE = ΔDCF (c.g.c) ⇒ CE = CF (2)

Từ (1) và (2) suy ra: EF = CF = CE

Vậy Δ ECF đều.

Bài 88 trang 90 SBT Toán 8 Tập 1: Cho tam giác ABC. Ở phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Vẽ hình bình hành ADIE. Chứng minh rằng:

a. IA = BC

b. IA ⊥ BC

Lời giải:

a. ∠(BAD) + ∠(BAC) + ∠(DAE) + ∠(EAC) = 360 o

Suy ra: ∠(BAC) + ∠(DAE) = 180 o (1)

AE

⇒ ∠(ADI) + ∠(DAE) = 180 o (2 góc trong cùng phía)

Từ (1) và (2) suy ra: ∠(BAC) = ∠(ADI)

Suy ra: ΔABC = ΔDAI (c.g.c) ⇒ IA = BC

b. ΔABC = ΔDAI (chứng minh trên) ⇒ ∠A 1= ∠B 1

Gọi giao điểm IA và BC là H.

Suy ra ∠(AHB) = 90 o ⇒ AH ⊥ BC hay IA ⊥ BC

Bài 89 trang 91 SBT Toán 8 Tập 1: Dựng hình bình hành ABCD biết:

a. AB = 2cm, AD = 3cm, ∠A = 110 o

b. AC = 4cm, BD = 5cm, ∠(BOC) = 50 o

Lời giải:

a. Cách dựng (hình a)

– Dựng ΔABD có AB = 2cm, ∠A = 110 o, AD = 3cm

– Dựng tia Bx

– Dựng tia Dy

Ta có hình bình hành ABCD cẩn dựng

Chứng minh

AB

Ta lại có: AB = 2cm, ∠A = 110 o, AD = 3cm.

Bài toán có một nghiệm hình.

b. Cách dựng (hình b)

– Dựng ΔOBC có OC = 2cm, OB = 2,5 cm, O = 50 o

– Trên tia đối tia OC lấy điểm A sao cho OA = OC = 2cm

– Trên tia đối tia OB lấy điểm D sao cho OD = OB =2,5cm

Nối AB, BC, CD, AD ta có hình bình hành ABCD cần dựng

Chứng minh

Tứ giác ABCD có OA = OC, OB = OD nên nó là hình bình hành vì có 2 đường chéo cắt nhau tại trung điểm mỗi đường.

Có AC = 4cm , BD = 5cm, ∠(BOC) = 50 o

Bài toán có một nghiệm hình

Bài 90 trang 91 SBT Toán 8 Tập 1: Cho ba điểm A, B, C trên giấy kẻ ô vuông ở hình bên. Hãy vẽ điểm thứ tư M sao cho A, B,C, M là 4 đỉnh của một hình bình hành.

Lời giải:

– Nếu hình bình hành nhận AC làm đường chéo vỉ AB là dường chéo hình vuông có 2 ô vuông nên CM 1 là đường chéo hình vuông cạnh 2 ô vuông và A, M 1 nằm trên một nửa mặt phẳng bờ BC ta có hình bình hành ABCM 1

– Nếu hình bình hành nhận BC làm đường chéo, điểm A cách điểm C ba ô vuông, điểm B cách điểm M 2 là ba ô vuông và trên một nửa mặt phẳng bờ AB ta có hình bình hành ABM 2 C

– Nếu hình bình hành nhận AB làm đường chéo thì điểm M 3 cách điểm B ba ô vuông, M 3 và A nằm trên cùng một nửa mặt phẳng bờ BC ta có hình bình hành ACBM 3.

Bài 91 trang 91 SBT Toán 8 Tập 1: Cho tam giác ABC. Dựng đường thẳng song song với BC, cắt cạnh AB ở E, cắt cạnh AC ở F sao cho BE = AF.

Lời giải:

Cách dựng:

– Dựng đường phân giác AD.

– Qua D dựng đường thẳng song song AB cắt AC tại F.

– Qua F dựng đường thẳng song song với BC cắt AB tại E.

Ta có điểm E, F cẩn dựng.

Chứng minh:

DF

⇒ ΔAFD cân tại F ⇒ AF = DF (l)

DF

EF

Tứ giác BDFE là hình bình hành ⇒ BE = DF (2)

Từ (1) và (2) suy ra: AF = BE.

Bài 7.1 trang 91 SBT Toán 8 Tập 1: Tứ giác ABCD là hình bình hành nếu:

A. AB = CD;

B. AD = BC;

C. AB

D. AB = CD và AD = BC.

Hãy chọn phương án đúng.

Lời giải:

Chọn D

Bài 7.2 trang 91 SBT Toán 8 Tập 1: Cho hình bình hành ABCD , các đường chéo cắt nhau tại O. Gọi E, F theo thứ tự là trung điểm của OD, OB. Gọi K là giao điểm của AE và CD. Chứng minh rằng:

a. AE song song CF

b. DK = 1/2 KC

Lời giải:

a. Ta có: OB = OD (tính chất hình bình hành)

OE = 1/2 OD (gt)

OF = 1/2 OB (gt)

Suy ra: OE = OF

Xét tứ giác AECF, ta có:

OE = OF (chứng minh trên)

OA = OC (vì ABCD là hình bình hành)

Suy ra: Tứ giác AECF là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường ) ⇒ AE

b. Kẻ OM

Trong ΔCAK ta có:

OA = OC ( chứng minh trên)

OM

⇒ CM

Trong ΔDMO ta có:

DE = EO (gt)

EK

⇒ DK

Từ (1) và (2) suy ra: DK = KM = MC ⇒ DK = 1/2 KC

Bài 7.3 trang 91 SBT Toán 8 Tập 1: Cho hình bình hành ABCD. Lấy điểm E trên cạnh AB, điểm F trên cạnh CD sao cho AE = CF. Chứng minh rằng ba đường thẳng AC, BD, EF đồng quy.

Lời giải:

Gọi O là giao điểm của hai đường chéo AC và BD.

Xét tứ giác AECF:

AB

⇒ AE

AE = CF (gt)

Suy ra: Tứ giác AECF là hình bình hành ( vì có một cặp cạnh đối song song và bằng nhau)

⇒ AC và EF cắt nhau tại trung điểm mỗi đường

OA = OC ( tính chất hình bình hành) ⇒ EF đi qua O

Vậy AC, BD, EF đồng quy tại O.

Giải Sách Bài Tập Toán Lớp 7 Tập 2 Trang 8 Bài 8

a. Cho biết có bao nhiêu học sinh đạt điểm 7? Bao nhiêu học sinh đạt điểm 9?

b. Nhận xét

c. Lập lại bảng “tần số”

Giải sách bài tập toán lớp 7 tập 2 trang 8 câu 8

Giải sách bài tập Toán 7 trang 58 tập 2 câu 8

a. Có 8 học sinh đạt điểm 7.

Có 2 học sinh đạt điểm 9.

b. Nhận xét:

– Điểm cao nhất là 10, điểm thấp nhất là 2 điểm.

– Số học sinh đạt điểm 7 là nhiều nhất với 8 học sinh.

– Học sinh chủ yếu được 6 điểm và 7 điểm.

– Số học sinh đạt 3 điểm và 4 điểm bằng nhau: 3 học sinh

c. Bảng tần số:

+ Dành thời gian hướng dẫn con cách tham khảo sách như thế nào chứ không phải mua sách về và để con tự đọc. Nếu để con tự học với sách tham khảo rất dễ phản tác dụng.

+ Sách tham khảo rất đa dạng, có loại chỉ gợi ý, có loại giải chi tiết, có sách kết hợp cả hai. Dù là sách gợi ý hay sách giải thì mỗi loại đều có giá trị riêng. Phụ huynh có vai trò giám sát định hướng cho con trong trường hợp nào thì dùng bài gợi ý, trường hợp nào thì đọc bài giải.

Ví dụ: Trước khi cho con đọc bài văn mẫu thì nên để con đọc bài gợi ý, tự làm bài; sau đó đọc văn mẫu để bổ sung thêm những ý thiếu hụt và học cách diễn đạt, cách sử dụng câu, từ.

+ Trong môn Văn nếu quá phụ thuộc vào các cuốn giải văn mẫu, đọc để thuộc lòng và vận dụng máy móc vào các bài tập làm văn thì rất nguy hiểm.

Phụ huynh chỉ nên mua những cuốn sách gợi ý cách làm bài chứ không nên mua sách văn mẫu, vì nó dễ khiến học sinh bắt chước, làm triệt tiêu đi tư duy sáng tạo và mất dần cảm xúc. Chỉ nên cho học sinh đọc các bài văn mẫu để học hỏi chứ tuyệt đối không khuyến khích con sử dụng cho bài văn của mình.

+ Trong môn Toán nếu con có lực học khá, giỏi thì nên mua sách giải sẵn các bài toán từ sách giáo khoa hoặc toán nâng cao để con tự đọc, tìm hiểu. Sau đó nói con trình bày lại. Quan trọng nhất là phải hiểu chứ không phải thuộc.

Nếu học sinh trung bình, yếu thì phải có người giảng giải, kèm cặp thêm. Những sách trình bày nhiều cách giải cho một bài toán thì chỉ phù hợp với học sinh khá giỏi.

Tags: bài tập toán lớp 7 học kỳ 2, vở bài tập toán lớp 7 tập 2, toán lớp 7 nâng cao, giải toán lớp 7, bài tập toán lớp 7, sách toán lớp 7, học toán lớp 7 miễn phí, giải toán 7 trang 8