【#1】Toán 9 Bài 6: Hệ Thức Vi

Toán 9 Bài 6: Hệ thức Vi-ét và ứng dụng

Video Giải bài tập Toán 9 Bài 6: Hệ thức Vi-ét và ứng dụng

Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 50 – Video giải tại 0:54 : Hãy tính x1 + x2, x1x2. Lời giải Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 51 – Video giải tại 3:58 : Cho phương trình 2x2 – 5x + 3 = 0.

a) Xác định các hệ số a, b, c rồi tính a + b + c.

b) Chứng tỏ rằng x 1 = 1 là một nghiệm của phương trình.

c) Dùng định lý Vi-ét để tìm x 2.

Lời giải

a) a = 2; b = -5; c = 3

⇒ a + b + c = 2 – 5 + 3 = 0

b) Thay x = 1 vào phương trình ta được:

Vậy x = 1 là một nghiệm của phương trình

c) Theo định lí Vi-et ta có:

Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 51 – Video giải tại 6:26 : Cho phương trình 3x2 + 7x + 4 = 0.

a) Xác định các hệ số a, b, c rồi tính a – b + c.

b) Chứng tỏ rằng x 1 = -1 là một nghiệm của phương trình.

c) Tìm nghiệm x 2.

Lời giải

a) a = 3; b = 7; c = 4

⇒ a + b + c = 3 – 7 + 4 = 0

b) Thay x = -1 vào phương trình ta được:

Vậy x = – 1 là một nghiệm của phương trình

c) Theo định lí Vi-et ta có:

Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 52 – Video giải tại 8:59 : Tính nhẩm nghiệm của các phương trình:

b) 2004x 2 + 2005x + 1 = 0.

Lời giải

Nhận thấy phương trình có a + b + c = 0 nên phương trình có 2 nghiệm

b) 2004x 2 + 2005x + 1 = 0

Nhận thấy phương trình có a – b + c = 0 nên phương trình có 2 nghiệm

Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 52 – Video giải tại 13:37 : Tìm hai số biết tổng của chúng bằng 1, tích của chúng bằng 5. Lời giải

Hai số cần tìm là nghiệm của phương trình x 2 – x + 5 = 0

⇒ phương trình vô nghiêm

Vậy không tồn tại 2 số có tổng bằng 1 và tích bằng 5

Bài 25 (trang 52 SGK Toán 9 Tập 2 – Video giải tại 15:27) : Đối với mỗi phương trình sau, kí hiệu x1 và x2 là hai nghiệm (nếu có). Không giải phương trình, hãy điền vào những chỗ trống (…): Lời giải

Có a = 2; b = -17; c = 1

Theo hệ thức Vi-et: phương trình có hai nghiệm x 1; x 2 thỏa mãn:

Có a = 5 ; b = -1 ; c = -35 ;

Theo hệ thức Vi-et, phương trình có hai nghiệm x 1; x 2 thỏa mãn:

Có a = 8 ; b = -1 ; c = 1

Phương trình vô nghiệm nên không tồn tại x 1 ; x 2.

Có a = 25 ; b = 10 ; c = 1

Khi đó theo hệ thức Vi-et có:

Bài 26 (trang 53 SGK Toán 9 Tập 2 – Video giải tại 19:13) : Dùng điều kiện a + b + c = 0 hoặc a – b + c = 0 để tính nhẩm nghiệm của mỗi phương trình sau: Lời giải

a) Phương trình 35x 2 – 37x + 2 = 0

Có a = 35; b = -37; c = 2 ⇒ a + b + c = 0

⇒ Phương trình có nghiệm x 1 = 1; x 2 = c/a = 2/35.

b) Phương trình 7x 2 + 500x – 507 = 0

Có a = 7; b = 500; c = -507 ⇒ a + b + c = 7 + 500 – 507 = 0

⇒ Phương trình có nghiệm x 1 = 1; x 2 = c/a = -507/7.

c) Phương trình x 2 – 49x – 50 = 0

Có a = 1; b = -49; c = -50 ⇒ a – b + c = 1 – (-49) – 50 = 0

⇒ Phương trình có nghiệm x 1 = -1; x 2 = -c/a = 50.

d) Phương trình 4321x 2 + 21x – 4300 = 0

Có a = 4321; b = 21; c = -4300 ⇒ a – b + c = 4321 – 21 – 4300 = 0

⇒ Phương trình có nghiệm x 1 = -1; x 2 = -c/a = 4300/4321.

Bài 27 (trang 53 SGK Toán 9 Tập 2 – Video giải tại 23:57) : Dùng hệ thức Vi-et để tính nhẩm các nghiệm của phương trình. Lời giải

Có a = 1; b = -7; c = 12

⇒ Phương trình có hai nghiệm phân biệt x 1; x 2 thỏa mãn:

Vậy dễ dàng nhận thấy phương trình có hai nghiệm là 3 và 4.

Có a = 1; b = 7; c = 12

⇒ Phương trình có hai nghiệm phân biệt x 1; x 2 thỏa mãn:

Vậy dễ dàng nhận thấy phương trình có hai nghiệm là -3 và -4.

Bài 28 (trang 53 SGK Toán 9 Tập 2 – Video giải tại 26:08) : Tìm hai số u và v trong mỗi trường hợp sau:

a) u + v = 32 , uv = 231

b) u + v = -8, uv = -105

c) u + v = 2, uv = 9

⇒ Tồn tại u và v là hai nghiệm của phương trình: x 2 – 32x + 231 = 0.

⇒ PT có hai nghiệm:

Vậy u = 21 ; v = 11 hoặc u = 11 ; v = 21.

⇒ u và v là hai nghiệm của phương trình: x 2 + 8x – 105 = 0

Phương trình có hai nghiệm:

Vậy u = 7 ; v = -15 hoặc u = -15 ; v = 7.

⇒ Không tồn tại u và v thỏa mãn.

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k6: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Video Giải bài tập Toán lớp 9 hay, chi tiết của chúng tôi được các Thầy / Cô giáo biên soạn bám sát chương trình sách giáo khoa Toán 9 Tập 1, Tập 2 Đại số & Hình học.

【#2】Hướng Dẫn Giải Bài Tập Sgk Toán Lớp 6

Hướng dẫn giải bài tập SGK toán lớp 6 tập 1 trang 59, 60. Bài học Bội chung nhỏ nhất.

Bài 149. (Trang 59 SGK Toán 6 – Tập 1)

Tìm BCNN của:

a) 60 và 28; b) 84 và 108; c) 13 và 15.

a) Ta có:

Vậy

b)

Vậy

c)

Bài 150. (Trang 59 SGK Toán 6 – Tập 1)

Tìm BCNN của:

a) 10; 12; 15; b) 8; 9; 11; c) 24; 40; 168.

a)

Vậy

b)

c)

Bài 151. (Trang 59 SGK Toán 6 – Tập 1)

Hãy tính nhẩm BCNN của các số sau bằng cách nhân số lớn nhất lần lượt với

cho đến khi được kết quả là một số chia hết cho các số còn lại:

a) 30 và 150; b) 40; 28; 140; c) 100; 120; 200.

a) 150;

b) 280;

c) 600.

Bài 152. (Trang 59 SGK Toán 6 – Tập 1)

Tìm số tự nhiên

nhỏ nhất khác 0, biết rằng:

Số tự nhiên

nhỏ nhất khác

chia hết cho cả

, chính là:

Vậy

.

Bài 153. (Trang 59 SGK Toán 6 – Tập 1)

Tìm các bội chung nhỏ hơn 500 của 30 và 45.

. Các bội chung nhỏ hơn 500 của 30 và 45 là:

Bài 154. (Trang 59 SGK Toán 6 – Tập 1)

Học sinh lớp 6C khi xếp hàng 2, hàng 3, hàng 4, hàng 8 đều vừa đủ hàng. Biết số học sinh lớp đó trong khoảng từ 35 đến 60. Tính số học sinh của lớp 6C.

Gọi số học sinh là

. Ta có

.

. Vậy

Bài 155. (Trang 60 SGK Toán 6 – Tập 1)

Cho bảng:

a) Điền vào các ô trống của bảng.

b) So sánh tích

với tích

a)

b) Ta có:

Tìm số tự nhiên

, biết rằng:

Thèo đề bài ta có

,

nên

là một bội chung của

và thỏa mãn điều kiện

.

Ta có

. Bội chung của

phải chia hết cho

và thỏa mãn

. Do đó bội chung thỏa mãn điều kiện đã cho là:

.

Vậy

.

Bài 157. (Trang 60 SGK Toán 6 – Tập 1)

Hai bạn An và Bách cùng học một trường nhưng ở hai lớp khác nhau. An cứ 10 ngày lại trực nhật, Bách cứ 12 ngày lại trực nhật. Lần đầu cả hai bạn cùng trực nhật vào một ngày. Hỏi sau ít nhất bao nhiêu ngày thì hai bạn lại cùng trực nhật?

Số ngày để việc trực nhật của An lặp lại là một bội của 10, của Bách là một bội của 12. Do đó khoảng thời gian kể từ lần đầu tiên cùng trực nhật đến những lần cùng trực nhật sau là những bội chung của 10 và 12. Vì thế khoảng thời gian kể từ lần đầu tiên cùng trực nhật đến những lần cùng trực nhật thứ hai là:

.

Ta có:

Vậy ít nhất 60 ngày sau, hai bạn mới cùng trực nhật.

Bài 158. (Trang 60 SGK Toán 6 – Tập 1)

Hai đội công nhân nhận trồng một số cây như nhau. Mỗi công nhận đội I phải trồng 8 cây, mỗi công nhân đội II phải trồng 9 cây. Tính số cây mỗi đội phải trồng, biết rằng số cây đó trong khoảng từ 100 đến 200.

Gọi số cây mỗi đội phải trồng là

Ta có

.

Do tổng số cây trồng của mỗi đội phải chia hết cho 72 và thỏa mãn nằm trong khoảng

.

Vậy

Hướng dẫn giải bài tập sách giáo khoa Ôn tập chương I.

【#3】Cách Giải Bài Tập Xác Suất Nâng Cao, Cực Hay Có Lời Giải

Cách giải bài tập Xác suất nâng cao, cực hay có lời giải

A. Ví dụ minh họa

Ví dụ 1: Một người bỏ ngẫu nhiên bốn lá thư vào 4 bì thư đã được ghi địa chỉ. Tính xác suất của biến cố A: ” Có ít nhất một lá thư bỏ đúng phong bì của nó”.

A.5/8 B.3/8 C.1/8 D. 0.24

Hướng dẫn giải :

Đáp án : A

Số cách bỏ 4 lá thư vào 4 bì thư là:

Ta xét các khả năng sau :

+ Có 4 lá thư bỏ đúng địa chỉ:(1;2;3;4) nên có 1 cách bỏ

+ Có 2 là thư bỏ đúng địa chỉ:

+ Số cách bỏ 2 lá thư đúng địa chỉ là:

+ khi đó có 1 cách bỏ hai là thư còn lại

Nên trường hợp này có: = 6 cách bỏ.

Có đúng 1 lá thư bỏ đúng địa chỉ:

Số cách chọn lá thư bỏ đúng địa chỉ: 4 cách

Số cách chọn bỏ ba lá thư còn lại: 2.1=2 cách

Nên trường hợp này có: 4.2=8 cách bỏ.

Do đó: n(A)= 1+ 6+ 8= 15

Vậy P(A)= 15/24= 5/8.

Ví dụ 2: Một thầy giáo có 10 cuốn sách khác nhau trong đó có 4 cuốn sách Toán, 3 cuốn sách Vậy Lí và 3 cuốn sách Hóa Học. Thầy giáo muốn lấy ra 5 cuốn và tặng cho 5 học sinh A: B: C; D; E mỗi em một cuốn. Hỏi thầy giáo có bao nhiêu cách tặng nếu sau khi tặng sách xong, mỗi một trong ba loại sách trên đều còn lại ít nhất một cuốn.

A.5/13 B.4/21 C.17/21 D.409/666

Hướng dẫn giải :

Đáp án : C

+ Không gian mẫu là số cách chọn ngẫu nhiên 5 trong 10 cuốn sách rồi tặng cho 5 học sinh.

Suy ra số phần tử của không gian mẫu là

+ Gọi A là biến cố Sau khi tặng sách thì mỗi một trong ba loại sách của thầy giáo còn lại ít nhất một cuốn .

Để tìm số phần tử của A, ta tìm số phần tử của biến cố A , tức sau khi tặng sách có môn không còn lại cuốn nào.

Vì tổng số sách của hai loại bất kỳ lớn hơn 5 cuốn nên không thể chọn sao cho cùng hết 2 loại sách. Do vậy chỉ có thể một môn hết sách, ta có các khả năng:

Cách tặng sao cho không còn sách Toán, tức là ta tặng 4 cuốn sách toán, 1 cuốn còn lại Lý hoặc Hóa

+ 4 cuốn sách Toán tặng cho 4 người trong 5 người, có cách.

+ 1 người còn lại được tặng 1 cuốn trong 6 cuốn (Lý và Hóa), có .

Suy ra có cách tặng sao cho không còn sách Toán.

Tương tự, có cách tặng sao cho không còn sách Lý.

Tương tự, có cách tặng sao cho không còn sách Hóa.

Vậy xác suất cần tính .

Ví dụ 3: Một hộp chứa 5 viên bi đỏ, 6 viên bi xanh và 7 viên bi trắng. Chọn ngẫu nhiên 6 viên bi từ hộp, tính xác suất để được 6 viên bi có cả ba màu đồng thời hiệu của số bi xanh và bi đỏ, hiệu của số bi trắng và số bi xanh, hiệu của số bi đỏ và số bi trắng theo thứ tự là ba số hạng liên tiếp của một cấp số cộng.

A.5/13 B.4/21 C.17/21 D.40/221

Hướng dẫn giải :

Đáp án : D

Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 18 viên bi.

Suy ra số phần tử của không gian mẫu là

Gọi A là biến cố 6 viên bi được chọn có cả ba màu đồng thời hiệu của số bi xanh và bi đỏ, hiệu của số bi trắng và số bi xanh, hiệu của số bi đỏ và số bi trắng theo thứ tự là ba số hạng liên tiếp của một cấp số cộng .

Gọi x ;y ;z lần lượt là số bi đỏ, bi xanh và bi trắng được lấy. Suy ra

+ Hiệu của số bi xanh và bi đỏ là y-x.

+ Hiệu của số bi trắng và bi xanh là z-y.

+ Hiệu của số bi đỏ và bi trắng là x-z.

Theo giả thiết, ta có (y-x) – (x-z)=2(z-y)

Hay y=z.

Do đó biến cố A được phát biểu lại như sau 6 viên bi được chọn có cả ba màu đồng thời số bi xanh bằng số bi trắng . Ta có các trường hợp thuận lợi cho biến cố A như sau:

Trường hợp 1. Chọn 2 viên bi đỏ, 2 viên bi xanh và 2 viên bi trắng.

Do đó trường hợp này có

Trường hợp 2. Chọn 4 viên bi đỏ, 1 viên bi xanh và 1 viên bi trắng.

Do đó trường hợp này có

Suy ra số phần tử của biến cố A là

Vậy xác suất cần tính :

Ví dụ 4: Một hộp chứa 12 viên bi kích thước như nhau, trong đó có 5 viên bi màu xanh được đánh số từ 1 đến 5; có 4 viên bi màu đỏ được đánh số từ 1 đến 4 và 3 viên bi màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 viên bi từ hộp, tính xác suất để 2 viên bi được lấy vừa khác màu vừa khác số.

A.8/33 B.14/33 C.29/66 D.37/66

Hướng dẫn giải :

Đáp án : D

Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.

Suy ra số phần tử của không gian mẫu là

Gọi A là biến cố 2 viên bi được lấy vừa khác màu vừa khác số .

+ Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi đỏ là 4.4= 16 cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).

+ Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi vàng là 3.4= 12 cách.

+ Số cách lấy 2 viên bi gồm: 1 bi đỏ và 1 bi vàng là 3.3= 9 cách.

Vậy xác suất cần tính P(A)= 37/66

Ví dụ 5: Cho tập hợp A= { 0,1,2,3,4,5}. Gọi S là tập hợp các số có 3 chữ số khác nhau được lập thành từ các chữ số của tập A. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn có chữ số cuối gấp đôi chữ số đầu.

A.1/5 B.23/25 C.2/25 D.4/5

Hướng dẫn giải :

Đáp án : C

+ Gọi số cần tìm của tập S có dạng abc

Trong đó:

Khi đó

+ Số cách chọn chữ số a có 5 cách chọn vì a≠0 .

+ Số cách chọn chữ số b có 5 cách chọn vì b≠a.

+ Số cách chọn chữ số c có 4 cách chọn vì c≠a;c≠b.

Do đó tập S có 5.5.4= 100 phần tử.

Không gian mẫu là chọn ngẫu nhiên 1 số từ tập S.

Suy ra số phần tử của không gian mẫu là

+ Gọi X là biến cố “Số được chọn có chữ số cuối gấp đôi chữ số đầu”.

Khi đó ta có các bộ số là 1b2 hoặc 2b4 thỏa mãn biến cố X và cứ mỗi bộ thì b có 4 cách chọn nên có tất cả 4+ 4= 8 số thỏa yêu cầu.

Suy ra số phần tử của biến cố X là n(X)= 8.

Vậy xác suất cần tính:P(X)= 8/100=2/25

Ví dụ 6: Cho tập hợp A={2,3,4,5,6,7,8}. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập thành từ các chữ số của tập A. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ.

A.1/5 B.3/35 C.17/35 D.18/35

Hướng dẫn giải :

Đáp án : D

Số phần tử của tập S là

Không gian mẫu là chọn ngẫu nhiên 1 số từ tập S.

Suy ra số phần tử của không gian mẫu là

Gọi X là biến cố ” Số được chọn luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ “.

Số cách chọn hai chữ số chẵn từ bốn chữ số 2,4,6,8 là

Số cách chọn hai chữ số lẻ từ ba chữ số 3,5,7 là

Từ bốn chữ số được chọn ta lập số có bốn chữ số khác nhau, số cách lập tương ứng với một hoán vị của 4 phần tử nên có 4! cách.

Suy ra số phần tử của biến cố X là n(X)= 6.3. 4!= 432 .

Vậy xác suất cần tính P(X)= 432/840= 18/35.

Ví dụ 7: Gọi S là tập hợp các số tự nhiên có 3 chữ số đôi một khác nhau được lập thành từ các chữ số 1,2,3,4,6. Chọn ngẫu nhiên một số từ S, tính xác xuất để số được chọn chia hết cho 3

A.1/10 B.3/5 C.2/5 D.1/15

Hướng dẫn giải :

Đáp án : C

– Số phần tử của S là

Không gian mẫu là chọn ngẫu nhiên 1 số từ tập S.

Suy ra số phần tử của không gian mẫu là

– Gọi A là biến cố ” Số được chọn chia hết cho 3″.

Từ 5 chữ số đã cho ta có bộ gồm ba chữ số có tổng chia hết cho 3 là(1,2,3); (1,2,6); ( 2,3,4) và (2,4,6). Mỗi bộ ba chữ số này ta lập được 3!= 6 số thuộc tập hợp S.

Suy ra số phần tử của biến cố A là n(A)= 6.4= 24 .

Vậy xác suất cần tính P(A)= 24/60= 2/5

Ví dụ 8: Đội tuyển học sinh giỏi của một trường THPT có 8 học sinh nam và 4 học sinh nữ. Trong buổi lễ trao phần thưởng, các học sinh trên được xếp thành một hàng ngang. Tính xác suất để khi xếp sao cho 2 học sinh nữ không đứng cạnh nhau.

A.14/55 B.25/660 C.23/55 D.19/660

Hướng dẫn giải :

Đáp án : A

– Không gian mẫu là số cách sắp xếp tất cả 12 học sinh thành một hàng ngang.

Suy ra số phần tử của không gian mẫu là n(Ω)= 12! .

– Gọi A là biến cố ” Xếp các học sinh trên thành một hàng ngang mà 2 học sinh nữ không đứng cạnh nhau”. Ta mô tả khả năng thuận lợi của biến cố A như sau:

Đầu tiên xếp 8 học sinh nam thành một hàng ngang, có 8! cách.

Sau đó xem 8 học sinh này như 8 vách ngăn nên có 9 vị trí để xếp 4 học sinh nữ thỏa yêu cầu bài toán (gồm 7 vị trí giữa 8 học sinh và 2 vị trí hai đầu). Do đó có cách xếp 4 học sinh nữ.

Suy ra số phần tử của biến cố A là

Vậy xác suất cần tính :

Ví dụ 9: Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó.

A.5/6 B.1/6 C.2/3 D.1/2

Hướng dẫn giải :

Đáp án : B

– Không gian mẫu là số cách dán 3 con tem trên 3 bì thư, tức là hoán vị của 3 con tem trên 3 bì thư. Suy ra số phần tử của không gian mẫu là n(Ω)= 3!= 6

– Gọi A là biến cố ” 2 bì thư lấy ra có số thứ tự giống với số thứ tự con tem đã dán vào nó”

Thế thì bì thư còn lại cũng có số thứ tự giống với số thứ tự con tem đã dán vào nó. Trường hợp này có 1 cách duy nhất

Suy ra số phần tử của biến cố A là n(A)= 1

Vậy xác suất cần tính là P(A)= 1/6

Ví dụ 10: Trong thư viện có 12 quyển sách gồm 3 quyển Toán giống nhau, 3 quyển Lý giống nhau, 3 quyển Hóa giống nhau và 3 quyển Sinh giống nhau. Tính xác suất để xếp thành một dãy sao cho 3 quyển sách thuộc cùng 1 môn không được xếp liền nhau?

A.1/28512 B.1/299376 C.1/14256 D.1/7128

Hướng dẫn giải :

Đáp án : A

– Không gian mẫu là xếp 12 quyển sách thành một dãy nên số phần tử của không gian mẫu là: n(Ω)= 12!

– Gọi A là biến cố xếp 12 quyển thành dãy sao cho 3 quyển sách thuộc cùng một môn không được xếp cạnh nhau. Ta tính số các kết quả thuận lợi cho biến cố A:

Xếp 3 cuốn sách Toán kề nhau. Xem 3 cuốn sách Toán là 3 vách ngăn, giữa 3 cuốn sách Toán có 2 vị trí trống và thêm hai vị trí hai đầu, tổng cộng có 4 vị trí trống.

+ Bước 1. Chọn 3 vị trí trống trong 4 vị trí để xếp 3 cuốn Lý, có

+ Bước 2. Giữa 6 cuốn Lý và Toán có 5 vị trí trống và thêm 2 vị trí hai đầu, tổng cộng có 7 vị trí trống. Chọn 3 vị trí trong 7 vị trí trống để xếp 3 cuốn Hóa, có

+ Bước 3. Giữa 9 cuốn sách Toán, Lý và Hóa đã xếp có 8 vị trí trống và thêm 2 vị trí hai đầu, tổng cộng có 10 vị trí trống. Chọn 3 vị trí trong 10 vị trí trống để xếp 3 cuốn Sinh, có

Vậy theo quy tắc nhân số khả năng thuận lợi cho A là:

4. 35. 120= 16800 cách

⇒ Xác suất biến cố A là: P(A)= 16800/12!= 1/28512

Ví dụ 11: Một lớp học có 30 học sinh gồm có cả nam và nữ. Chọn ngẫu nhiên 3 học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được 2 nam và 1 nữ là 12/29. Tính số học sinh nữ của lớp.

A.16 B.14 C.13 D.17

Hướng dẫn giải :

Đáp án : B

– Gọi số học sinh nữ của lớp là n( n∈N*;n≤28).

Suy ra số học sinh nam là 30- n.

– Không gian mẫu là chọn bất kì 3 học sinh từ 30 học sinh.

Vậy số học sinh nữ của lớp là 14 học sinh.

Ví dụ 12 : Một chi đoàn có 3 đoàn viên nữ và một số đoàn viên nam. Cần lập một đội thanh niên tình nguyện (TNTN) gồm 4 người. Biết xác suất để trong 4 người được chọn có 3 nữ bằng 2/5 lần xác suất 4 người được chọn toàn nam. Hỏi chi đoàn đó có bao nhiêu đoàn viên.

A.9 B.10 C.11 D.12

Hướng dẫn giải :

Đáp án : A

+ Gọi số đoàn viên trong chi đoàn đó là n(n≥7;n∈N*)

Suy ra số đoàn viên nam trong chi đoàn là n- 3

Vậy đoàn có 9 đoàn viên.

Ví dụ 13: Một hộp có 10 phiếu, trong đó có 2 phiếu trúng thưởng. Có 10 người lần lượt lấy ngẫu nhiên mỗi người 1 phiếu. Tính xác suất người thứ ba lấy được phiếu trúng thưởng.

A.4/5 B.3/5 C.1/5 D.2/5

Hướng dẫn giải :

Đáp án : C

Không gian mẫu là mỗi người lấy ngẫu nhiên 1 phiếu.

Suy ra số phần tử của không gian mẫu là n(Ω)= 10! .

Gọi A là biến cố ” Người thứ ba lấy được phiếu trúng thưởng”.

Ta mô tả khả năng thuận lợi của biến cố A như sau:

+ Người thứ ba có khả năng lấy được phiếu trúng thưởng.

+ 9 người còn lại có số cách lấy phiếu là 9!.

Suy ra số phần tử của biến cố A là n(A)= 2.9!.

Vậy xác suất cần tính P(A)= 2.9!/10!= 1/5

Ví dụ 14: Trong kỳ thi THPT Quốc Gia, mỗi lớp thi gồm 24 thí sinh được sắp xếp vào 24 bàn khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 môn thi và cả 4 lần thi đều thi tại một phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí.

A.253/1152 B.899/1152 C.17/288 D.21/576

Hướng dẫn giải :

Đáp án : A

– Không gian mẫu là số cách ngẫu nhiên chỗ ngồi trong 4 lần thi của Nam.

Suy ra số phần tử của không gian mẫu là n(Ω)= 24 4 .

– Gọi A là biến cố ” 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí”.

Ta mô tả không gian của biến cố A như sau:

+ Trong 4 lần có 2 lần trùng vị trí, có cách.

+ Giả sử lần thứ nhất có 24 cách chọn chỗ ngồi, lần thứ hai trùng với lần thứ nhất có 1 cách chọn chỗ ngồi. Hai lần còn lại thứ ba và thứ tư không trùng với các lần trước và cũng không trùng nhau nên có 23.22 cách.

Suy ra số phần tử của biến cố A là n(A)= .24.23.22.

Vậy xác suất cần tính :

B. Bài tập trắc nghiệm

Câu 1: Cho tập hợp A= {1,2,3,4,5}. Gọi S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A. Chọn ngẫu nhiên một số từ S, tính xác xuất để số được chọn có tổng các chữ số bằng 10.

A.1/30 B.3/25 C.7/25 D.7/30

Đáp án : B

Câu 2: Có 20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên ra 8 tấm thẻ, tính xác suất để có 3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10.

A.560/4199 B.4/15 C.11/15 D.3639/4199

Đáp án : A

Suy ra số phần tử của không mẫu là .

+ Đầu tiên chọn 3 tấm thẻ trong 10 tấm thẻ mang số lẻ, có

+ Tiếp theo chọn 4 tấm thẻ trong 8 tấm thẻ mang số chẵn (không chia hết cho 10 ), có

+ Sau cùng ta chọn 1 trong 2 tấm thẻ mang số chia hết cho 10, có

Suy ra số phần tử của biến cố A là

Vậy xác suất cần tính :

Câu 3: Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. Tính xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau.

A.8/89 B.17/89 C.17/178 D.31/178

Đáp án : A

Suy ra số phần tử của không gian mẫu là n(Ω)= =4005.

+ Chọn chữ số hàng chục của hai số: có cách chọn hai chữ số hàng chục (chọn từ các chữ số {1,2,3..,9}).

Suy ra số phần tử của biến cố X là n(X)= 10.=360 .

Câu 4: Gọi S là tập hợp các số tự nhiên gồm 9 chữ số khác nhau. Chọn ngẫu nhiên một số từ S, tính xác suất để chọn được một số gồm 4 chữ số lẻ và chữ số 0 luôn đứng giữa hai chữ số lẻ (hai số hai bên chữ số 0 là số lẻ).

A.49/54 B.5/54 C.17/54 D.11/54

Đáp án : B

– Số phần tử của tập S là

Suy ra số phần tử của không gian mẫu là n(Ω)=

+ Chọn 1 trong 7 vị trí để xếp số 0, có

+ Chọn 2 trong 5 số lẻ và xếp vào 2 vị trí cạnh số 0 vừa xếp, có

+ Chọn 2 số lẻ trong 3 số lẻ còn lại và chọn 4 số chẵn từ { 2,4,6,8} sau đó xếp 6 số này vào 6 vị trí trống còn lại có

Vậy xác suất cần tính :

Câu 5: Một người bỏ ngẫu nhiên 4 lá thư và 4 chiếc phong bì thư đã để sẵn địa chỉ. Xác suất để có ít nhất một lá thư bỏ đúng địa chỉ là.

A.5/8 B.2/3 C.3/8 D.1/3

Câu 6: Giải bóng chuyền VTV Cup gồm 9 đội bóng tham dự, trong đó có 6 đội nước ngoài và 3 đội của Việt Nam. Ban tổ chức cho bốc thăm ngẫu nhiên để chia thành 3 bảng A; B; C và mỗi bảng có 3 đội. Tính xác suất để 3 đội bóng của Việt Nam ở 3 bảng khác nhau.

A.3/56 B.19/28 C.9/28 D.53/56

Đáp án : C

Câu 7: Trong giải cầu lông kỷ niệm ngày truyền thống học sinh sinh viên có 8 người tham gia trong đó có hai bạn Việt và Hoàng. Các vận động viên được chia làm hai bảng A và B, mỗi bảng gồm 4 người. Giả sử việc chia bảng thực hiện bằng cách bốc thăm ngẫu nhiên, tính xác suất để cả 2 bạn Việt và Hoàng nằm chung 1 bảng đấu.

A.6/7 B.3/7 C.3/4 D.2/5

Đáp án : B

Câu 8: Một bộ đề thi toán học sinh giỏi lớp 12 mà mỗi đề gồm 5 câu được chọn từ 15 câu dễ, 10 câu trung bình và 5 câu khó. Một đề thi được gọi là “Tốt” nếu trong đề thi có cả ba câu dễ, trung bình và khó, đồng thời số câu dễ không ít hơn 2. Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi ” Tốt”.

A.985/1566 B.235/783 C.3/7 D.625/1566

Đáp án : D

Vậy xác suất cần tính :

Câu 9: Xếp 6 học sinh nam và 4 học sinh nữ vào một bàn tròn 10 ghế. Tính xác suất để không có hai học sinh nữ ngồi cạnh nhau.

A.37/42 B.5/42 C.7/504 D.1/6

Đáp án : B

+ Ta xem 6 học sinh nam như 6 vách ngăn trên vòng tròn, thế thì sẽ tạo ra 6 ô trống để ta xếp 4 học sinh nữ vào (mỗi ô trống chỉ được xếp 1 học sinh nữ). Do đó có cách xếp.

Vậy xác suất cần tính: P(A)= (5!.)/9! = 5/42

Câu 10: Có 4 hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Tính xác suất để 1 toa có 3 người, 1 toa có 1 người, 2 toa còn lại không có ai.

A.3/4 B.3/16 C.13/16 D.1/4

Đáp án : B

+ Giai đoạn thứ nhất. Chọn 3 hành khách trong 4 hành khách, chọn 1 toa trong 4 toa và xếp lên toa đó 3 hành khách vừa chọn. Suy ra có

+ Giai đoạn thứ hai. Chọn 1 toa trong 3 toa còn lại và xếp lên toa đó 1 một hành khách còn lại. Suy ra có

Câu 11: Có 8 người khách bước ngẫu nhiên vào một cửa hàng có 3 quầy.Tính xác suất để có 3 người cùng đến quầy thứ nhất?

A.106/729 B.203/2187 C.2375/6561 D.1792/6561

Đáp án : D

Giai đoạn thứ nhất. Chọn 3 người khách trong 8 người khách và cho đến quầy thứ nhất, có

Vậy xác suất cần tính :

Câu 12: Một lớp học có 40 học sinh trong đó có 4 cặp anh em sinh đôi. Trong buổi họp đầu năm thầy giáo chủ nhiệm lớp muốn chọn ra 3 học sinh để làm cán sự lớp. Tính xác suất để chọn ra 3 học sinh làm cán sự lớp mà không có cặp anh em sinh đôi nào.

A.64/65 B.12/65 C.98/130 D.Đáp án khác

Đáp án : A

Câu 13: Một người có 10 đôi giày khác nhau và trong lúc đi du lịch vội vã lấy ngẫu nhiên 4 chiếc. Tính xác suất để trong 4 chiếc giày lấy ra có ít nhất một đôi.

A.3/7 B.13/64 C.99/323 D.224/323

Đáp án : C

+ Số cách chọn 4 đôi giày từ 10 đôi giày là

+ Mỗi đôi chọn ra 1 chiếc, thế thì mỗi chiếc có cách chọn. Suy ra 4 chiếc có

Suy ra số phần tử của biến cố Alà

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k4: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

【#4】Sáng Kiến Kinh Nghiệm Rèn Luyện Kỹ Năng Trình Bày Lời Giải Bài Toán Cho Học Sinh Lớp 6

Toán học là công cụ giúp học tốt các môn học khác, chính vì vậy nó đóng một vai trò vô cùng quan trọng trong nhà trường. Bên cạnh đó nó còn có tiềm năng phát triển các năng lực tư duy và phẩm chất trí tuệ,giúp học sinh hoạt độngcó hiệu quả trong mọi lĩnh vực của đời sống sản xuất.

Trong công cuộc công nghiệp hoá – Hiện đại hoá , Đảng và nhà nước ta coi “Giáo dục là quốc sách hàng đầu “, trong đó toán học ,khoa học tự nhiên – công nghệ có vai trò cực kỳ quan trọng . Vì vậy ở trường THCS ở mỗi khối lớp số tiết dành cho bộ môn toán nhiều hơn so vưới các môn học khác . Để phù hợp với xu thế hiện nay trên thế giới , bộ GD – ĐT ban hành quyết định thay đổi SGK lớp 1 và lớp 6 vào năm 2002

Hướng đổi mới phương pháp dạy học toán học hiện nay là tích cực hoá hoạt động học tập của học sinh , khơi dậy và phát triển khả năng tự học, nhằm hình thành ở học sinh tư duy tích cực , độc lập, sáng tạo,suy luận chặt chẽ nâng cao năng tực phát hiện và giải quyết vấn đề , rèn luyện kỹ năng vận dụng kiến thức vào thực tiễn , tác động đến tình cảm , đem lại niềm vui , hứng thú học tập cho học sinh

SGK toán mới không quá coi trọng tính cấu trúc , tính chính xác của hệ thống kiến thức toán học trong chương trình , hạn chế đưa vào chương trình những kết quả có tính lý thuyết thuần tuý và các phép chứng minh dài dòng , phức tạp không phù hợp với đại đa số học sinh . Tăng tính thực tiễn và tính sư phạm , tạo điều kiện để học sinh được tăng cường luyện tập thực hành , rèn luyện kỹ năng tính toán và vận dụng các kiến thức toán học vào đời sống và các môn học khác . Do đó, số tiết dành cho luyện tập và cỏc dạng bài toỏn cú lời giải khá nhiều.

PHẦN MỞ ĐẦU Lí DO CHỌN ĐỀ TÀI Toán học là công cụ giúp học tốt các môn học khác, chính vì vậy nó đóng một vai trò vô cùng quan trọng trong nhà trường. Bên cạnh đó nó còn có tiềm năng phát triển các năng lực tư duy và phẩm chất trí tuệ,giúp học sinh hoạt độngcó hiệu quả trong mọi lĩnh vực của đời sống sản xuất. Trong công cuộc công nghiệp hoá - Hiện đại hoá , Đảng và nhà nước ta coi "Giáo dục là quốc sách hàng đầu ", trong đó toán học ,khoa học tự nhiên - công nghệ có vai trò cực kỳ quan trọng . Vì vậy ở trường THCS ở mỗi khối lớp số tiết dành cho bộ môn toán nhiều hơn so vưới các môn học khác . Để phù hợp với xu thế hiện nay trên thế giới , bộ GD - ĐT ban hành quyết định thay đổi SGK lớp 1 và lớp 6 vào năm 2002 Hướng đổi mới phương pháp dạy học toán học hiện nay là tích cực hoá hoạt động học tập của học sinh , khơi dậy và phát triển khả năng tự học, nhằm hình thành ở học sinh tư duy tích cực , độc lập, sáng tạo,suy luận chặt chẽ nâng cao năng tực phát hiện và giải quyết vấn đề , rèn luyện kỹ năng vận dụng kiến thức vào thực tiễn , tác động đến tình cảm , đem lại niềm vui , hứng thú học tập cho học sinh SGK toán mới không quá coi trọng tính cấu trúc , tính chính xác của hệ thống kiến thức toán học trong chương trình , hạn chế đưa vào chương trình những kết quả có tính lý thuyết thuần tuý và các phép chứng minh dài dòng , phức tạp không phù hợp với đại đa số học sinh . Tăng tính thực tiễn và tính sư phạm , tạo điều kiện để học sinh được tăng cường luyện tập thực hành , rèn luyện kỹ năng tính toán và vận dụng các kiến thức toán học vào đời sống và các môn học khác . Do đó, số tiết dành cho luyện tập và cỏc dạng bài toỏn cú lời giải khá nhiều. Từ lý do trờn tụi đó tỡm tũi, nghiờn cứu và lựa chọn đề tài: " Rốn luyện kỹ năng trỡnh bày lời giải bài Toỏn cho hs lớp 6", mục đớch nhằm rốn luyện cho Hs kỹ năng trỡnh bày lời giải một bài Toỏn lụ gic, chặt chẽ. II. PHẠM VI, ĐỐI TƯỢNG, PHƯƠNG PHÁP, PHƯƠNG TIỆN NGHIấN CỨU Phạm vi nghiờn cứu: Trường THCS Đối tượng nghiờn cứu: Hs lớp 6B, 6C trường THCS QH 3. Phương pháp nghiờn cứu. - Nghiên cứu lý thuyết. - Thực hành giải toán: Tìm một số bài toán đặc trưng để hướng dẫn học sinh 2. Phương tiện nghiên cứu. - Sách giáo khoa, sách bài tập, sách nâng cao toán 6, phương pháp giải bài tập toán 6 - Phương pháp dạy học toán - Thực hành giải toán 6, nõng cao và phỏt triển Toỏn 6,.. III. MỤC ĐÍCH CỦA ĐỀ TÀI NGHIấN CỨU + Rốn cho Hs lớp 6 cỏc kỹ năng trỡnh bày lời giải một bài toỏn cơ bản + Nõng cao chất lượng giảng dạy bộ mụn toỏn 6 ở trường THCS IV. ĐIỂM MỚI CỦA SÁNG KIẾN KINH NGHIỆM Đưa ra được cỏc biện phỏp cụ thể để giỳp Hs hỡnh thành và nõng cao kỹ năng tỡm ra được lời giải và biết trỡnh bày lời giải sao cho phự hợp với yờu cầu cỏc bài toỏn cụ thể. Đặc biệt cỏc biện phỏp này phự hợp với đối tượng học sinh yếu kộm bộ mụn Toỏn. PHẦN NỘI DUNG I. CƠ SỞ Lí LUẬN Toán học mang sẵn trong đó chẳng những phương pháp quy nạp thực nghiệm, mà cả phương pháp suy diễn lô gic. Nó tạo cho người học có cơ hội rèn luyện khả năng suy đoán và tưởng tượng. Toán học còn có tiềm năng phát triển phẩm chất đạo đức, góp phần hình thành thế giới quan khoa học cho học sinh. Toán học ra đời từ thực tiễn và lại quay trở về phục vụ thực tiễn. Toán học còn hình thành và hoàn thiện những nét nhân cách như say mê và có hoài bão trong học tập, mong muốn được đóng góp một phần nhỏ của mình cho sự nghiệp chung của đất nước, ý chí vượt khó, bảo vệ chân lý, cảm nhận được cái đẹp, trung thực, tự tin, khiêm tốn,. Biết tự đánh giá mình, tự rèn luyện để đạt tới một nhân cách hoàn thiện toàn diện hơn. Mặt khác toán học còn có nhiệm vụ hình thành cho HS những kỹ năng: Kỹ năng vận dụng tri thức trong nội bộ môn toán để giải các bài tập toán Kỹ năng vận dụng tri thức toán học để học tập các môn học khác. Kỹ năng vận dụng tri thức toán học vào đơì sống, kỹ năng đo đạc, tính toán,sử dụng biểu đồ, sử dụng máy tính.. Tuy nhiên cả ba kỹ năng trên đều có quan hệ mật thiết với nhau. Kỹ năng thứ nhất là cơ sở để rèn luyện hai kỹ năng kia. Chính vì vậy kỹ năng vận dụng kiến thức để giải bài tập toán là vô cùng quan trọng đối với học sinh. Trong đó việc trình bày lời giải một bài toán chính là thước đo cho kỹ năng trên. để có một lời giảI tốt thì học sinh cần có kiến thức, các kỹ năng cơ bản và ngược lại có kiến thức, có các kỹ năng cơ bản thì học sinh sẽ trình bày tốt lời giải một bài toán II. THực trạng của vấn đề nghiên cứu Trình bày lời giải một bài toán là hình thức vận dụng những kiến thức đã biết vào các bài toán cụ thể, là hình thức tốt nhất để rèn luyện các kỹ năng như tính toán, biến đổi suy luận và là hình thức tốt nhất để kiểm tra về năng lực, mức độ tiếp thu và vận dụng kiến thức. Sau khi đọc đề bài, phân tích tìm hiểu lời giải thì học sinh phải trình bày lời giải. Song đôi khi học sinh còn mắc sai lầm trong quá trình trình bày lời giải. Trong thực tế giảng dạy tôi thấy việc mắc phải một số sai lầm khi trình bày lời giải của học sinh còn rất nhiều. Chẳng hạn như do phân tích sai, áp dụng sai kiến thức hoặc chưa kết hợp với điều kiện cuả bài toán. Nhiều học sinh sau khi giải xong không kiểm tra lại lời giải xem suy luận, tính toán chính xác chưa, có sai sót gì không, sai ở chỗ nào và sửa như thế nào? Trong quá trình trình bày lời giải bài toán yêu cầu phải rõ ràng, chặt chẽ, đầy đủ các trường hợp và đạt độ chính xác cao. Được phân công giảng dạy Toán 6, tôi nhận thấy đây là lớp học đầu cấp nên việc trình bày tốt lời giải là rất quan trọng. Thông qua bài kiểm tra chương I lần 1 ở học kỳ I, tôi thu được kết quả như sau: Tổng số HS Điểm 9-10 Điểm 7 - 8 Điểm 5 - 6 Điểm 3 - 4 Điểm < 3 SL % SL % SL % SL % SL % 67 3 4.47 6 8,9 21 31.34 10 14.9 19 28.3 Là giáo viên dạy toán , đứng trước thực trạng trên tôi rất băn khoăn lo lắng. Để góp phần vào việc giúp học sinh nói chung và học sinh lớp 6B nói riêng tôi đã tiến hành nghiên cứu và mạnh dạn đưa ra đề tài: "Rèn luyện kỹ năng trình bày lời giải bài toán cho học sinh lớp 6" với mục đích nâng cao chất lượng dạy và học ở trường THCS QH III. Các giải pháp để tổ chức thực hiện. 1.Giải một bài toán như thế nào? Khi giải một bài toán học sinh cần phải thực hiện qua 4 bước Đọc kỹ đề bài. Phân tích tìm hướng giải. Trình bày lời giải. Khai thác kết quả bài toán. Trong thực tế bước 3 là bước mà người dạy và người học thường xuyên phải làm. Đây là bước mà học sinh tái hiện lại những kiến thức mà mình đã học được. Học sinh có thể dựa vào đó để đánh giá, kiểm tra được khả năng của mình. Bên cạnh trình bày một lời giải như thế nào là hợp lý vừa đảm bảo độ chính xác, vừa khoa học là rất quan trọng. Vì vậy tôi đưa ra các hình thức rèn luyện cách trình bày lời giải một số bài toán như sau 2.các hình thức rèn luyện cách trình bày lời giải bài toán cho học sinh lớp 6. 2.1.Đưa ra các bài giải mẫu. Việc đưa ra các bài giải mẫu là rất quan trọng. Bước đầu của quá trình tự học của học sinh là ciệc quan sát và học tập các bài giải mẫu mà giáo viên đưa ra. Do Gợi ý giải. (1) Nếu gọi số cần tìm là x, đk của x là gì ? (2) Hãy biểu diễn x qua các thông tin trông bài toán ? (3) Từ mối liên hệ trên tìm x như thế nào ? (4) Sau khi tìm được x ta phải làm gì ? (5) Cuối cùng hãy kết luận . Với gợi ý trên học sinh dễ dàng hình dung được thứ tự của việc giải bài toán đó. Học sinh giải như sau: Gọi số cần tìm là x. đk : x ẻ N (*) Vì x chia cho 3 rồi trừ đi 4 sau đó nhân với 5 thì được 15 nên ta có : (x: 3 - 4). 5 = 15 Vậy số cần tìm là 21. 2.4. Đưa ra các bài tập giải sẵn có chứa sai lầm để yêu cầu học sinh tìm chỗ sai và sửa lại cho đúng Theo tôi hình thức này là quan trọng và có yêu cầu cao hơn so với ba hình thức trên.Hình thức này rèn luyện cho học sinh được hai khả năng: Một là: Khả năng trình bày lời giải. Hai là: Khả năng tư duy logic, tính toán chặt chẽ chính xác. Vì khi phát hiện được sai sót trong mỗi bài toán nghĩa là học sinh đã phải tư duy, huy động vốn kiến thức của mình để kiểm tra, tính toán mới khẳng định được sai ở đâu? Sai như thế nào? Sau khi kiểm tra, bổ sung và sửa chữa sai sót xong thì bài toán được trình bày một cách hoàn chỉnh và học sinh rút được kinh nghiệm cho bản thân. 3.Vận dụng các hình thức rèn luyện trên đối với một tiết học cụ thể . Tiết 87: Phép chia phân số I . Mục tiêu: Học xong tiết này, học sinh cần đạt các yêu cầu sau đây: 1. Kiến thức : Nắm vững khái niệm số nghịch đảo và quy tắc chia phân số 2. Kỹ năng : - Biết tìm số nghịch đảo của một số khác không một cách thành thạo . - Có kỹ năng vận dụng quy tắc chia phân số để thực hiện phép chia một cách thành thạo . 3. Thái độ: Rèn luyện tính cẩn thận nhanh nhẹn , chính xác và thói quen nhận xét đặc điểm các phân số trước khi thực hiện phép tính . II. Chuẩn bị của giáo viên và học sinh : 1.Giáo viên: Bảng phụ , thước kẻ, ĐDDH 2.Học sinh: Phiếu học tập thước kẻ, dụng cụ học tập III. Tổ chức các hoạt động học tập Ổn định tổ chức Kiểm tra bài cũ Bài mới Hoạt động của giáo viên Hoạt động của học sinh Giáo viên nêu câu hỏi: dự đoán giá trị của x và thử lại xem có đúng không a . 8.x = 1 b . Giáo viên: Tổ chức cho học sinh cả lớp nhận xét bài làm của cả hai học sinh. Giáo viên: đặt vấn đề chuyển tiếp kết quả trên chỉ là dự đoán . Vậy làm thế nào để biết được các giá trị của x mà không phải dự đoán ? Học sinh : suy nghĩ cả lớp Hai học sinh lên bảng thực hiện a . Dự đoán x = thử lại 8. = 1 b . Dự đoán x = thử lại : = = Học sinh nhận xét Học sinh nghe + phán đoán Tổ chức cho học sinh tiếp thu kiến thức mới hoạt động 2: Xây dựng định nghĩa số nghịch đảo (10p) Giáo viên : giới thiệu mục 1 Yêu cầu học sinh quan sát lại ví dụ kiểm tra bài cũ . ở ví dụ 1: giáo viên giới thiệu x = là số nghịch đảo của 8 và ngược lại . Bằng cách làm tương tự Gíao viên cho học sinh lấy tuỳ ý các ví dụ, sau đó gọi vài học sinh đưa ra kết quả. Giáo viên cho học sinh thực hiện số nghịch đảo số là nghịch đảo... .nghịch đảo của nhau. Học sinh : suy nghĩ , trả lời (phát biểu định nghĩa do sự hiểu biết của mình ). b . Định nghĩa . (skg) Học sinh : chia nhúm thực hiện ?3 Số nghịch đảo của lần lượt là: Học sinh : nhận xét bài làm các nhóm khác. Học sinh : Số 0 không có số nghịch đảo vì bất cứ số nào nhân với 0 cũng bằng 0 không thể bằng 1 được. Học sinh : Ghi chú ý Học sinh : dự đoán, làm phép chia Hoạt động 3: Xây dựng quy tắc chia phân số. (15p) Giáo viên:Cho học sinh thực hiện làm ví dụ. ? Quan hệ giữa và là gì? ? Hãy lấy hai ví dụ về phép chia? Giáo viên: kiểm tra việc làm của học sinh dưới lớp. Giáo viên đưa ra phép chia: Vận dụng cách viết trên cho; 2: ? Từ các ví dụ trên: hãy rút ra quy tắc chia phân số? Giáo viên chốt lại và đưa ra quy tắc hoàn chỉnh (treo bảng phụ). Giáo viên: treo bảng phụ ghi sẵn Báo cáo kết quả : = a . Ví dụ Học sinh : trả lời= Hs: và là hai số nghịch đảo của nhau Học sinh : lấy 2 ví dụ tuỳ ý và viết như ví dụ mẫu Học sinh : 2: = 2. = Học sinh : Phát biểu bằng hiểu biết của mình. Học sinh : Đọc quy tắc. b . Quy tắc: (SGK) c . Vận dụng: ?5. 4 hs lờn bảng thực hiện. Học sinh : Thực hiện: : 2 = : = . = . d. Nhận xét: Học sinh ghi công thức minh họa và phát biểu bằng lời Hoạt động 4: Củng cố và vận dụng (10p) Giáo viên: Cho học sinh quay lại bài ? Bài học hôm nay đã cung cấp những kiến thức và kỹ năng nào? Giáo viên: cho học sinh làm bài tập 86 SGK. Giáo viên: kiểm tra các lời giải của học sinh ở dưới và tuyên dương những học sinh làm đúng, nhanh (chú ý đối tượng yếu kém) Giáo viên gợi ý bài 87b Muốn tìm số chia ta làm như thế nào? Và cho học sinh làm ở nhà. Giáo viên treo bảng phụ ghi lời giải bài tập Hãy phát hiện chỗ sai trong lời giải sau đây và chữa lại cho đúng: Tìm x biết: -.x = Vậy x = - là giá trị cần tìm Học sinh: suy nghĩ, trả lời câu hỏi của giáo viên. 3. Bài tập Cả lớp giải bài tập 86. - Một học sinh lên bảng trình bày bài 86.a .x = Vậy x = là giá trị cần tìm. b . Học sinh: Theo dõi và phát hiện chỗ sai. - Chuyển vế sai - Thực hiện phép chia sai(Không nhân với số nghịch đảo). Học sinh : Chữa lại cho đúng -.x = Vậy x = là giá trị cần tìm. Hoạt động 5: Hướng dẫn học ở nhà (3p) Giáo viên: treo bảng phụ ghi nội dung sau đây: - Học thuộc định nghĩa số nghịch đảo và quy tắc chia phân số. Làm các bài tập trong sách giáo khoa, bài 108, 109, 110 SBT. Giáo viên: Gợi ý bài tập số 88 - Chuẩn bị cho tiết sau: Mang máy tính và phiếu học tâp Như vậy : Trong tiết học trên tôi đã sở dụng 3 hình thức rèn luyện cách trình bày lời giải một bài toán: - Đưa ra bài giải mẫu. - Đưa ra bài toán có gợi ý giải. - Đưa ra bài giải sẵn có chứa những sai lầm, yêu cầu học sinh tìm chỗ sai và sửa lại cho đúng. PHẦN KẾT LUẬN I . Kết quả nghiên cứu: Qua nghiên cứu và áp dụng đề tài này vào giảng dạy một cách thường xuyên và vận dụng cho mỗi tiết học, tôi nhận thấy: - Rèn luyện được cho học sinh chiều sâu và giải toán có khoa học, lập luận logic chặt chẽ. - Giúp học sinh hiểu rằng để giải toán tốt thì cần phải có kiến thức đầy đủ về vấn đề mình đang quan tâm. Đặc biệt là giúp học sinh nhận ra những thiếu sót của mình mà rút kinh nghiệm cho lần sau. - Học sinh học tập hứng thú, chủ động hơn, biết trình bày lời giải rõ ràng, chính xác và khoa học hơn. Cụ thể qua bài kiểm tra trong chương III ( Học kỳ II) kết quả thu được như sau: Tổng số HS Điểm 9-10 Điểm 7-8 Điểm 5-6 Điểm 3-4 Điểm < 3 SL % SL % SL % SL % SL % 67 7 10,44 13 19.4 35 52.2 9 13,4 3 4.47 II. Bài học kinh nghiệm Trong quá trình giảng dạy tại trường THCS Quảng Hợp, từ việc áp dụng các hình thức rèn luyện cách trình bày lời giải bài toán cho học sinh lớp 6 đã có kết quả rõ rệt , bản thân tôi rút ra được 4 bài học kinh nghiệm về phương pháp rèn luyện cách trình bày lời giải bài toán cho học sinh lớp 6 là : 1. Trình bày bài giải mẫu. 2. Trình bày bài giải nhưng các bước sắp xếp chưa hợp lý. 3. Đưa ra bài toán có gợi ý giải. 4. Đưa ra bài giải sẵn có chứa sai sót để yêu cầu học sinh tìm chỗ sai và sửa lại cho đúng. III. Kiến nghị và đề xuất đề tài này được tôi áp dụng cho học sinh đại trà lớp 6. Nhưng thiết nghĩ dù lớp 6 hay lớp 7, lớp 8, lớp 9 thì việc trình bày lời giải đều quan trọng như nhau. Vì vậy kinh nghiệm của bản thân tôi còn có thể áp dụng cho học sinh đại trà lớp 7, 8, 9. Do khả năng và kinh nghiệm chưa nhiều nờn mong cỏc đồng nghiệp trong ngành gúp ý để sáng kiến này hoàn thiện và sử dụng rộng rãi hơn. Quảng Hợp ngày 10 thỏng 4 năm 2021 Người thực hiện Phạm Thị Thanh Xuõn

【#5】Chuyên Đề Toán Lớp 4 Bồi Dưỡng Học Sinh Giỏi Có Lời Giải

Published on

Chuyên đề toán lớp 4 bồi dưỡng học sinh giỏi có lời giải nhằm đáp ứng nhu cầu ôn luyện thi Violympic và học sinh giỏi lớp 4 trong thời gian sắp tới.

Tải về máy tài liệu Chuyen de toan lop 4 boi duong hoc sinh gioi co loi giai tại địa chỉ:

http://ihoc.me/chuyen-de-toan-lop-4-boi-duong-hoc-sinh-gioi/

  1. 4. Bài 10 : Tùng tính tổng của các số lẻ từ 21 đến 99 được 2025. Không tính tổng đó em cho biết Tùng tính đúng hay sai? Giải : Từ 1 đến 99 có 50 số lẻ Mà từ 1 đến 19 có 10 số lẻ. Do vậy Tùng tính tổng của số lượng các số lẻ là : 50 – 10 = 40 (số) Ta đã biết tổng của số lượng chẵn các số lẻ là 1 số chẵn mà 2025 là số lẻ nên Tùng đã tính sai. Bài 11 : Tích sau tận cùng bằng mấy chữ số 0? 20 x 21 x 22 x 23 x . . . x 28 x 29 Giải : Tích trên có 1 số tròn chục là 20 nên tích tận cùng bằng 1 chữ số 0 Ta lại có 25 = 5 x 5 nên 2 thữa số 5 này khi nhân với 2 só chẵn cho tích tận cùng bằng 2 chữ số 0 Vậy tích trên tận cùng bằng 3 chữ số 0. Bài 12 : Tiến làm phép chia 1935 : 9 được thương là 216 và kghông còn dư. Không thực hiện cho biết Tiến làm đúng hay sai. Giải : Vì 1935 và 9 đều là số lẻ, thương giữa 2 số lẻ là 1 số lẻ. Thương Tiến tìm được là 216 là 1 số chẵn nên sai Bài 13 : Huệ tính tích : 2 x 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 = 3 999 Không tính tích em cho biết Huệ tính đúng hay sai? Giải : Trong tích trên có 1 thữa số là 5 và 1 thừa số chẵn nên tích phải tận cùng bằng chữ số 0. Vì vậy Huệ đã tính sai. Bài 14 : Tích sau tận cùng bằng bao nhiêu chữ số 0 : 13 x 14 x 15 x . . . x 22 Giải : Trong tích trên có thừa số 20 là số tròn chục nên tích tận cùng bằng 1 chữ số 0. Thừa số 15 khi nhân với 1 số chẵn cho 1 chữ số 0 nữa ở tích. Vậy tích trên có 2 chữ số 0. * BÀI TẬP VỀ NHÀ : Bài 1/ Không làm phép tính hãy cho biết kết quả của mỗi phép tính sau có tận cùng bằng chữ số nào? a, (1 999 + 2 378 + 4 545 + 7 956) – (315 + 598 + 736 + 89) b, 1 x 3 x 5 x 7 x 9 x . . . x 99 c, 6 x 16 x 116 x 1 216 x 11 996
  2. 5. d, 31 x 41 x 51 x 61 x 71 x 81 x 91 e, 56 x 66 x 76 x 86 – 51 x 61 x 71 x 81 Bài 2/ Tích sau tận cùng bằng bao nhiêu chữ số 0 a, 1 x 2 x 3 x . . . x 99 x 100 b, 85 x 86 x 87 x . . . x 94 c, 11 x 12 x 13 x . . . x 62 Bài 3/ Không làm tính xét xem kết quả sau đúng hay sai? Giải thích tại sao? a, 136 x 136 – 41 = 1960 b, ab x ab – 8557 = 0 Bài 4/ Có số nào chia cho 15 dư 8 và chia cho 18 dư 9 hay không? Bài 5/ Cho số a = 1234567891011121314. . . được viết bởi các số tự nhiên liên tiếp. Số a có tận cùng là chữ số nào? biết số a có 100 chữ số. Bài 6/ Có thể tìm được số tự nhiên A và B sao cho : (A + B) ì (A – B) = 2002. Dạng 2: Kĩ thuật tính và quan hệ giữa các thành phần của phép tính * Các bài tập. Bài 1: Khi cộng một số tự nhiên có 4 chữ số với một số tự nhiên có 2 chữ số, do sơ suất một học sinh đã đặt phép tính như sau : abcd + eg Hãy cho biết kết quả của phép tính thay đổi như thế nào . Giải : Khi đặt phép tính như vậy thì số hạng thứ hai tăng gấp 100 lần .Ta có : Tổng mới = SH1 + 100 x SH2 = SH1 + SH2 + 99 x SH2 =Tổng cũ + 99 x SH2 Vậy tổng mới tăng thêm 99 lần số hạng thứ hai. Bài 2 :Khi nhân 1 số tự nhiên với 6789, bạn Mận đã đặt tất cả các tích riêng thẳng cột với nhau như trong phép cộng nên được kết quả là 296 280. Hãy tìm tích đúng của phép nhân đó. Giải :Khi đặt các tích riêng thẳng cột với nhau như trong phép cộng tức là bạn Mận đã lấy thừa số thứ nhất lần lượt nhân với 9, 8, 7 và 6 rồi cộng kết quả lại. Do 9 + 8 + 7 + 6 = 30 nên tích sai lúc này bằng 30 lần thừa số thứ nhất. Vậy thừa số thứ nhất là : 296 280 : 30 = 9 876 Tích đúng là : 9 876 x 6789 = 67 048 164
  3. 8. 240 – 134 = 106 Thử lại : 2403 – 106 = 2297 Đáp số : SBT : 240; ST : 106. Bài 9 : Tổng của 1 số tự nhiên và 1 số thập phân là 62,42. Khi cộng hai số này 1 bạn quên mất dấu phẩy ở số thập phân và đặt tính cộng như số tự nhiên nên kết quả sai là 3569. Tìm số thập phân và số tự nhiên đã cho. Giải : Số thập phân có 2 chữ số ở phần thập phân nên quên dấu phẩy tức là đã tăng số đó lên 100 lần. Như vậy tổng đã tăng 99 lần số đó. Suy ra số thập phân là : (3569 – 62,42) : 99 = 35,42 Số tự nhiên là : 62,42 – 35,42 = 27 Đáp số : Số thập phân :35,42 ; Số tự nhiên : 27. Bài 10 : Khi nhân 254 với 1 số có 2 chữ số giống nhau, bạn Hoa đã đặt các tích riêng thẳng cột như trong phép cộng nên tìm ra kết quả so với tích đúng giảm đi 16002 đơn vị. Hãy tìm số có hai chữ số đó. Giải : Gọi thừa số thứ hai là aa Khi nhân đúng ta có 254 x aa hay 254 x a x 11 Khi đặt sai tích riêng tức là lấy 254 x a + 254 x a = 254 x a x 2 Vậy tích giảm đi 254 x a x 9 Suy ra : 254 x 9 x a = 16002 a = 16002 : (254 x 9) = 7 Vậy thừa số thứ hai là 77. Bài 11 : Khi nhân 1 số với 235 1 học sinh đã sơ ý đặt tích riêng thứ 2 và 3 thẳng cột với nhau nên tìm ra kết quả là 10285. Hãy tìm tích đúng. Giải : Khi nhân một số A với 235, học sinh đó đặt 2 tích riêng cuối thẳng cột như trong phép cộng, tức là em đó đã lần lượt nhân A với 5, với 30, với 20 rồi cộng ba kết quả lại . Vậy : A x 5 x A x 30 x A x 20 = 10 285 A x 55 = 10 285 A = 10 285 : 55 = 187 Vậy tích đúng là: 187 x 235 = 43 945 Bài 12: Tìm ba số biết hiệu của số lớn nhất và số bé nhất là 1,875 và khi nhân mỗi số lần lượt với 8, 10,14 thì được ba tích bằng nhau. Giải:
  4. 10. b, Chia hết cho 4 c, Chia hết cho 2 và 5 Giải : a, Các số chia hết cho 2 có tận cùng bằng 0 hoặc 4. Mặt khác mỗi số đều có các chữ số khác nhau, nên các số thiết lập được là 540; 504 940; 904 450; 954 950; 594 490 590 b, Ta có các số có 3 chữ số chia hết cho 4 được viết từ 4 chữ số đã cho là : 540; 504; 940; 904 c, Số chia hết cho 2 và 5 phải có tận cùng 0. Vậy các số cần tìm là 540; 450;490 940; 950; 590 . Bài 2: Với các chữ số 1, 2, 3, 4, 5 ta lập được bao nhiêu số có 4 chữ số chia hết cho 5? Giải: Một số chia hết cho 5 khi tận cùng là 0 hoặc 5. Với các số 1, 2, 3, 4, ta viết được 4 x 4 x 4 = 64số có 3 chữ số Vậy với các số 1, 2, 3, 4, 5 ta viết được 64 số có 5 chữ số (Có tận cùng là 5) b, Loại toán dùng dấu hiệu chia hết để điền vào chữ số chưa biết . ở dạng này: -Nếu số phải tìm chia hết cho 2 hoặc 5 thì trước hết dựa vào dấu hiệu chia hết để xác định chữ số tận cùng . -Dùng phương pháp thử chọn kết hợp với các dấu hiệu chia hết còn lại của số phải tìm để xác định các chữ số còn lại . Bài 3:Thay x và y vào 1996 xy để được số chia hết cho 2, 5, 9. Giải : Số phải tìm chia hết cho 5 vậy y phải bằng 0 hoặc 5. Số phải tìm chia hết cho 2 nên y phải là số chẵn Từ đó suy ra y = 0 . Số phải tìm có dạng 1996 ì 0. Số phải tìm chia hết cho 9 vậy (1 +9 + 9+ 6 + x )chia hết cho 9 hay (25 + x) chia hết cho 9 .Suy ra x = 2. Số phải tìm là : 199620. Bài 4: Cho n = a 378 b là số tự nhiên có 5 chữ số khác nhau. Tìm tất cả các chữ số a và b để thay vào ta dược số n chia hết cho 3 và 4 . Giải : – n chia hết cho 4 thì 8b phải chia hết cho 4. Vậy b = 0, 4 hoặc 8 – n có 5 chữ số khác nhau nên b = 0 hoặc 4 – Thay b = 0 thì n = a3780 + Số a3780 chia hết cho 3 thì a = 3, 6 hoặc 9 + Số n có 5 chữ số khác nhau nên a = 6 hoặc 9
  5. 12. – Nếu a : b dư 1 thì a – 1 chia hết cho b Bài 7 : Cho a = x459y. Hãy thay x, y bởi những chữ số thích hợp để khi chia a cho 2, 5, 9 đều dư 1 Giải : Ta nhận thấy : – a : 5 dư 1 nên y bằng 1 hoặc 6 – Mặt khác a : 2 dư 1 nên y phải bằng 1. Số phải tìm có dạng a= x4591 – x4591 chia cho 9 dư1 nên x + 4 + 5 + 9 + 1 chia cho 9 dư 1. vậy x chia hết cho 9 suy ra x = 0 hoặc 9. Mà x là chữ số đầu tiên của 1 số nên không thể bằng 0 vậy x = 9 Số phải tìm là : 94591 Bài 8 : Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6 Giải : Gọi số phải tìm là a thì a + 1 chia hết cho 2, 3, 4, 5, 6 và 7 như vậy a + 1 có tận cùng là chữ số 0 a + 1 không là số có 1 chữ số. Nếu a + 1 có 2 chữ số thì a + 1 tận cùng là chữ số 0 lại chia hết cho 7 nên a + 1 = 70 (loại vì 70 không chia hết cho 3) Trường hợp a + 1 có 3 chữ số thì có dạng xy0 . Số xy0 chia hết cho 4 nên y phải bằng 0, 2, 4, 6 hoặc 8 . Số xy0 chia hết cho 7 nên xy bằng 14; 21; 28; 35; 42; 49; 56; 63; 70; 77; 84; 91 hoặc 98 . Số xy0 chia hết cho 3 thì x + y + 0 chia hết cho 3 Kết hợp các điều kiện trên thì a + 1 = 420 vậy a = 419 Đáp số : 419. e. Vận dụng tính chất chia hết và chia còn dư để giải toán có lời văn Bài 9 : Tổng số HS khối 1 của một trường tiểu học là 1 số có 3 chữ số và chữ số hàng trăm là 3. Nếu xếp hàng 10 và hàng 12 đều dư 8, mà xếp hàng 8 thì không còn dư. Tính số HS khối 1 cuỉa trường đó. Giải : Theo đề bài thì số HS khối 1 đó có dạng 3ab. Các em xếp hàng 10 dư 8 vậy b = 8. Thay vào ta được số 3a8. Mặt khác, các em xếp hàng 12 dư 8 nên 3a8 – 8 = 3a0 phải chia hết cho 12 suy ra 3a0 chi hết cho 3. suy ra a = 0, 3, 6 hoặc 9. Ta có các số 330; 390 không chia hết cho 12 vì vậy số HS khối 1 là 308 hoặc 368 em. số 308 không chia hết cho 8 vậy số HS khối 1 của trường đó là 368 em. * Bài tập về nhà : Bài 1 : Cho 4 chữ số 0, 1, 5 và 8. Hãy lập các số có 3 chữ số khác nhau thoả mãn điều kiện a, Chia hết cho 6
  6. 14. = 43,57 x 2,6 x (630 – 630) = 43,57 x 2,6 x 0 = 0 c, 261545 171645   = 281545 17)115(45   = 281545 17451545   = 281545 281545   = A A = 1 d, 4145552…10741 6,053103245679,0123018,0   = 2 41419)551( 5310)6,03(4567)29,0(12318,0   = 4141928 53108,145678,11238,1   = 18 )53104567123(8,1 x = 18 100008,1 x = 1000 ở số chia, từ 1 tới 55 là các số mà 2 số liên tiếp hơn kém nhau 3 đơn vị nên từ 1 đến 55 có (55 – 1) :3 + 1 = 19 số). c, 9,8 + 8,7 + 7,6 + . . . + 2,1 – 1,2 – 2,3 – 3,4 – . . . – 8,9 = (19,8 – 8,9) + (8,7 – 7,8) + . . . +(2,1 – 1,2) = 0,9 + 0,9 + 0,9 + 0,9 + 0,9 = 0,9 x 5 = 4,5. Bài 3 :Tìm X : a,(X + 1) + (X + 4) + (X +7) +(X + 10) + . . . + (X + 28) = 155 Giải : (X + 1) + ( X + 4) + ( X + 7) + … +(X + 28) = 155 Ta nhận thấy 2 số hạnh liên tiếp của tổng hơn kém nhau 3 đơn vị nên tổng được viết đầy đủ sẽ có 10 số hạng (28 – 1) : 3 + 1 = 10) (X + 1 + X + 28) x 10 : 2 = 155 (X x 2 + 29) x 10 = 155 x 2 = 310 (Tìm số bị chia) X x 2 + 29 = 310 : 10 = 31 (Tìm thừa số trong 1 tích) X x 2 = 31 – 29 = 2 (Tìm số hạng trong 1 tổng) X = 2 : 2 = 1 ( Tìm thừa số trong 1 tích). Bài 4 : Viết các tổng sau thành tích của 2 thừa số : a, 132 + 77 + 198 b, 5555 + 6767 + 7878
  7. 15. c, 1997, 1997 + 1998, 1998 + 1999, 1999 Giải : a, 132 + 77 + 198 = 11 x 12 + 11 x 7 + 11 x 18 = 11 x (12 + 7 + 18) ( nhân 1 số với 1 tổng) = 11 x 37 b, 5555 + 6767 + 7878 = 55 x 101 + 67 x 101 + 78 x 101 = (55 + 67 + 78) x 101 = 200 x 101 c, 1997, 1997 + 1998, 1998 + 1999, 1999 = 1997 x 1,0001 + 1998 x 1,0001 + 1999 x 1,0001 = (1997 + 1998 + 1999) x 1,0001 = 5994 x 1,0001 ( nhân 1 tổng với 1 số) Bài 5 : Tìm giá trị số tự nhiên của a để biểu thức sau có giá trị lớn nhất, giá trị lớn nhất đó là bao nhiêu? B = 1990 + 720 : (a – 6) Giải : Xét B = 1990 + 720 : (a – 6) B lớn nhất khi thương của 720 : (a – 6) lớn nhất. Khi đó số chia phải nhỏ nhất, vì số chia khác 0 nên a – 6 = 1 (là nhỏ nhất) Suy ra : a = 7 Với a = 7 thì giá trị lớn nhất của B là : 1990 + 720 : 1 = 2710. * Bài tập về nhà Bài 1 : Thêm dấu phép tính và dấu ngoặc đơn vào 5 chữ số 3 để được kết quả lần lượt là : 1, 2, 3, 4, 5. Bài 2 : Tìm X : a, X x 1999 = 1999 x 199,8 b, (X x 0,25 + 1999) x 2000 = ((53 + 1999) x 2000 c, 71 + 65 x 4 = X X 140 + 260 Bài 3 : Tìm giá trị số của biểu thức sau : A = a + a + a + a + . . . + a – 99 (có 99 số a) Với a = 1001.
  8. 17. * * 2 1 * * 1 * * Ta xét số dư của phép chia thứ nhất : * * * – * * = 1 Vậy phép trừ đó phải là 100 – 99 = 1. Thay vào ta có : 1 0 0 * * * * 9 9 * * 2 1 * * 1 0 0 0 Xét tích riêng thứ nhất * x * * = 99 mà chữ số hàng chục của số chia phải lớn hơn hoặc bằng 5, nên số chia là 99. Suy ra tích riêng cuối cùng là 2 x 99 = 198 và số bị chia là 1 0098. Thay vào ta có phép chia : 1 009899 99 102 198 198 0 Bài toán 2 : Thay mỗi chữ số bằng các chữ số thích hợp trong phép tính sau : a) 30ab c: abc = 241 b) aba + ab = 1326 Giải : a) Ta viết lai thành phép nhân : 30abc = 241 x abc 30000 + abc = 241 x abc 30000 = 241 x abc – abc 30000 = (241 – 1) x abc 30000 = 240 x abc abc = 30000 : 240 abc = 125 b) Ta có : abab = 101 x ab 101 x ab + ab = 1326
  9. 18. 102 x ab = 1326 ab = 13 Bài 3 : Tìm chữ số a và b 1ab x 126 = 201ab Giải : 1ab x ( 25 + 1) = 2000 + 1ab ( cấu tạo số) 1ab x 125 + 1ab = 2000 + 1ab (nhân 1số với 1 tổng) 1ab x 125 = 2000 (hai tổng bằng nhau cùng bớt đi 1 số hạng như nhau) 1ab = 2000 : 125 = 160 160 x 125 = 20210 Vậy a = 6; b = 0 Bài 4 : Điền các chữ số vào dấu hỏi và vào các chữ trong biểu thức sau : a, (? ? x ? + a) x a = 123 b, (? ? x ? – b) x b = 201 Giải : a, Vì 123 = 1 x 123 = 3 x 41 nên a =1 hay = 3 – Nếu a =1 ta có (? ? x ? + 1) x 1 = 123 Hay ?? x ? = 123 : 1 – 1 = 122 122 bằng 61 x 2. Vậy ta có (61 x 2 + 1) x 1 = 123 (1) – Nếu a = 3. Ta có (?? x ? + 3) x 3 = 123 Hay ?? x ? = 123 : 3 – 3 = 38 38 = 1 x 38 hay = 2 x 19 Vậy ta có : (38 + 1 + 3) x 3 = 123 (2) Hoặc : (19 x 2 + 3) = 123 (3). Vậy, Bài toán có 3 đáp số (1), (2), (3). b, Vì 201 =1 x 201 = 3 x 67, nên b =1 hay 3 – Nếu b = 1 ta có : (?? x ? – 1) x 1 = 201 Nên không tìm được các giá trị thích hợp cho ?? x ? – Nếu b = 3. Ta có (?? x ? – 3) x 3 = 201 Hay ?? x ? = 201 : 3 + 3 = 70 70 = 1 x 70 = 2 x 35 = 5 x 14 = 7 x 10 Nêncó các kết quả : (70 x1 – 3) x 3 = 2001 (35 x 2 – 3) x 3 = 2001
  10. 19. (14 x 5 – 3) x 3 = 2001 (70 x 7 – 3) x 3 =2001. Bài 5 : Tìm chữ sốa, b, c trong phép nhân các số thập phân : a,b x a,b = c,ab Giải : a,b x a,b = c,ab a,b x 10 x a,b x 10 = c,ab x 10 x 10 (Gấp 100 lần) ab x ab = cab ab x ab = c x 100 + ab 9 (cấu tạo số) ab x ab – ab = c x 100 (Tìm số hạng trong 1 tổng) ab x (ab – 1) = c x 4 x 25 ab – 1 hay ab : 25 và nhỏ hơn 30 để cab là số có 3 chữ số Vậy ab hoăc ab -1 là 25 Hơn nữa ab – 1 và ab là 2 số tự nhiên liên tiếp nên : Xét : 24 x 25 và 25 x 26 Loại 25 x 26 vì c = 26 x 25 : 100 = 6,5 (không được) Với ab – 1 = 24, ab = 25 thì phép tính đó là: 2,5 x 2,5 = 6,25 Vậy : a = 2, b = 5 và c = 6. * Bài tập về nhà Bài 1 : Tìm chữ số a, b, c, d : ab x cd = bbb Bài 2 : Tìm các chữ số a, b, c : abc – cb = ac Bài 3 : Điền chữ số vào các chữ và dấu hỏi : abcd x dcba = ?????000 Bài 4 : Tìm các chữ số a, b, c, d, y để : a,b x c,d = y,yy Dạng 6 : Các bài toán về điền dấu phép tính *Trongdạng toán này người ta thường cho một dãy chữ số, ta phải điền dấu của 4 phép tính ( +,- ,x hoặc : )và dấu ngoặc xen giữa các chữ số để được phép tính có kết quả cho trước. Bài 1: Hãy điền thêm dấu phép tính vào dãy số sau: 6 6 6 6 6 để đượcbiểu thức có giá trị lần lượt bằng : 0, 1, 2, 3, 4, 5, 6 Giải: a, Bằng 0 : ( 6 – 6 ) x ( 6 + 6 +6 )
  11. 20. (6 – 6 ) : ( 6 + 6 + 6 ) … b, Bằng 1 : 6 + 6 – 66 : 6 6 – ( 66 : 6 – 6 ) … c, Bằng 2 : ( 6 + 6 ) : 6 ì 6 : 6 ( 6 x 6 : 6 + 6 ) : 6 6 : (6 ì 6 : ( 6 + 6 )) … d, Bằng 3 : 6 : 6 + ( 6 + 6 ) : 6 6 : ( 6 : 6 + 6 : 6 ) … e, Bằng 4 : 6 – ( 6 : 6 + 6 : 6 ) (6 + 6 + 6 + 6 ) : 6 … g, Bằng 5 : 6 – 6 : 6 x 6 : 6 6 – 6 ì 6 : 6: 6 … h, Bằng 6 : 66 – 66 + 6 6 : 6 – 6 : 6 + 6 6 ì 6 – 6 x 6 + 6 … Dạng 7: Vận dụng tính chất của các phép tính để tìm nhanh kết quả của dãy tính . Lưu ý : -T/c giao hoán : a + b = b + a và a x b = b x a – T/c kết hợp : ( a + b )+ c = a + ( b + c ) và 🙁 a x b ) x c = a x ( b x c ) – Nhân với 1 và chia cho 1 a x 1 = a ; a : a = 1 và a : 1 = a – Cộng và nhân với 0 : a + 0 = a và a x 0 = 0 – Nhân 1 số với 1 tổng và 1 hiệu : a x (b + c) = a x b + a x c a x (b – c) = a x b – a x c * Bài tập vận dụng : Bài 1 : Thực hiên các phép tính sau bằng cách nhanh nhất a, 1996 + 3992 + 5988 +7948; b, 2 x 3 x 4 x 8 x 50 x 25 x 125;
  12. 21. c, (45 x 46 + 47 x 48) x (51 x 52 – 49 x 48) x (45 x 128 – 90 x 64) x (1995 x 1996 + 1997 x 1998); d, 1996199519961997 198511199719961998 xx xx   Giải : a, Ta có : 1996 + 3992 + 5988 + 7984 = 1 x 1996 + 2 x 1996 + 3 x 1996 + 4 x 1996 = (1 + 2 + 3 + 4) x 1996 = 10 x 1996 = 19960 b, 2 x 3 x 4 x 8 x 50 x 25 x 125 = 3 x 2 x 4 x 50 x 8 x 25 x 125 = 3 x (2 x 50) x (4 x 25) x (8 x 125) = 30 000 000. c, Ta nhận thấy : 45 x 128 – 90 x 64 = 45 x (2 x 64) – 90 x 64 = (45 x 2) x 64 – 90 x 64 = 90 x 64 – 90 = 0 Trong 1 tích có 1 thừa số bằng 0. Vậy tích đó bằng 0, tức là : (45 x 46 + 47 x 48) x (51 x 52 – 49 x 48) x (45 x 128 – 90 x 64) x (1995 x 1996 + 1997 x 1998) = 0 d, 1996199519961997 198511199719961988 xx xx   = )19951997(1996 198511)11996(19961988   x xx = 21996 19851111199619961988 x xx  = 19962 199619961999 x x  = 19962 1996)11999( x x = 19962 19962000 x x = 1000 *Bài tập về nhà : Bài 1 : Hãy điền thêm dấu cộng (+) xen giữa các chữ số
  13. 23. Các bài toán giải bằng phương pháp lập bảng thường xuất hiện hai nhóm đối tượng (chẳng hạn tên người và nghề nghiệp, hoặc vận động viên và giải thưởng, hoặc tên sách và màu bìa, … ). Khi giải ta thiết lập 1 bảng gồm các hàng và các cột. Các cột ta liệt kê các đối tượng thuộc nhóm thứ nhất, còn các hàng ta liệt kê các đối tượng thuộc nhóm thứ hai. Dựa vào điều kiện trong đề bài ta loại bỏ đần (Ghi số 0) các ô (là giao của mỗi hàng và mỗi cột). Những ô còn lại (không bị loại bỏ) là kết quả của bài toán. * Bài tập vận dụng : Bài 1 : Trong 1 buổi học nữ công ba bạn Cúc, Đào, Hồng làm 3 bông hoa cúc, đào, hồng. Bạn làm hoa hồng nói với cúc : Thế là trong chúng ta chẳng ai làm loại hoa trùng với tên mình cả! Hỏi ai đã làm hoa nào? Giải : Ta có bảng chân lí sau : cúc đào hồng Cúc không có không Đào không có Hồng có không Nhìn vào bảng ta thấy : Cúc làm hoa đào Đào làm hoa hồng Hồng làm hoa cúc. Bài 2 : Ba người thợ hàn, thợ tiện, thợ điện đang ngồi trò chuyện trong giờ giải lao. Người thợ hàn nhận xét : Ba ta làm nghề trùng với tên của 3 chúng ta nhưng không ai làm nghề trùng với tên của mình cả. Bác Điện hưởng ứng : Bác nói đúng. Em cho biết tên và nghề nghiệp của mỗi người thợ đó. Giải : Nghề Tên hàn tiện điện Hàn 0 x Tiện x 0 Điện 0 x 0 Bác điện hưởng ứng lời bác thợ hàn nên bác Điện không làm thợ hàn  Bác Điện làm thợ tiện. Bác Hàn phải làm thợ điện. Bác Điện phải làm thợ hàn.
  14. 24. Bài 3 : Năm người thợ tên là : Da, Điện, Hàn, Tiện và Sơn làm 5 nghề khác nhau trùng với tên của tên của 5 người đó nhưng không có ai tên trùng với nghề của mình. Tên của bác thợ da trùng với nghề của anh vợ mình và vợ bác chỉ có 2 anh em. Bác tiện không làm thợ sơn mà lại là em rể của bác thợ hàn. Bác thợ sơn và bác thợ da là 2 anh em cùng họ. Em cho biết bác da và bác tiện làm nghề gì? Giải : Tên Nghề Da Điện Hàn Tiện Sơn da 0 0 điện 0 0 x hàn x 0 0 tiện 0 sơn 0 0 0 Bác Tiện không làm thợ sơn. Bác Tiện là em rể của bác thợ hàn nên bác Tiện không làm thợ hàn  Bác Tiện chỉ có thể là thợ da hoặc thợ điện. Nếu bác Tiện làm thợ da thì bác Da là thợ điện. Như vậy bác Tiện vừa là em rể của bác thợ tiện vừa là em rể của bác thợ hàn mà vợ bác Tiện chỉ có 2 anh em. Điều này vô lí.  Bác Tiện là thợ điện Bác Da và bác thợ sơn là 2 anh em cùng họ nên bác Da không phải là thợ sơn. Theo lập luận trên bác Da không là thợ tiện  Bác Da là thợ hàn. Bài 4 : Trên bàn là 3 cuốn sách giáo khoa : Văn, Toán và Địa lí được bọc 3 màu khác nhau : Xanh, đỏ , vàng. Cho biết cuốn bọc bìa màu đỏ đặt giữa 2 cuốn Văn và Địa lí, cuốn Địa lí và cuốn màu xanh mua cùng 1 ngày. Bạn hãy xác định mỗi cuốn sách đã bọc bìa màu gì? Giải : Ta có bảng sau : Tên sách Màu bìa Văn Toán Địa Xanh x 1 2 0 3 đỏ 0 4 x 5 0 6 vàng 7 8 x 9
  15. 25. Theo đề bài “Cuốn bìa màu đỏ đặt giữa 2 cuốn Văn và Địa lí” . Vậy cuốn sách Văn và Địa lí đều không đặt màu đỏ cho nên cuốn toán phải bọc màu đỏ. Ta ghi số 0 vào ô 4 và 6, đánh dấu x vào ô 5. Mặt khác, “Cuốn Địa lí và cuốn màu xanh mua cùng ngày”. Điều đó có nghĩa rằng cuốn Địa lí không bọc màu xanh. Ta ghi số 0 vào ô 3. – Nhìn vào cột thứ 4 ta thấy cuốn địa lí không bọc màu xanh, cũng không bọc màu đỏ. Vậy cuốn Địa lí bọc màu vàng. Ta đánh dấu x vào ô 9. – Nhìn vào cột 2 và ô 9 ta thấy cuốn Văn không bọc màu đỏ, cũng không bọc màu vàng. Vậy cuốn Văn bọc màu xanh. Ta đánh dấu x vào ô 1. Kết luận : Cuốn Văn bọc màu xanmh, cuốn Toán bọc màu đỏ, cuốn Địa lí bọc màu vàng. *Bài tập về nhà : Bài 1 : Giờ Văn cô giáo trả bài kiểm tra. Bốn bạn Tuấn, Hùng, Lan, Quân ngồi cùng bàn đều đạt điểm 8 trở lên. Giờ ra chơi Phương hỏi điểm của 4 bạn, Tuấn trả lời : – Lan không đạt điểm 10, mình và Quân không đạt điểm 9 còn Hùng không đạt điểm 8. Hùng thì nói : – Mình không đạt điểm 10, Lan không đạt điểm 9 còn Tuấn và Quân đều không đạt điểm 8. Bạn hãy cho biết mỗi người đã đạt mấy đioểm?. Bài 2 : ở 3 góc vườn trồng cây cảnh của ông nội trồng 4 khóm hoa cúc, huệ, hồng và dơn. Biết rằng hai góc vườn phía tây và phía bắc không trồng huệ. Khóm huệ trồng giữa khóm cúc và góc vườn phía nam, còn khóm dơn thì trồng giữa khóm hồng và góc vườn phía bắc. Bạn hãy cho biết mỗi góc vườn ông nội đã trồng hoa gì? Bài 3 : Ba thày giáo dạy 3 mônvăn, toán, lí trò chuyện với nhau. Thày dạy lí nhận xét : “Ba chúng mình có tên trùng với 3 môn chúng ta dạy, nhưng không ai có tên trùng với môn mình dạy”. Thày dạy toán hưởng ứng : “Anh nói đúng”. Em hãy cho biết mỗi thày dạy môn gì? Bài 4 : Trong đêm dạ hội ngoại ngữ, 3 cô giáo dạy tiếng Nga, tiếng Anh và tiếng Nhật được giao phụ trách. Cô Nga nói với các em : “Ba cô dạy 3 thứ tiếng trùng với tên của các cô, nhưng chỉ có 1 cô có tên trùng với thứ tiếng mình dạy”. Cô dạy tiếng Nhật nói thêm : “Cô Nga đã nói đúng” rồi chỉ vào cô Nga nói tiếp : “Rất tiếc cô tên là Nga mà lại không dạy tiếng Nga”. Em hãy cho biết mỗi cô giáo đã dạy tiếng gì? Bài 5 : Ba thày giáo Văn, Sử, Hoá dạy 3 môn văn, sử, hoá trong đó chỉ có 1 thày có tên trùng với môn mình dạy. Hỏi mỗi thày dạy môn gì, biết thày dạy môn hoá ít tuổi hơn thày vă thày sử.
  16. 26. II/ PHƯƠNG PHÁP LỰA CHỌN TÌNH HUỐNG * Bài tập vận dụng : Bài 1 : Trong kì thi HS giỏi tỉnh có 4 bạn Phương, Dương, Hiếu, Hằng tham gia. Được hỏi quê mỗi người ở đâu ta nhận được các câu trả lời sau : Phương : Dương ở Thăng Long còn tôi ở Quang Trung Dương : Tôi cũng ở Quang Trung còn Hiếu ở Thăng Long Hiếu : Không, tôi ở Phúc Thành còn Hằng ở Hiệp Hoà Hằng : Trong các câu trả lời trên đều có 1 phần đúng 1 phần sai. Em hãy xác định quê của mỗi bạn. Giải : Vì trong mỗi câu trả lời đều có 1 phần đúng và 1 phần sai nên có các trường hợp : – Giả sử Dương ở Thăng Long là đúng  Phương ở Quang Trung là sai  Hiếu ở Thăng Long là đúng Điều này vô lí vì Dương và Hiếu cùng ở Thăng Long. – Giả sử Dương ở Thăng Long là sai  Phương ở Quang Trung và do đó Dương ở Quang Trung là sai  Hiếu ở Thăng Long Hiếu ở Phúc Thành là sai  Hằng ở Hiệp Hoà Còn lại  Dương ở Phúc Thành. Bài 2 : Năm bạn Anh, Bình, Cúc, Doan, An quê ở 5 tỉnh : Bắc Ninh, Hà Tây, Cần Thơ, Nghệ An, Tiền Giang. Khi được hỏi quê ở tỉnh nào, các bạn trả lời như sau : Anh : Tôi quê ở Bắc Ninh còn Doan ở Nghệ An Bình : Tôi cũng quê ở Bắc Ninh còn Cúc ở Tiền Giang Cúc : Tôi cũng quê ở Bắc Ninh còn Doan ở Hà Tây Doan : Tôi quê ở Nghệ An còn An ở Cần Thơ An : Tôi quê ở Cần Thơ còn Anh ở Hà Tây Nếu mỗi câu trả lời đều có 1 phần đúng và 1 phhàn sai thì quê mỗi bạn ở đâu? Giải : Vì mỗi câu trả lời có 1 phần đúng và 1 phần sai nên có các trường hợp : – Nếu Anh ở Bắc Ninh là đúng  Doan không ở Nghệ An .  Bình và Cúc ở Bắc Ninh là sai  Cúc ở Tiền Giang và Doan ở Hà Tây. Doan ở Nghệ An là sai  An ở Cần Thơ và Anh ở Hà Tây là sai. Còn bạn Bình ở Nghệ An (Vì 4 bạn quê ở 4 tỉnh rồi) – Nếu Anh ở Bắc Ninh là sai  Doan ở Nghệ An Doan ở Hà Tây là sai  Cúc ở Bắc Ninh. Từ đó Bình ở Bắc Ninh phải sai  Cúc ở Tiền Giang Điều này vô lí vì cúc vừa ở Bắc Ninh vừa ở Tiền Giang (loại)
  17. 27. Vậy : Anh ở Bắc Ninh; Cúc ở Tiền Giang; Doan ở Hà Tây; An ở Cần Thơ và Bình ở Nghệ An. Bài 3 : Cúp Tiger 98 có 4 đội lọt vào vòng bán kết : Việt Nam, Singapor, Thái Lan và Inđônêxia. Trước khi vào đấu vòng bán kết ba bạn Dũng, Quang, Tuấn dự đoán như sau Dũng : Singapor nhì, còn Thái Lan ba. Quang : Việt Nam nhì, còn Thái Lan tư. Tuấn : Singapor nhất và Inđônêxia nhì. Kết quả mỗi bạm dự đoán đúng một đội và sai một đội. Hỏi mỗi đội đã đạt giải mấy ? Giải : – Nếu Singapo rđạt giải nhì thì Singapo r không đạt giải nhất.Vậy theo Tuấn thì Inđônê xia đạt giải nhì. Điều này vô lý, vì hai đội đều đạt giải nhì . – Nếu Singap rkhông đạt giải nhì thì theo Dũng, Thái Lan đạt giải ba. Như vậy Thái Lan không đạt giải tư. Theo Quang, Việt Nam đạt giải nhì.Thế thì Inđônê xiakhông đạt giải nhì. Vậy theo Tuấn,Singapo r đạt giải nhất, cuối cùng còn đội Inđônê xia đạt giải tư. Kết luận : Thứ tự giải của các đội trong cúp Tiger 98 là : Nhất : Singapor ; Nhì : Việt Nam. Ba : Thái Lan ; Tư : Inđônêxia Bài 4 : Gia đình Lan có 5 người :ông nội, bố, mẹ, Lan và em Hoàng. Sáng chủ nhật cả nhà thích đi xem xiếc nhưng chỉ mua được 2 vé. Mọi người trong gia đình đề xuất 5 ý kiến : Hoàng và Lan đi Bố và mẹ đi Ông và bố đi Mẹ và Hoàng đi Hoàng và bố đi. Cuối cùng mọi người đồng ý với đề nghị của Lan vì theo đề nghị đó thì mỗi đề nghị của 4 người còn lại trong gia đình đều được thoả mãn 1 phần. Bạn hãy cho biết ai đi xem xiếc hôm đó. Giải : Ta nhận xét : – Nếu chọn đề nghị thứ nhất thì đề nghị thứ hai bị bác bỏ hoàn toàn. Vậy không thể chọn đề nghị thứ nhất. – Nếu chọn đề nghị thứ hai thì đề nghị thứ nhất bị bác bỏ hoàn toàn. Vậy không thể chọn đề nghị thứ hai. – Nếu chọn đề nghị thứ ba thì đề nghị thứ tư bị bác bỏ hoàn toàn. Vậy không thể chọn đề nghị thứ ba. – Nếu chọn đề nghị thứ tư thì đề nghị thứ ba bị bác bỏ hoàn toàn. Vậy không thể chọn đề nghị thứ tư.
  18. 28. – Nếu chọn đề nghị thứ năm thì cả 4 đề nghị trên đều thoả mãn một phần và bác bỏ một phần. Vậy sáng hôm đó Hoàng và bố đi xem xiếc. *Bài tập về nhà : Bài 1 : Trong 1 cuộc chạy thi 4 bạn An, Bình, Cường, Dũng đạt 4 giải : nhất, nhì, ba, tư. Khi được hỏi : Bạn Dũng đạt giải mấy thì 4 bạn trả lời : An : Tôi nhì, Bình nhất. Bình : Tôi cũng nhì, Dũng ba. Cường : Tôi mới nhì, Dũng tư. Dũng : 3 bạn nói có 1 ý đúng 1 ý sai. Em cho biết mỗi bạn đạt mấy? Bài 2 : Tổ toán của 1 trường phổ thông trung họccó 5 người : Thầy Hùng, thầy Quân, cô Vân, cô Hạnh và cô Cúc. Kỳ nghỉ hè cả tổ được 2 phiếu đi nghỉ mát. Mọi người đều nhường nhau, thày hiệu trưởng đề nghị mỗi người đề xuất 1 ý kiến. Kết quả như sau : 1. Thày Hùng và thày Quân đi. 2. Thày Hùng và cô Vân đi 3. Thày Quân và cô Hạnh đi. 4. Cô Cúc và cô Hạnh đi. 5. Thày Hùng và cô Hạnh đi. Cuối cùng thày hiệu trưởng quyết định chọn đề nghị của cô Cúc, vì theo đề nghị đó thì mỗi đề nghị đều thoả mãn 1 phần và bác bỏ 1 phần. Bạn hãy cho biết ai đã đi nghỉ mát trong kỳ nghỉ hè đó? Bài 3 : Ba bạn Quân, Hùng và Mạnh vừa đạt giải nhất, nhì và ba trong kỳ thi toán quốc tế. Biết rằng : 1. Không có học sinh trường chuyên nào đạt giải cao hơn Quân. 2. Nếu Quân đạt giải thấp hơn một bạn nào đó thì Quân không phải là học sinh trường chuyên. 3. Chỉ có đúng 1 bạn không phải là học sinh trường chuyên 4. Nếu Hùng và Mạnh đạt giải nhì thì mạnh đạt giải cao hơn bạn quê ở Hải Phòng. Bạn hãy cho biết mỗi bạn đã đạt giải nào? bạn nào không học trường chuyên và bạn nào quê ở Hải Phòng. Bài 4 : Thày Nghiêm được nhà trường cử đưa 4 học sinh Lê, Huy, Hoàng, Tiến đi thi đấu điền kinh. Kết quả có 3 em đạt giải nhất, nhì, ba và 1 em không đạt giải. Khi về trường mọi người hỏi kết quả các em trả lời như sau : Lê : Mình đạt giải nhì hoăc ba. Huy : Mình đạt giải nhất. Hoàng : Mình đạt giải nhất.
  19. 29. Tiến : Mình không đạt giải. Nghe xong thày Nghiêm mỉm cười và nói : “Chỉ có 3 bạn nói thật, còn 1 bạn đã nói đùa”. Bạn hãy cho biết học sinh nào đã nói đùa, ai đạt giải nhất và ai không đạt giải. Bài 5 : Cúp Euro 96 có 4 đội lọt vào vòng bán kết : Đức, Cộng hoà Séc, Anh và Pháp. Trước khi thi đấu 3 bạn Hùng, Trung vàĐức dự đoán như sau : Hùng : Đức nhất và Pháp nhì Trung : Đức nhì và Anh ba Đức : Cộng hoà Séc nhì và Anh tư. Kết quả mỗi bạndự đoán một đội đúng, một đọi sai. Hỏi mỗi đội đã đạt giải mấy? III/ GIẢI BẰNG BIỂU ĐỒ VEN Trong khi giải bài toán, người ta thường dùng những đường cong kín để mô tả mối quan hệ giữa các đại lượng trong bài toán. Nhờ sự mô tả này mà ta giải được bài toán 1 cách thuận lợi. Những đường cong như thế gọi là biểu đồ ven. Bài 1 : Để phục vụ cho hội nghị quốc tế, ban tổ chức đã huy động 30 cán bộ phiên dịch tiếng Anh, 25 cán bộ phiên dịch tiếng Pháp, trong đó 12 cán bộ phiên dịch được cả 2 thứ tiếng Anh và Pháp. Hỏi : a, Ban tổ chức đã huy động tất cả bao nhiêu cán bộ phiên dịch cho hội nghị đó. b, Có bao nhiêu cán bộ chỉ dịch được tiếng Anh, chỉ dịch được tiếng Pháp? Giải : Số lượng cán bộ phiên dịch được ban tổ chức huy động cho hội nghị ta mô tả bằng sơ đồ ven. Tiếng Pháp Tiếng Anh Nhìn vào sơ đồ ta có : Số cán bộ chỉ phiên dịch được tiếng Anh là : 30 – 12 = 18 (người) Số cán bộ chỉ phiên dịch được tiếng Pháp là : 25 – 12 = 13 (người) Số cán bộ phiên dịch được ban tổ chức huy động là : 30 + 13 = 43 (người) Đáp số : 43; 18; 13 người. Bài 2 : Lớp 9A có 30 em tham gia dạ hội tiếng Anh và tiếng Trung, trong đó có 25 em nói được tiếng Anh và 18 em nói được tiếng trung. Hỏi có bao nhiêu bạn nói được cả 2
  20. 30. thứ tiếng? Giải : Các em lớp 9A tham gia dạ Tiếng Trung Tiếng Anh hội được mô tả bằng sơ đồ 18 25 ven. Số học sinh chỉ nói được tiếng Trung là : 30 – 25 = 5 (em) Số học sinh chỉ nói được tiếng Anh là : 30 – 18 = 12 (em) Số em nói được cả 2 thứ tiếng là :30 – (5 + 12) = 13 (em) Đáp số : 13 em. Bài 3 : Có 200 học sinh trường chuyên ngữ tham gia dạ hội tiếng Nga, Trung và Anh. Có 60 bạn chỉ nói được tiếng Anh, 80 bạn nói được tiếng Nga, 90 bạn nói được tiếng Trung. Có 20 bạn nói được 2 thứ tiếng Nga và Trung. Hỏi có bao nhiêu bạn nói được 3 thứ tiếng? Giải : Tiếng Anh 3 Tiếng Nga 60 80 Tiếng Trung 90 Số học sinh nói được tiếng Nga học tiếng Trung là : 200 – 60 = 140 (bạn) Số học sinh nói được 2 thứ tiếng Nga và Trung là : (90 + 80) – 140 = 30 (bạn) Số học sinh nói được cả 3 thứ tiếng là : 30 – 20 = 10 (bạn) Đáp số : 10 bạn. Bài 4 : Trong 1 hội nghị có 100 đại biểu tham dự, mỗi đại biểu nói được một hoặc hai trong ba thứ tiếng : Nga, Anh hoặc Pháp. Có 39 đại biểu chỉ nói được tiếng Anh, 35 đại
  21. 31. biểu nói được tiếng Pháp, 8 đại biểy nói được cả tiếng Anh và tiếng Nga. Hỏi có bao nhiêu đại biểu chỉ nói được tiếng Nga? Anh 39 Pháp 35 Nga Số đại biểu nói được tiếng Pháp hoặc Nga là : 100 – 39 = 61 (đại biểu) Số đại biểu nói được tiếng Nga nhưng không nói được tiếng Pháp là : 61 – 35 = 26 (đại biểu) Số đại biểu chỉ nói được tiếng Nga là : 26 – 8 = 18 (đại biểu) Đáp số : 18 đại biểu. *Bài tập về nhà : Bài 1 : Lớp 5A có 15 ban đăng kí học ngoại khoá môn Văn, 12 bạn đăng kí học ngoại khoá môn Toán, trong đó có 7 bạn đăng kí học cả Văn và Toán . Hỏi a, Có bao nhiêu bạn đăng kí học Văn hoặc Toán? b, Có bao nhiêu bạn chỉ đăng kí học Văn? chỉ đăng kí học Toán? Bài 2 : Trên 1 hội nghị các đại biểu sử dụng một hoặc hai trong 3 thứ tiếng : Nga, Anh hoặc Pháp. Có 30 đại biểu nói được tiếng Pháp, 35 đại biểu chỉ nói được tiếng Anh, 20 đại biểu chỉ nói được tiếng Nga và 15 đại biểu nói được cả tiếng Anh và tiếng Nga. Hỏi hội nghị đó có bao nhiêu đại biểu tham dự? Bài 3 : Bốn mươi em học sinh của trường X dự thi 3 môn : ném tạ, chạy và đá cầu. Trong đội có 8 em chỉ thi ném tạ, 20 em thi chạy và 18 em thi đá cầu. Hỏi có bao nhiêu em vừa thi chạy vừa thi đá cầu? Bài 4 : Đội tuyển thi học sinh giỏi của tỉnh X có 25 em thi Văn và 27 em thi toán, trong đó có 18 em vừa thi Văn vừa thi toán. Hỏi đội tuyển học sinh giỏi 2 môn Văn và Toán của tỉnh X có bao nhiêu em? IV/ PHƯƠNG PHÁP SUY LUẬN ĐƠN GIẢN * Bài tập vận dụng : Bài 1 : Trong 1 ngôi đền có 3 vị thần ngồi cạnh nhau. Thần thật thà (luôn luôn nói thật) ; Thần dối trá (luôn nói dối) ; Thần khôn ngoan (lúc nói thật, lúc nói dối). Một nhà toán học hỏi 1 vị thần bên trái : Ai ngồi cạnh ngài?
  22. 32. – Thần thật thà. Nhà toán học hỏi người ở giữa : – Ngài là ai? – Là thần khôn ngoan. Nhà toán học hỏi người bên phải – Ai ngồi cạnh ngài? – Thần dối trá. Hãy xác định tên của các vị thần. Giải : Cả 3 câu hỏi của nhà toán học đều nhằm xác định 1 thông tin : Thần ngồi giữa là thần gì? Kết quả có 3 câu trả lời khác nhau. Ta thấy thần ngồi bên trái không phải là thần thật thà vì ngài nói người ngồi giữa là thần thật thà. Thần ngồi giữa cũng không phải là thần thật thà vì ngài nói : Tôi là thần khôn ngoan  Thần ngồi bên phải là thần thật thà  ở giữa là thần dối trá  ở bên trái là thần khôn ngoan. Bài 2 : Một hôm anh Quang mang quyển Album ra giới thiệu với mọi người. Cường chỉ vào đàn ông trong ảnh và hỏi anh Quang : Người đàn ông này có quan hệ thế nào với anh? Anh Quang bèn trả lời : Bà nội của chị gái vợ anh ấy là chị gái của bà nội vợ tôi. Bạn cho biết anh Quang và người đàn ông ấy quan hẹ với nhau như thế nào? Giải : Bà nội của chị gái vợ anh ấy cũng chính là bà nội của vợ anh ấy. Bà nội của vợ anh ấy là chị gái của bà nội vợ anh Quang. Vợ anh ấy và vợ anh Quang là chị em con dì con già. Do vậy anh Quang và người đàn ông ấy là 2 anh em rể họ. Bài 3 : Có 1 thùng đựng 12 lít dầu hoả. Bằng 1 can 9 lít và 1can 5 lít làm thế nào để lấy ra được 6 lít dầu từ thùng đó : Giải : Lần Can 9 lít Can 5 lít Thùng 12 lít 1 0 5 7 2 5 0 7 3 5 5 2 4 9 1 2 5 0 1 11 6 1 0 11 7 1 5 6 Bài 4 : ở 1 xã X có 2 làng : Dân làng A chuyên nói thật, còn dân làng B chuyên nói dối. Dân 2 làng thường qua lại thăm nhau. Một chàng thanh niên nọ về thăm bạn ở làng A. Vừa bước vào xã X, dang ngơ ngác chưa biết đây là làng nào, chàng thanh niên gặp ngay
  23. 33. một cô gái và anh ta hỏi người này một câu. Sau khi nghe trả lời chàng thanh niên bèn quay ra (vì biết chắc mình đang ở làng B) và sang tìm bạn ở làng bên cạnh. Bạn hãy cho biết câu hỏi đó thế nào và ccâu trả lời đó ra sao mà chàng thanh niên lại khẳng định chắc chắn như vậy phân tích : Để nge xong câu trả lời người thanh niên đó có thể khẳng định mình đang đứng trong làng A hay làng B thì anh ta phải nghĩ ra 1 câu hỏi sao cho câu trả lời của cô gái chỉ phụ thuộc vào họ đang đứng trong làng nào. Cụ thể hơn : cần đặt câu hỏi để cô gái trả lời là “phải”, nếu họ đang đứng trong làng A và “không phải”, nếu họ đang đứng trong làng B. Giải : Câu hỏi của người thanh niên đó là : “Có phải chị người làng này không?”. Trường hợp 1 : Họ đang đứng trong làng A : Nếu cô gái là người làng A thì câu trả lời là “phải” (vì dân làng A chuyên nói thật) ; Nếu cô gái là người làng B thì câu trả lời cũng là “phải” (vì dân làng đó nói dối). Trường hợp 2 : Họ đang đứng trong làng B : Nếu cô gái là người làng A thì câu trả lời là : “không phải” ; Nếu cô gái là người làng B thì câu trả lời cũng là : “không phải”. Như vậy, Nếu họ đang đứng trong làng A thì câu trả lời chỉ có thể là “phải”, còn nếu họ đang đứng trong làng B thì câu trả lời chỉ có thể là “không phải”. Người thanh niên quyết định quay ra, vì anh đã nghe câu trả lời là “không phải”. * Bài tập về nhà Bài1 : Năm vận động viên Tuấn, Tú, Kỳ, Anh, Hợp chạy thi. Kết quả không có 2 bạn nào về đích cùng 1 lúc. Tuấn về đích trước Tú nhưng sau hợp. Còn Hợp và Kỳ không về đích liền kề nhau. Anh không về đích liền kề với Hợp, Tuấn và Kỳ. Bạn hãy xác định thứ tự về đích của 5 vận động viên nói trên. Bài 2 : Hoàng đế nước nọ mở cuộc thi tài để kén phò mã. Giai đoạn cuối của cuộc thi, hoàng đế chọn được 3 chàng trai đều thông minh. Nhà vua đang phân vân không biết chọn ai thì công chúa đưa ra 1 sáng kiến : Lấy 5 chiếc mũ, 3 chiếc màu đỏ và 2 chiếc màu vàng để ở trên bàn rồi giao hẹn : “Bây giờ cả 3 chàng đều bịt mắt lại, tôi đội lên đầu mỗi người 1 chiếc mũ và 2 mũ còn lại tôi sẽ cất đi. Khi bỏ băng bịt mắt ra , ai là người đầu tiên nói đúng mình đang đội mũ gì thì sẻ được kén làm phò mã” Vừa bỏ băng bịt mắt, 3 chàng trai im lặng quan sát lẫn nhau, lát sau hoàng tử nước Bỉ nói to lên rằng :” Tôi đội mũ màu đỏ” . Thế là chàng được công chúa kén làm chồng. Bạn hãy cho biết hoàng tử nước Bỉ đã suy luận như thế nào? Bài 3 : Lớp 12A cử 3 bạn Hạnh, Đức, Vinh đi thi học sinh giỏi 6 môn Văn, Toán, Lí, Hoá, Sinh vật và Ngoại ngữ cấp thành phố, mỗi bạn dự thi 2 môn. Nhà trường cho biết về các em như sau :
  24. 35. I/SỐ VÀ CHỮ SỐ 1. Những kiến thức cần lưu ý a, Có mười chữ số là 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Khi viết 1 số tự nhiên ta sử dụng mười chữ số trên. chữ số đầu tiên kể từ bên trái của 1 số tự nhiên phải khác 0. b, Phân tích cấu tạo của một số tự nhiên : ab = a x 10 + b abc = a x 100 + b x 10 + c = ab x 10 + c abcd = a x 1000 + b x 100 + c x 10 + d = abc x 10 + d = ab x 100 + cd c, Quy tắc so sánh hai số tự nhiên : c.1- Trong 2 số tự nhiên, số nào có chữ số nhiều hơn thì số đó lớn hơn. c.2- Nếu 2 số có cùng chữ số thì số nào có chữ số đầu tiên kể từ trái sang phảilớn hơn sẽ lớn hơn. d, Số tự nhiên có tận cùng bằng 0, 2, 4, 6, 8 là các số chẵn. Số chẵn có tận cùng bằng 0, 2, 4, 6, 8. e, Số tự nhiên có tận cùng bằng 1, 3, 5, 7, 9 là các số lẻ. Số lẻ có tận cùng bằng 1, 3, 5, 7, 9. g, Hai số tự nhiên liên tiếp hơn (kém) nhau 1 đơn vị. Hai số hơn (kém) nhau 1đơn vị là hai số tự nhiên liên tiếp. h, Hai số chẵn liên tiếp hơn (kém) nhau 2 đơn vị. Hai số chẵn hơn (kém) nhau2 đơn vị là 2 số chẵn liên tiếp. i, Hai số lẻ liên tiếp hơn (kém) nhau 2 đơn vị. Hai số lẻ hơn (kém) nhau2 đơn vị là 2 số lẻ liên tiếp. k, Khi phải viết số có nhiều chữ số giống nhau người ta thường chỉ viết 2 chữ số đầu rồi … sau đó viết chữ số cuối bên dưới ghi số lượng chữ số giống nhau đó 10 . . . 0 8chữ số 0 2. Các dạng toán 2.1. Dạng 1 : Sử dụng cấu tạo thập phân của số . Ở dạng này ta thường gặp các loại toán sau: Loại 1: Viết thêm 1hay nhiều chữ số vào bên phải, bên trái hoặc xen giữa một số tự nhiên. Bài 1: Tìm một số tự nhiên có hai chữ số,biết rằng nếu viết thêm chữ số 9 vào bên trái số đó ta được một số lớn gấp 13 lần số đã cho . Giải : Gọi số phải tìm là ab. Viết thêm chữ số 9 vào bên trái ta dược số 9ab. Theo bài ra ta có : 9ab = ab x 13
  25. 36. 900 + ab = ab x 13 900 = ab x 13 – ab 900 = ab x ( 13 – 1 ) 900 = ab x 12 ab = 900 : 12 ab = 75 Bài 2 : Tìm một số có 3 chữ số, biết rằng khi viết thêm chữ số 5 vào bên phải số đó thì nó tăng thêm 1 112 đơn vị . Giải : Gọi số phải tìm là abc. Khi viết thêm chữ số 5 vào bên phải ta dược số abc5. Theo bài ra ta có : abc5 = abc + 1 112 10 x abc + 5 = abc + 1 112 10 x abc = abc + 1 112 – 5 10 x abc = abc + 1 107 10 x abc – abc = 1 107 ( 10 – 1 ) x abc = 1 107 9 x abc = 1 107 abc = 123 Bài 3: Tìm một số tự nhiên có 2 chữ số, biết rằng nếu viết chữ số 0 xen giữa chữ số hàng chục và hàng đơn vị của số đó ta được số lớn gấp 10 lần số đã cho, nếu viết thêm chữ số 1 vào bên trái số vừa nhận dược thì số đó lại tăng lên 3 lần. Giải: Gọi số phải tìm là ab. Viết thêm chữ số 0xen giữa chữ số hàng chục và hàng đơn vị ta được số a0b. Theo bài ra ta có : ab x 10 = a0b Vậy b = 0 và số phải tìm có dạng a00. Viết thêm chữ số 1 vào bên trái số a00 ta được số 1a00. Theo bài ra ta có : 1a00 = 3 x a00 Giải ra ta được a = 5 .Số phải tìm là 50 Loại 2 : Xoá bớt một chữ số của một số tự nhiên Bài 1: Cho số có 4 chữ số . Nếu ta xoá đi chữ số hàng chục và hàng đơn vị thì số đó giảm đi 4455 đơn vị. Tìm số đó. Giải : Gọi số phải tìm là abcd. Xoá đi chữ số hàng chục và hàng đơn vị ta được số ab. Theo đề bài ta có
  26. 37. abcd – ab = 4455 100 x ab + cd – ab = 4455 cd + 100 x ab – ab = 4455 cd + 99 x ab = 4455 cd = 99 x (45 – ab) Ta nhận xét tích của 99 với 1 số tự nhiên là 1 số tự nhiên nhỏ hơn 100. Cho nên 45 – ab phải bằng 0 hoặc 1. – Nếu 45 – ab = 0 thì ab = 45 và cd = 0. – Nếu 45 – ab = 1 thì ab = 44 và cd = 99. Số phải tìm là 4500 hoặc 4499. Loại 3 : Số tự nhiên và tổng, hiệu, tích các chữ số của nó Bài 1 : Tìm một số có 2 chữ số, biết rằng số đó gấp 5 lần tỏng các chữ số của nó. Giải : Cách 1 : Gọi số phải tìm là ab. Theo bài ra ta có ab = 5 x (a + b) 10 x a + b = 5 x a + 5 x b 10 x a – 5 x a = 5 x b – b (10 – 5) x a = (5 – 1) x b 5 x a = 4 x b Từ đây suy ra b chia hết cho 5. Vậy b bằng 0 hoặc 5. + Nếu b = 0 thì a = 0 (loại) + Nếu b = 5 thì 5 x a = 20, vậy a = 4. Số phải tìm là 45. Cách 2 : Theo bài ra ta có ab = 5 x ( a + b) Vì 5 x (a + b) có tận cùng bằng 0 hoăc 5 nên b bằng 0 hoặc 5. + Nếu b = 0 thay vào ta có : a5 = 5 x (a + 5) 10 x a + 5 = 5 x a + 25 Tính ra ta được a = 4. Thử lại : 45 : (4 + 5) = 5 . Vậy số phải tìm là 45. Bài 2 : Tìm một số có 2 chữ số, biết rằng số chia cho hiệu các chữ số của nó được thương là 28 và dư 1 Giải : Gọi số phải tìm là ab và hiệu các chữ số của nó bằng c.
  27. 38. Theo bài ra ta có : ab = c x 28 + 1, vậy c bằng 1, 2 hoặc 3. + Nếu c = 1 thì ab = 29. Thử lại : 9 – 2 = 7 1 (loại) + Nếu c = 2 thì ab = 57. Thử lại : 7 – 5 = 2 ; 57 : 2 = 28 (dư 1) + Nếu c= 3 thì ab = 58. Thử lại : 8 – 5 = 3 ; 85 : 3 = 28 (dư 1) Vậy số phải tìm là 85 và 57. Bài 3 : Tìm một số tự nhiên có 3 chữ số, biết rằng số đó gấp 5 lần tích các chữ số của nó. Giải : Cách 1 : Gọi số phải tìm là abc. Theo bài ra ta có abc = 5 x a x b x c. Vì a x 5 x b x c chia hết cho 5 nên abc chia hết cho 5. Vậy c = 0 hoặc 5, nhưng c không thể bằng 0, vậy c = 5. Số phải tìm có dạng ab5. Thay vào ta có. 100 x a + 10 x b + 5 = 25 x a x b. 20 x a + 2 x b +1 = 5 x a x b. Vì a x 5 x b chia hết cho 5 nên 2 x b + 1 chia hết cho 5. Vậy 2 x b có tận cùng bằng 4 hoặc 9, nhưng 2 x b là số chẵn nên b = 2 hoặc 7. – Trường hợp b = 2 ta có a25 = 5 x a x 2. Vế trái là số lẻ mà vế phải là số chẵn. Vậy trường hợp b = 2 bị loại. – Trường hợp b = 7 ta có 20 x a + 15 = 35 x a. Tính ra ta được a = 1. Thử lại : 175 = 5 x 7 x 5. Vậy số phải tìm là 175. Cách 2 : Tương tự cach 1 ta có : ab5 = 25 x a x b Vậy ab5 chia hết cho 25, suy ra b = 2 hoặc 7. Mặt khác, ab5 là số lẻ cho nêna, b phải là số lẻ suy ra b = 7. Tiếp theo tương tự cách 1 ta tìm được a = 1. Số phải tìm là 175. Loại 4 : So sánh tổng hoặc điền dấu Bài 1 : Cho A = abc + ab + 1997 B = 1ab9 + 9ac + 9b So sánh A và B Giải : Ta thấy : B = 1009 + ab0 + 900 + ac + 90 + b
  28. 40. Số bé là : (33 – 3) : 2 = 15 Số lớn là : 33 + 15 = 48 Đáp số : SL 48 ; SB 15. * Bài tập về nhà : Bài 1 : Tìm 1 số có 2 chữ số, biết rằng khi viết thêm số 21 vào bên trái số đó ta được 1 số lớn gấp 31 lần số phải tìm. Bài 2 : Tìm 1 số có 3 chữ số, biết rằng khi viết thêm chữ số 9 vào bên trái số đó ta được số lớn gấp 26 lần số phải tìm. Bài 3 : Tìm 1số có 2 chữ số, biết rằng khi viết thêm chữ số 5 vào bên phải số đó ta được số lớn hơn số phải tìm 230 đơn vị. Bài 4 : Cho số có 3 chữ số, nếu ta xoá chữ số hàng trăm thì số đó giảm đi 5 lần. Tìm số đó. Bài 5 : tìm một số tự nhiên có hai chữ số, biết rằng số đó lớn gấp ba lần tích các chữ số của nó . Bài 6 : Cho A = abcde + abc + 2001 B = ab56e + 1cd8 + a9c + 7b5 So sánh A và B Bài 7 : Cho hai số, nếu lấy số lớn chia cho số nhỏ ta được thương là 7 và số dư lớn nhất có thể có được là 48. Tìm hai số đó. Bài 8 : Tìm số có hai chữ số biết tổng các chữ số của số đó bằng số lẻ nhỏ nhất có hai chữ số, còn chữ số hàng đơn vị lớn hơn chữ số hàng chục 3 đơn vị 2.3. Dạng 3 : Thành lập số và tính tổng. Bài 1 : Cho 4 chữ số 0, 3, 8 và 9. a, Viết được tất cả bao nhiêu số có 4 chữ số khác nhau từ 4 chữ số đã cho. b, Tìm số lớn nhất, số nhỏ nhất có 4 chữ số khác nhau được viết từ 4 chữ số đã cho. c, Tìm số lẻ lớn nhất, số chẵn nhỏ nhất có 4 chữ số khác nhau được viết từ 4 chữ số đã cho.
  29. 41. Giải : Chọn 3 làm chữ số hàng nghìn, ta có các số : 8 – 9 : 3089 0 9 – 8 : 3098 0 – 9 : 3809 3 8 9 – 0 : 3890 0 – 8 : 3908 9 8 – 0 : 3980 Nhìn vào sơ đồ trên ta thấy : Từ 4 chữ số đã cho ta viết được 6 số có chứ số hàng nghìn bằng 3 thoả mãn điều kiện của đề bài. Chữ số 0 không thể đứng ở vị trí hàng nghìn. Vậy só các số thoả mãn điều kiện của đề bài là: 6 x 3 = 18 (số) Cách 2 : Lần lượt chọn các chữ số hàng nghìn, hàng trăm, hàng chục và hàng đơn vị như sau : – có 3 cách chọn chữ số hàng nghìn của số thoả mãn điều kiện đề bài (vì số 0 không thể đứng ở vị trí hàng nghìn).
  30. 42. – Có 3 cách chọn chữ số hàng trăm (đó là 3 chữ số còn lại khác chữ số hàng nghìn) – Có 2 cách chọn chữ số hàng chục (đó là 2 chữ số còn lại khác chữ số hàng nghìn và hàng trăm). – Có 1 cách chọn chữ số hàng đơn vị (đó là chữ số còn lại khác hàng nghìn, hàng trăm và hàng chục). Vậy các số viết được là : 3 x 3 x 2 x 1 = 18 (số) b, Số lớn nhất có 4 chữ số khác nhau được viết từ 4 chữ số đã cho phải có chữ số hàng nghìn là chữ số lớn nhất (Trong 4 chữ số đã cho). Vậy chữ số hàng nghìn của số phải tìm bằng 9. Chữ số hàng trăm phải là chữ số lớn nhất trong 3 chữ số còn lại. Vậy chữ số hàng trăm bằng 8. Chữ số hàng chục là chữ số lớn trong 2 chữ số còn lại. Vậy chữ số hàng chục là 3. Số phải tìm là 9830. Tương tự phần trên ta nhận được số bé nhất thoả mãn điều kiện của đề bài là 3089. c, Số lẻ lớn nhất thoả mãn điều kiện của đề bài phải có chữ số hàng nghìn là số lớn nhất trong 4 chữ số đã cho. Vậy chữ số hàng nghìn của số phải tìm bằng 9. Số phải tìm có chữ số hàng nghìn bằng 9 và là số lẻ nên chữ số hàng đơn vị phải bằng 3. Chữ số hàng trăm phải là chữ số lớn nhất trong hai chữ số còn lại, nên chữ số hàng trăm phải bằng 8. Vậy số phải tìm là 9830. Tương tự số chẵn nhỏ nhất là 3098. Bài 2 : Viết liên tiếp 15 số lẻ đầu tien để được một số tự nhiên. Hãy xoá đi 15 chữ số của số tự nhiên vừa nhận được mà vẫn giữ nguyên thứ tự các chữ số còn lại đẻe được : a, Số lớn nhất. b, Số nhỏ nhất. Viết các số đó. Giải : Viết 15 số lẻ đầu tiên liên tiếp ta được số tự nhiên : 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 Để sau khi xoá 15 chữ số ta nhận được số lớn nhất thì chữ số giữ lại đầu tiên kể từ bên trái phải là chữ số 9. Vậy trước hết ta xoá 4 chữ số đầu tiên của dãy 1, 3, 5, 7. Số còn lại là : 9 11 13 15 17 19 21 23 25 27 29 Ta phải xoá tiếp 15 – 4 = 11 chữ số còn lại để được số lớn nhất. Để sau khi xoá nhận được số lớn nhất thì chữ số thứ hai kể từ bên trái phải là chữ số 9. Vậy tiếp theo ta
  31. 43. phải xoá tiếp những chữ số viết giữa hai chữ số 9 trong dãy, đó là 11 13 15 17 1. Số còn lại là : 992 123 252 729. Ta phải xoá tiếp 11 – 9 = 2 chữ số từ số còn lại để được số lớn nhất. Chữ số thứ ba còn lại kể từ bên trái phải là 2, vậy để được số lớn nhất sau khi xoá 2 chữ số ta phải xoá số 12 hoặc 21. Vậy số lớn nhất phải là 9 923 252 729. b, Lập luận tương tự câu a. số phải tìm là 1 111 111 122 Bài 3 : Cho 3 chữ số 2, 3 và 5. Hãy lập tất cả các số có 3 chữ số mà mỗi số có đủ 3 chữ số đã cho. Hỏi : a, Lập được mấy số như thế b, Mỗi chữ số đứng ở mỗi hàng mấy lần? c, Tính tổng các số. Giải : a, Ta lập được 6 số sau 235 325 523 253 352 532 b, Mỗi chữ số đứng ở mỗi hàng 2 lần. c, Tổng các số đó là : (2 + 3 + 5) x 2 x 100 + (2 + 3 + 5) x 2 x 10 + (2 + 3 + 5) x 1 = 10 x 2 x (100 + 10 + 1) = 10 x 2 x 111 = 2220 Bài 4 : Cho 4 chữ số 1, 2, 3, 4. Hãy lập tất cả các số có 4 chữ số mà ở mỗi số có đủ 4 chữ số đẫ cho. Tính tổng các số đó. Giải : Chọn chữ số 1 ở hàng nghìn ta lập được 6 số sau : 1234 1324 1423 1243 1342 1432 Ta thấy mỗi chữ số đứng ở mỗi hàng 6 lần. Vậy tổng các số lập được : (1 + 2 + 3 + 4) x 1000 x 6 + (1 + 2 + 3 + 4) x 100 x 6 + (1 + 2 + 3 + 4) x 10 x 6 + (1 + 2 + 3 + 4) x 1 x 6 = 10 x 6 x (1000 + 100 + 10 + 1) = 60 x 1111 = 66660. Bài 5 : Cho 5 chữ số 1, 2, 3, 4, 5. Hãy lập tất cả các số có 5 chữ số mà ở mỗi số có đủ 5 chữ số đã cho. Tính tổng
  32. 44. Giải : Chọn chữ số 1 ở hàng chục nghìn ta lập được 24 số Tương tự nên ta lập được 24 x 5 = 120 (số) Tổng là : (1 + 2 + 3 + 4 + 5) x 10000 x 24 + (1 + 2 + 3 + 4 + 5) x 1000 x 24 + (1 + 2 + + 3 + 4 + 5) x 100 x 24 + (1 + 2 + 3 + 4 + 5) x 10 x 24 + (1 + 2 + 3 + 4 + 5) x x 1 x 24 = (1 + 2 + 3 + 4 + 5) x 24 x 11111 = 15 x 24 x 11111 = 3999960 Bài 6 : Cho 3 chữ số 3, 3, 4. Hãy lập tất cả các số có 3 chữ số mà mỗi số có đủ 3 chữ số đã cho mà mỗi chữ số trên chỉ viết 1 lần. Tính tổng các số đó. Giải : Ta lập được 3 số 334, 343, 433 Tổng các số : (3 + 3 + 4) x 100 x 1 + (3 + 3 + 4) x 10 + (3 + 3 + 4) x 1 = 10 x (10 + 10 + 1) = 10 x 111 = 1110. Bài 7 : Cho 4 chữ số : 2, 2, 5, 1. Hãy lập tất cả các số có 4 chữ số mà mỗi số có đủ 4 chữ số đã cho. Tính tổng Giải : – Chọn chữ số 1 ở hàng nghìn ta lập được các số : 1225 1522 1252 – Chọn chữ số 5 ở hàng nghìn ta cũng lập được 3 số. – Chọn chữ số 2 ở hàng nghìn ta lập được 6 số 2152 2251 2512 2125 2215 2521 Vậy ta lập được 12 số. Tổng là : (1 + 2 + 2 + 5) x 1000 x 3 + (1 + 2 + 2 + 5) x 100 x 3 + (1+ 2 + 2 + 5) x 1 x 3 = (1 + 2 + 2 + 5) x 3 x 1111 = 10 x 3 x 1111 = 33330 Bài 8 : Cho 3 chữ số 0, 3, 7. Hãy lập tất cảc các số có 3 chữ số sao cho mỗi số có đủ 3 chữ số đã cho. Tính tổng các số vừa lập
  33. 45. Giải : Ta lập được 4 số 307 703 370 730 Tổng (3 + 7) x 100 x 2 + (3 + 7) x 10 + (3 + 7) x 1 = 10 x 100 x 2 + 10 x 10 + 10 x 1 = 20 x 100 + 100 + 10 = 2110. * Bài tập về nhà : Bài 1 : Cho 4 chữ số : 0, 2, 3, 5. Hãy lập tất cả các số mà mỗi số có đủ 4 chữ số đã cho. Tính tổng. Bài 2 : Cho 4 chữ số : 1, 3, 3, 4. Hãy lập tất cả các số có 4 chữ số mà mỗi số có đủ 4 chữ số đã cho. Tính tổng. Bài 3 : Cho 5 chữ số : 0, 1, 3, 2, 4. Hãy lập tất cả các số có 5 chữ số mà mỗi số có đủ 5 chữ số đã cho. Tính tổng. Bài 4 : Cho 5 chữ số 0, 1, 2, 3, 4. a, Có thể viết đượcbao nhiêu số có 4 chữ số khác nhau từ 5 chữ số đã cho? Trong các số viết được có bao nhiêu số chẵn? b, Tìm số chẵn lớn nhất, số lẻ nhỏ nhất có 4 chữ số khác nhau được viết từ 5 chữ số đã cho Bài 5 : Có thể viết được bao nhiêu số có 3 chữ số khác nhau, biết rằng : a, Các chữ số của chúng đều là những số lẻ? b, Các chữ số của chúng đều là những số chẵn? Bài 6 : a, Tìm số tự nhiên nhỏ nhất có 5 chữ số được viết tữ 3 chữ số khác nhau. b, Tìm số tự nhiên lớn nhất có 5 chữ số được viết từ 3 chữ số khác nhau. Bài 7 : Viết liên tiếp các số tự nhiên từ 1 đến 15 để được 1 số tự nhiên. Hãy xoá đi 10 chữ số vừa nhận được mà vẫn giữ nguyên thứ tự của các chữ số còn lại để được : a, Số lớn nhất; b, Số nhỏ nhất; Viết các số đó. Bài 8 : Viết liên tiếp 10 số chẵn khác 0 đầu tiên để được một số tự nhiên. Hãy xoá đi 10 chữ số của số vừa nhận được mà vẫn giữ nguyên thứ tự của các chữ số còn lại để được : a, Số chẵn lớn nhất; b, Số lẻ nhỏ nhất.
  34. 46. II DÃY SỐ Dạng 1 . Quy luật viết dãy số. * Kiến thức cần lưu ý (cách giải) : Trước hết ta cần xác định quy luật của dãy số. Những quy luật thường gặp là : + Mỗi số hạng (kể từ số hạng thứ hai) bằng số hạng đứng trước nó cộng (hoặc trừ) với 1 số tự nhiên d ; + Mỗi số hạng (kể từ số hạng thứ hai) bằng số hạng đứng trước nó nhân (hoặc chia) với 1 số tự nhiên q khác 0 ; + Mỗi số hạng (kể từ số hạng thứ ba) bằng tổng hai số hạng đứng trước nó ; + Mỗi số hạng (kể từ số hạng thứ tư) bằng tổng của số hạng đứng trước nó cộng với số tự nhiên d cộng với số thứ tự của số hạng ấy ; + số hạng đứng sau bằng số hạng đứng trước nhân với số thứ tự ; v . . . v Loại 1: Dãy số cách đều Bài 1 : Viết tiếp 3 số : a, 5, 10, 15, … b, 3, 7, 11, … Giải : a, Vì : 10 – 5 = 5 15 – 10 = 5 Dãy số trên 2 số hạng liền nhau hơn kém nhau 5 đơn vị. Vậy 3 số tiếp theo là : 15 + 5 = 20 20 + 5 = 25 25 + 5 = 30 Dãy số mới là : 5, 10, 15, 20, 25, 30. b, 7 – 3 = 4 11 – 7 = 4 Dãy số trên 2 số hạng liền nhau hơn kém nhau 4 đơn vị. Vậy 3 số tiếp theo là : 11 + 4 = 15 15 + 4 = 19 19 + 4 = 23 Dãy số mới là : 3, 7, 11, 15, 19, 23. Dãy số cách đều thì hiệu của mỗi số hạng với số liền trước luôn bằng nhau
  35. 47. Loại 2 : Dãy số khác Bài 1 : Viết tiếp 3 số hạng vào dãy số sau : a, 1, 3, 4, 7, 11, 18, … b, 0, 2, 4, 6, 12, 22, … c, 0, 3, 7, 12, … d, 1, 2, 6, 24, … Giải a, Ta nhận xét : 4 = 1 + 3 7 = 3 + 4 11 = 4 + 7 18 = 7 + 11 … Từ đó rút ra quy luật của dãy số là : Mỗi số hạng (Kể từ số hạng thứ ba) bằng tổng của hai số hạng đứng trước nó. Viết tiếp ba số hạng, ta được dãy số sau : 1, 3, 4, 7, 11, 18, 29, 47, 76,… b, Tương tự bài a, ta tìm ra quy luật của dãy số là : Mỗi số hạng (kể từ số hạng thứ tư) bằng tổng của 3 số hạng đứng trước nó. Viét tiếp ba số hạng, ta được dãy số sau. 0, 2, 4, 6, 12, 22, 40, 74, 136, … c, ta nhận xét : Số hạng thứ hai là : 3 = 0 + 1 + 2 Số hạng thứ ba là : 7 = 3 + 1 + 3 Số hạng thứ tư là : 12 = 7 + 1 + 4 Từ đó rút ra quy luật của dãy là : Mỗi số hạng (kể từ số hạng thứ hai) bằng tổng của số hạng đứng trước nó cộng với 1 và cộng với số thứ tự của số hạng ấy . Viết tiếp ba số hạng ta được dãy số sau. 0, 3, 7, 12, 18, 25, 33, … d, Ta nhận xét : Số hạng thứ hai là 2 = 1 x 2 Số hạng thứ ba là 6 = 2 x 3 số hạng thứ tư là
  36. 48. 24 = 6 x 4 . . . Từ đó rút ra quy luật của dãy số là : Mỗi số hạng (kể từ số hạng thứ hai) bằng tích của số hạng đứng liền trước nó nhân với số thứ tự của số hạng ấy. Viết tiếp ba số hạng ta được dãy số sau : 1, 2, 6, 24, 120, 720, 5040, … Bài 2 : Tìm số hạng đầu tiên của các dãy số sau : a, . . ., 17, 19, 21 b, . . . , 64, 81, 100 Biết rằng mỗi dãy có 10 số hạng. Giải : a, Ta nhận xét : Số hạng thứ mười là 21 = 2 x 10 + 1 Số hạng thứ chín là : 19 = 2 x 9 + 1 Số hạng thứ tám là : 17 = 2 x 8 + 1 . . . Từ đó suy ra quy luật của dãy số trên là : Mỗi số hạng của dãy bằng 2 x thứ tự của số hạng trong dãy rồi cộng với 1. Vậy số hạng đầu tiên của dãy là 2 x 1 + 1 = 3 b, Tương tự như trên ta rút ra quy luật của dãy là : Mỗi số hạng bằng số thứ tự nhân số thứ tự của số hạng đó. Vậy số hạng đầu tiên của dãy là : 1 x 1 = 1 Bài 3 : Lúc 7 giờ sáng, Một người xuất phát từ A, đi xe đạp về B. Đến 11 giờ trưa người đó dừng lại nghỉ ăn trưa một tiếng, sau đó lại đi tiếp và 3 giờ chiều thì về đến B. Do ngược gió, cho nen tốc độ của người đó sau mỗi giờ lại giảm đi 2 km. Tìm tốc độ của người đó khi xuất phát, biết rằng tốc đọ đi trong tiếng cuối quãng đường là 10 km/ giờ. Giải : Thời gian người đó đi trên đường là : (11 – 7) + (15 – 12) = 7 (giờ) Ta nhận xét : Tốc độ người đó đi trong tiếng thứ 7 là : 10 (km/giờ) = 10 + 2 x 0
  37. 49. Tốc độ người đó đi trong tiếng thứ 6 là : 12 (km/giờ) = 10 + 2 x 1 Tốc độ người đó đi trong tiếng thứ 5 là : 14 (km/giờ) = 10 + 2 x 2 . . . Từ đó rút ra tốc độ người đó lúc xuất phát (trong tiếng thứ nhất) là : 10 + 2 x 6 = 22 (km/giờ) Bài 4 :Điền các số thích hợp vào ô trống, sao cho tổng các số ở 3 ô liên tiếp đều bằng 1996 : 496 996 Giải : Ta đánh số các ô theo thứ tự như sau 496 996 ô1 ô2 ô3 ô4 ô5 ô6 ô7 ô8 ô9 ô10 Theo điều kiện của đầu bài ta có : 496 + ô7 + ô 8 = 1996 ô7 + ô8 + ô9 = 1996 Vậy ô9 = 496. Từ đó ta tính được ô8 = ô5 = ô2 = 1996 – (496 + 996) = 504; ô7 = ô4 = ô1 = 996 và ô3 = ô6 = 496 Điền vào ta được dãy số : 996 504 496 996 504 496 996 504 496 996 Dạng 2 : Xác định số a có thuộc dãy đã cho hay không Cách giải : – Xác định quy luật của dãy. – Kiểm tra số a có thoả mãn quy luật đó hay không. Bài tập : Em hãy cho biết : a, Các số 50 và 133 có thuộc dãy 90, 95, 100, … hay không? b, Số 1996 thuộc dãy 3, 6, 8, 11, … hay không? c, Số nào trong các số 666, 1000, 9999 thuộc dãy 3, 6, 12, 24, … ? Giải thích tại sao? Giải : a, Cả 2 số 50 và 133 đều không thuộc dãy đã cho vì – Các số hạng của dãy đã cho đều lớn hơn 50 ; – Các số hạng của dãy đã cho đều chia hết cho 5 mà 133 không chia hết cho 5. b, Số 1996 không thuộc dãy đã cho, Vì mọi số hạng của dãy khi chia cho đều dư 2 mà 1996 : 3 thì dư 1.
  38. 50. c, Cả 3 số 666, 1000, 9999 đều không thuộc dãy 3, 6, 12, 24, … , vì – Mỗi sốhạng của dãy (kể từ số hạng thứ 2) bằng số hạng liền trước nhân với 2. Cho nên các số hạng (kể từ số hạng thứ 3) có số hạng đứng liền trước là số chẵn mà 666 : 2 = 333 là số lẻ. – Các số hạng của dãy đều chia hết cho 3 mà 1000 không chia hết cho 3 – Các số hạng của dãy (kể từ số hạng thứ hai) đều chẵn mà 9999 là số lẻ. * Bài tập về nhà Bài 1 : Viết tiếp hai số hạng của dãy số sau : a, 100 ; 93 ; 85 ; 76 ; … b, 10 ; 13 ; 18 ; 26 ; … c, 0 ; 1 ; 2 ; 4 ; 7 ; 12 ; … d, 0 ; 1 ; 4 ; 9 ; 18 ; … e, 5 ; 6 ; 8 ; 10 ; … f, 1 ; 6 ; 54 ; 648 ; … g, 1 ; 3 ; 3 ; 9 ; 27 ; … h, 1 ; 1 ; 3 ; 5 ; 17 ; … Bài 2 : Điền thêm 7 số hạng vào tổng sau sao cho mỗi số hạng trong tổng đều lớn hơn số hạng đứng trước nó : 49 + … … = 420. Giải thích cách tìm. Bài 3 : Tìm hai số hạng đầu của các dãy sau : a, . . . , 39, 42, 45 ; b, . . . , 4, 2, 0 ; c, . . . , 23, 25, 27, 29 ; Biết rằng mỗi dãy có 15 số hạng. Bài 4 : a, Điền các số thích hợp vào các ô trống, sao cho tích các số của 3 ô liên tiếp đều bằng 2000 50 2 b, Cho 9 số : 1, 2, 3, 4, 5, 6, 7, 8 và 9. Hãy điền mỗi số vào 1 ô tròn sao cho tổng của 3 số ở 3 ô thẳng hàng nhau đều chia hết cho 5. Hãy giải thích cách làm. O O O
  39. 51. O O O O O O O O O O O O c, Hãy điền số vào các ô tròn sao cho tổng của 3 ô liên tiếp đều bằng nhau. Giải thích cách làm.? Dạng 3 : Tìm số số hạng của dãy số . * Lưu ý : – ở dạng này thường sử dụng phương pháp giải toán khoảng cách (trồng cây).Ta có công thức sau: Số số hạng của dãy = Số khoảng cách + 1 – Nếu quy luật của dãy là : số đứng sau bằng số hạng liền trước cộng với số không đổi thì : Số các số hạng của dãy = (Số cuối – số đầu) : K/c + 1 *Bài tập vận dụng : Bài 1: Viết các số lẻ liên tiếp từ 211. Số cuối cùng là 971. Hỏi viết được bao nhiêu số ? Giải: Hai số lẻ liên tiếp hơn kém nhau 2 đơn vị Số cuối hơn số đầu số đơn vị là : 971 – 211 = 760 (đơn vị) 760 đơn vị có số khoảng cách là : 760 : 2 = 380 (K/ c) Dãy số trên có số số hạng là : 380 +1 = 381 (số) Đáp số :381 số hạng Bài 2: Cho dãy số 11, 14, 17, … , 68.
  40. 52. a, Hãy xác định dãy trên có bao nhiêu số hạng ? b, Nếu ta tiếp tục kéo dài các số hạng của dãy số thì số hạng thứ 1 996 là số mấy ? Giải : a,Ta có : 14 – 11 = 3 17 – 14 = 3 Vậy quy luật của dãy là : mỗi số hạng đứng sau bằng số hạng đứng trước cộng với 3 . Số các số hạng của dãy là : ( 68 – 11 ) : 3 + 1 = 20 (số hạng) b, Ta nhận xét : Số hạng thứ hai : 14 = 11 + 3 = 11 + (2 – 1) x 3 Số hạng thứ ba : 17 = 11 + 6 = 11 + (3 – 1) x 3 Số hạng thứ tư : 20 = 11 + 9 = 11 + (4 – 1) x 3 Vậy số hạng thứ 1 996 là : 11 + (1 996 – 1) x 3 = 5 996 Đáp số : 20 số hạng ; 5 996 Bài 3: Trong các số có ba chữ số, có bao nhiêu số chia hết cho 4 ? Giải : Ta có nhận xét :số nhỏ nhất có ba chữ số chia hết cho 4là 100 và số lớn nhất có ba chữ số chia hết cho 4 là 996. Như vậy các số có ba chữ số chia hết cho 4 lập thành một dãy số có số hạng đầu là 100, số hạng cuối là 996 và mỗi số hạng của dãy (Kể từ số hạng thứ hai) bằng số hạng đứng kề trước cộng với 4. Vậy các số có 3 chữ số chia hết cho 4 là : (996 – 100) : 4 + 1 = 225 (số) Đáp số : 225 số Dạng 4 : Tìm tổng các số hạng của dãy số * Cách giải Nếu các số hạng của dãy số cách đều nhau thì tổng của 2 số hạng cách đều số hạng đầu và số hạng cuối trong dãy đó bằng nhau. Vì vậy : Tổng các số hạng của dãy = tổng của 1 cặp 2 số hạng cách đều số hạng đầu và cuối x số hạng của dãy : 2 * Bài tập vận dụng : Bài 1 : Tính tổng của 100 số lẻ đầu tiên. Giải : Dãy của 100 số lẻ đầu tiên là : 1 + 3 + 5 + 7 + 9 + . . . + 197 + 199. Ta có : 1 + 199 = 200 3 + 197 = 200 5 + 195 = 200
  41. 53. . . . Vậy tổng phải tìm là : 200 x 100 : 2 = 10 000 Đáp số 10 000. Bài 2 : Cho 1 số tự nhiên gồm các số tự nhiên liên tiếp từ 1 đến 1983 được viết theo thứ tự liền nhau như sau : 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 1980 1981 1982 1983 Hãy tính tổng tất cả các chữ số của số đó. (Đề thi học sinh giỏi toàn quốc năm 1983) Giải : Cách 1. Ta nhận xét : * các cặp số : – 0 và 1999 có tổng các chữ số là : 0 + 1 + 9 + 9 + 9 = 28 – 1 và 1998 có tổng các chữ số là : 1 + 1 + 9 + 9 + 8 = 28 – 2 và 1997 có tổng các chữ số là : 2 + 1 + 9 + 9 + 7 = 28 – 998 và 1001 có tổng các chữ số là : 9 + 9 + 8 + 1 + 1 = 28 – 999 và 1000 có tổng các chữ số là : 9 + 9 + 9 + 1 = 28 Như vậy trong dãy số 0, 1, 2, 3, 4, 5, . . . , 1997, 1998, 1999 Hai số hạng cách đều số hạng đầu và số hạng cuối đều có tổng bằng 28. Có 1000 cặp như vậy, do đó tổng các chữ số tạo nên dãy số trên là : 28 x 1000 = 28 000 * Số tự nhiên được tạo thành bằng cách viết liên tiếp các số tự nhiên từ 1984 đến 1999 là (1 + 9 + 8 + 4) + (1 + 9 + 8 + 5) +… +(1 + 9 + 8 + 9) + (1 + 9 + 9 + 0) + … + 22 23 27 19 (1 + 9 + 9 + 8) + (1 + 9 + 9 + 9) = 382 27 28 * Vậy tổng các chữ số của số tự nhiên đã cho là : 28 000 – 382 = 27 618. Bài 3 : Viết các số chẵn liên tiếp : 2, 4, 6, 8, . . . , 2000
  42. 54. Tính tổng của dãy số trên Giải : Dãy số trên 2 số chẵn liên tiếp hơn kém nhau 2 đơn vị. Dãy số trên có số số hạng là : (2000 – 2) : 2 + 1 = 1000 (số) 1000 số có số cặp số là : 1000 : 2 = 500 (cặp) Tổng 1 cặp là : 2 + 2000 = 2002 Tổng của dãy số là : 2002 x 500 = 100100. * Bài tập về nhà Bài 1 : Tính tổng : a, 6 + 8 + 10 + … + 1999. b, 11 + 13 + 15 + … + 147 + 150 c, 3 + 6 + 9 + … + 147 + 150. Bài 2 : Viết 80 số chẵn liên tiếp bắt đầu từ 72. Số cuối cùng là số nào? Bài 3 : Có bao nhiêu số : a, Có 3 chữ số khi chia cho 5 dư 1? dư 2? b, Có 4 chữ số chia hết cho 3? c, Có 3 chữ số nhỏ hơn 500 mà chia hết cho 4? Bài 4 : Khi đánh số thứ tự các dãy nhà trên một đường phố, người ta dùng các số lẻ liên tiếp 1, 3, 5, 7, … để đánh số dãy thứ nhất và các số chẵn liên tiếp 2, 4, 6, 8, … để đánh số dãy thứ hai. Hỏi nhà cuối cùng trong dãy chẵn của đường phố đó là số mấy, nếu khi đánh số dãy này người ta đã dùng 769 chữ cả thảy? Bài 5 : Cho dãy các số chẵn liên tiếp 2, 4, 6, 8, … Hỏi số 1996 là số hạng thứ mấy của dãy này? Giải thích cách tìm. Bài 6 : Tìm tổng của : a, Các số có hai chữ số chia hết cho 3 ; b, Các số có hai chữ số chia cho 4 dư 1 ; c, 100 số chẵn đầu tiên ; d, 10 số lẻ khác nhau lớn hơn 20 và nhỏ hơn 40. Dạng 5 : Tìm số hạng thứ n * Bài tập vận dụng Bài 1 : Cho dãy số : 1, 3, 5, 7, … Hỏi số hạng thứ 20 của dãy là số nào? Giải :
  43. 55. Dãy đã cho là dãy số lẻ nên các số liên tiếp trong dãy cách nhau 1 khoảng cách là 2 đơn vị. 20 số hạng thì có số khoảng cách là : 20 – 1 = 19 Ơkhoảng cách) 19 số có số đơn vị là : 19 x 2 = 38 (đơn vị) Số cuối cùng là : 1 + 38 = 39 Đáp số : Số hạng thứ 20 của dãy là 39 Bài 2 : Viết 20 số lẻ, số cuối cùng là 2001. Số đầu tiên là số nào? Giải : 2 số lẻ liên tiếp hơn kém nhau 2 đơn vị 20 số lẻ có số khoảng cách là : 20 – 1 = 19 (khoảng cách) 19 khoảng cách có số đơn vị là : 19 x 2 = 38 (đơn vị) Số đầu tiên là : 2001 – 38 = 1963 Đáp số : số đầu tiên là 1963. Công thức : a, Cuối dãy : n = Số đầu + khoảng cách x (n – 1) b, Đầu dãy : n = Số cuối – khoảng cách x (n – 1) * Bài tập về nhà : Bài 1 : Viết các số chẵn bắt đầu từ 2. Số cuối cùng là 938. Dãy số có bao nhiêu số? Bài 2 : Tính : 2 + 4 + 6 + … + 2000. Bài 3 : Cho dãy số : 4, 8, 12, … Tìm số hạng 50 của dãy số . Bài 4 : Viết 25 số lẻ liên tiếp số cuối cùng là 2001. Hỏi số đầu tiên là số nào? Bài 5 : Tính tổng : a, 6 + 8 + 10 + … + 2000 b, 11 + 13 + 15 + … + 1999. c, 3 + 6 + 9 + … + 147 + 150. Bài 6 : Viết 80 số chẵn liên tiếp bắt đầu từ 72. Hỏi số cuối cùng là số nào? Bài 7 : Cho dãy số gồm 25 số hạng : . . ., 146, 150, 154. Hỏi số đầu tiên là số nào?

【#6】Dạng Bài Tập Về Phép Quay 90 Độ Cực Hay, Có Lời Giải

Dạng bài tập về phép quay 90 độ cực hay, có lời giải

A. Phương pháp giải

. Bài toán xác định vị trí của điểm, hình khi thực hiện phép quay cho trước

Bước 1. Xác định tâm quay và góc quay theo yêu cầu bài toán.

Bước 2. Áp dụng các kiến thức sau:

Bước 3. Kết luận.

B. Ví dụ minh họa

Ví dụ 1: Cho tam giác ABC, trọng tâm G ( thứ tự các điểm như hình vẽ)

a) Tìm ảnh của điểm B qua phép quay tâm A góc quay 90°

b) Tìm ảnh của đường thẳng BC qua phép quay tâm A góc quay 90°

c) Tìm ảnh của tam giác ABC qua phép quay tâm G góc quay 90°

Hướng dẫn giải:

a)

Dựng đoạn thẳng AB’ bằng đoạn thẳng AB sao cho (Vị trí B’ như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

* Khi đó:

* Vậy B’ à ảnh của điểm B qua phép quay tâm A, góc quay 90°

b)

* Dựng đoạn thẳng AC’ bằng đoạn thẳng AC sao cho (Vị trí C’ như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

*

Mặt khác, Q(A,90°)(B) = B’ (theo câu a) (2)

* Từ (1) và (2) suy ra: Q(A,90°)(BC) = B’C’

c)

* Dựng đoạn thẳng GA’ bằng đoạn thẳng GA sao cho (Vị trí A’ như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

* Dựng đoạn thẳng GB” bằng đoạn thẳng GB sao cho (Vị trí B” như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

* Dựng đoạn thẳng GC” bằng đoạn thẳng GC sao cho (Vị trí C” như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

* Khi đó:

Từ (1),(2),(3) suy ra: Q(G,90°)(ΔABB) = ΔAB”C”

Ví dụ 2: Cho hình vuông ABCD tâm O ( thứ tự các điểm như hình vẽ)

a) Tìm ảnh của điểm C qua phép quay tâm A, góc quay 90°

b) Tìm ảnh của đường thẳng BC qua phép quay tâm O, góc quay 90°

Hướng dẫn giải:

a) Gọi E là điểm đối xứng của C qua D.

Khi đó:

Vậy E là ảnh của C qua phéo quay tâm A, góc quay 90°

b) Vì ABCD là hình vuông nên

Từ (1) và (2) suy ra: Q(O,90°)(BC) = CD

Vậy CD là ảnh của BC qua phép quay tâm O góc quay 90°

Ví dụ 3: Trong mặt phẳng tọa độ Oxy cho điểm A(-1;5); đường thẳng d: 3x – y + 2 = 0 và đường tròn (C): (x + 4) 2 + (y – 1) 2 = 16

a) Tìm tọa độ điểm B là ảnh của điểm A qua phép quay tâm O(0;0) góc quay -90°.

b) Viết phương trình đường thẳng d’ là ảnh của d qua phép quay tâm O góc quay -90°.

c) Tìm ảnh của đường tròn (C) qua phép quay tâm O, góc quay -90°

Hướng dẫn giải:

a)

Cách 1:

+) Do Q(O,90°)(A) = B nên dựa vào vẽ bên ta suy ra: B(5;1).

Cách 2:

+) Do Q(O,90°)(A) = B nên .

Vậy B(5;1).

b) Qua phép quay tâm O góc quay -90° đường thẳng d biến thành đường thẳng d’ vuông góc với d.

Phương trình đường thẳng d’ có dạng: x + 3y + m = 0.

Lấy A(0;2) ∈ d. Qua phép quay tâm O góc quay -90°, điểm A(0;2) biến thành điểm B(2;0) ∈ d’. Khi đó m = -2.

Vậy phương trình đường d’ là x + 3y – 2 = 0.

c) Từ (C), ta có tâm I(-4; 1) và bán kính R = 4.

Khi đó: Q(O,90°)(I) = I'(1;4) và bán kính R’ = R = 4.

C. Bài tập trắc nghiệm

Câu 1. Cho hình vuông ABCD tâm O, M là trung điểm của AB, N là trung điểm của OA ( thứ tự các điểm A,B,C,D như hình vẽ)

Tìm ảnh của ΔAMN qua phép quay tâm O, góc quay 90°.

A. ΔDM’N’, M’, N’ lần lượt là là trung điểm OC, OB

B. ΔDM’N’, M’, N’ lần lượt là là trung điểm OA, OB

C. ΔAM’N’, M’, N’ lần lượt là là trung điểm OC, OD

D. ΔAM’N’ với M’, N’ lần lượt là là trung điểm BC, OB

Lời giải.

Chọn D.

Câu 2. Cho hai hình vuông vuông ABCD và BEFG (như hình vẽ). Tìm ảnh của ΔABG trong phép quay tâm B, góc quay -90°.

A. ΔCBE

B. ΔCBF

C. ΔCBG

D. ΔCBD

Lời giải

Chọn A.

Câu 3. Cho hình vuông ABCD có tâm là O,. Gọi M,N,P,Q theo thứ tự là trung điểm các cạnh AD, DC, CB, BA ( xem hình vẽ)

Tìm ảnh của tam giác ODN qua phép quay tâm O góc quay -90°.

A. ΔOCP

B. ΔOCM

C. ΔMCP

D. ΔNCP

Lời giải

Chọn A

+) Ta có:

Câu 4. Trong mặt phẳng Oxy, ảnh của điểm M(-6;1) qua phép quay Q(O,90°) là:

A. M(1;6).

B. M(-1;-6).

C. M(-6;-1).

D. M(6;1).

Câu 5. Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm M(2;0) và điểm N(0;2). Phép quay tâm O biến điểm M thành điển N, khi đó góc quay của nó là

A. φ = 30°.

B. φ = 45°.

C. φ = 90°.

D. φ = 270°.

Lời giải

Chọn C

+ Q(O;φ)⁡: M(x;y) ↦ N(x’;y’). Khi đó:

Câu 6. Trong mặt phẳng Oxy, cho điểm B(-3;6). Tìm toạ độ điểm E sao cho B là ảnh của E qua phép quay tâm O góc quay(-90°).

A. E(6;3).

B. E(-3;-6).

C. E(-6;-3).

D. E(3;6).

Câu 7. Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng Δ: x + 2y – 6 = 0. Viết phương trình đường thẳng Δ’ là ảnh của đường thẳng Δ qua phép quay tâm O góc 90°?

A. 2x – y + 6 = 0.

B. 2x – y-6 = 0.

C. 2x + y + 6 = 0.

D. 2x + y-6 = 0.

Câu 8. Trong mặt phẳng Oxy, cho đường tròn (C): (x – 2) 2 + y 2 = 8. Viết phương trình đường tròn (C 1) sao cho (C) là ảnh của đường tròn (C 1) qua phép quay tâm O, góc quay 90°.

Lời giải

Chọn A

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k4: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

phep-doi-hinh-va-phep-dong-dang-trong-mat-phang.jsp

【#7】Giải Bài Tập Âm Nhạc Lớp 6 Tiết 19

Giải Bài Tập âm Nhạc Lớp 6 Tiết 20, Giải Bài Tập âm Nhạc Lớp 6 Tiết 21, Giải Bài Tập âm Nhạc Lớp 6 Tiết 23, Giải Bài Tập âm Nhạc Lớp 7 Tiết 21, Giải Bài Tập âm Nhạc Lớp 6 Tiết 2, Giải Bài Tập âm Nhạc Lớp 6 Tiết 19, Giải Bài Thực Hành âm Nhạc Lớp 6 Tiết 9, Giải Bt Thực Hành âm Nhạc Lớp 6 Tiết 2, Tiết 27 âm Nhạc 8, Tiết 1 âm Nhạc 7, Tiết 22 âm Nhạc 8, âm Nhạc Tiết 16 Lớp 6, Tiết 2 âm Nhạc 6, Tiết 11 âm Nhạc 6, Tiết 20 âm Nhạc 7, Đề Kiểm Tra 1 Tiết âm Nhạc Lớp 6, ôn Tập Tiết 7,8 Thực Hành âm Nhạc, Thời Tiếtc Hanh Am Nhac 6 Tiet 2, Giải Sbt âm Nhạc 6, Giải Bài Tập âm Nhạc 6, Giải Bài Tập âm Nhạc 7, Giải Bài Tập âm Nhạc 8, Giải Bài Tập âm Nhạc 6 Tập 2, Giải Bài Tập âm Nhạc Lớp 7, Giải Bài Tập âm Nhạc Lớp 6, Giải Bài Tập âm Nhạc 9, Giải Bài Tập âm Nhạc 8 Bài 1, Giải Sách Bài Tập âm Nhạc 8, Giải Bài Tập Thực Hành âm Nhạc 8, Giải Bài Tập Thực Hành âm Nhạc 7, Giải Bài Tập Thực Hành âm Nhạc 6, Giải Thực Hành âm Nhạc 6, Giải Bài Tập Địa Lí 11 Bài 9 Tiết 2, Giải Bài Tập Địa Lí 11 Bài 10 Tiết 1, Giải Bài Tập Vật Lý Lớp 6 Bài 18 Tiết 2, Giải Tiết 1 Tuần 28 , Bài Giải Chi Tiết Đề Lý 2021, Lá Số Tử Vi Và Bình Giải Chi Tiết, Giải Bài Tập Thực Hành Về Hàm ý Tiết 2, Bài Giải Chi Tiết Đề Lý Cao Đẳng 2012, Giải Bài Tập Thực Hành Lớp 6 Tiết 2, Giải Bài Tập Thực Hành âm Nhạc 8 Bài Mùa Thu Ngày Khai Trươfng, Giai Tiet 1 Cung Em Hoc Toan Tuan 27, Bài Giải Chi Tiết Đề Sinh Cao Đẳng 2011, Lời Giải Chi Tiết Phiếu Bài Tập Cuối Tuần Toán 3, De 9 Bo 28 De Thi Thpt Quoc Gia Cua Thay Do Ngoc Thong Co Loi Giai Chi Tiet, Giải Sách Bồi Dưỡng Năng Lực Toán 6 Phần 2 Số Nguyên Tiết 1, Trình Bày Đoạn Nhạc Có Giai Điệu Hoàn Toàn Giống Nhau Trong Bài Hát Mái Trường Mến Yêu, Giáo Trình âm Nhạc – Lý Thuyết âm Nhạc – Lê Anh Tuấn.pdf, ôn Tập Đọc Nhạc Số 6 Lớp 7 âm Nhạc Thưởng Thức, Giải Sách Bồi Dưỡng Năng Lực Tự Học Toán 6 Phần 2 Dố Nguyên Tiết 1 Phép Cộng Và Phép Trừ 2 Số Nguyên, Tập Đọc Nhạc Số6 Lớp 6, Đề Thi Môn âm Nhạc Lớp 6, Tai Nhac, Tập Đọc Nhạc 6, Đề Thi Gvg Môn âm Nhạc, Đề Thi âm Nhạc Lớp 9, Đề Tài Về âm Nhạc, Ca Nhạc, Mẫu Bìa âm Nhạc, Quy ước Nốt Nhạc, Sổ Tay âm Nhạc, Đề Tài âm Nhạc, Nhạc Lý, Đề Thi âm Nhạc Lớp 5, Sgk âm Nhạc 6, Đề Thi âm Nhạc Lớp 6 Học Kì 2, Đề Thi âm Nhạc Lớp 7, Đề Thi âm Nhạc Lớp 6, âm Nhạc Lớp 6, De Thi Mon Am Nhac 9, âm Nhạc, âm Nhạc Lớp 1, âm Nhạc Lớp 3 ôn Tập, Am Nhac Lop 5, Quy Chế Dạy âm Nhạc, Mẫu Văn Bản Nhắc Nhở, Thư Upu Đề Tài âm Nhạc, Upu Đề Tài âm Nhạc, Mục Lục âm Nhạc Lớp 8, Nội Quy Câu Lạc Bộ âm Nhạc, Nội Quy Clb âm Nhạc, Nội Quy Góc âm Nhạc, Bài Văn Mẫu Về âm Nhạc, Bài Thi Upu Về âm Nhạc, Nhạc 7, Nhạc, ôn Tập âm Nhạc Lớp 6, âm Nhạc Lớp 6 Bài 1, Bài 21 âm Nhac Lop 6 Ki 2, Bài Tập âm Nhạc Lớp 9, Bài Tập âm Nhạc Lớp 6, Bài Tập âm Nhạc 7, Bài Tập âm Nhạc 8, Quy Chế Câu Lạc Bộ âm Nhạc, Bài Tập âm Nhạc 9, Bài Tập âm Nhạc, Bài Tập âm Nhạc Lớp 4, Mẫu Thư Mời Ca Nhạc, Tạo Hiệu ứng Sổ Tay âm Nhạc,

Giải Bài Tập âm Nhạc Lớp 6 Tiết 20, Giải Bài Tập âm Nhạc Lớp 6 Tiết 21, Giải Bài Tập âm Nhạc Lớp 6 Tiết 23, Giải Bài Tập âm Nhạc Lớp 7 Tiết 21, Giải Bài Tập âm Nhạc Lớp 6 Tiết 2, Giải Bài Tập âm Nhạc Lớp 6 Tiết 19, Giải Bài Thực Hành âm Nhạc Lớp 6 Tiết 9, Giải Bt Thực Hành âm Nhạc Lớp 6 Tiết 2, Tiết 27 âm Nhạc 8, Tiết 1 âm Nhạc 7, Tiết 22 âm Nhạc 8, âm Nhạc Tiết 16 Lớp 6, Tiết 2 âm Nhạc 6, Tiết 11 âm Nhạc 6, Tiết 20 âm Nhạc 7, Đề Kiểm Tra 1 Tiết âm Nhạc Lớp 6, ôn Tập Tiết 7,8 Thực Hành âm Nhạc, Thời Tiếtc Hanh Am Nhac 6 Tiet 2, Giải Sbt âm Nhạc 6, Giải Bài Tập âm Nhạc 6, Giải Bài Tập âm Nhạc 7, Giải Bài Tập âm Nhạc 8, Giải Bài Tập âm Nhạc 6 Tập 2, Giải Bài Tập âm Nhạc Lớp 7, Giải Bài Tập âm Nhạc Lớp 6, Giải Bài Tập âm Nhạc 9, Giải Bài Tập âm Nhạc 8 Bài 1, Giải Sách Bài Tập âm Nhạc 8, Giải Bài Tập Thực Hành âm Nhạc 8, Giải Bài Tập Thực Hành âm Nhạc 7, Giải Bài Tập Thực Hành âm Nhạc 6, Giải Thực Hành âm Nhạc 6, Giải Bài Tập Địa Lí 11 Bài 9 Tiết 2, Giải Bài Tập Địa Lí 11 Bài 10 Tiết 1, Giải Bài Tập Vật Lý Lớp 6 Bài 18 Tiết 2, Giải Tiết 1 Tuần 28 , Bài Giải Chi Tiết Đề Lý 2021, Lá Số Tử Vi Và Bình Giải Chi Tiết, Giải Bài Tập Thực Hành Về Hàm ý Tiết 2, Bài Giải Chi Tiết Đề Lý Cao Đẳng 2012, Giải Bài Tập Thực Hành Lớp 6 Tiết 2, Giải Bài Tập Thực Hành âm Nhạc 8 Bài Mùa Thu Ngày Khai Trươfng, Giai Tiet 1 Cung Em Hoc Toan Tuan 27, Bài Giải Chi Tiết Đề Sinh Cao Đẳng 2011, Lời Giải Chi Tiết Phiếu Bài Tập Cuối Tuần Toán 3, De 9 Bo 28 De Thi Thpt Quoc Gia Cua Thay Do Ngoc Thong Co Loi Giai Chi Tiet, Giải Sách Bồi Dưỡng Năng Lực Toán 6 Phần 2 Số Nguyên Tiết 1, Trình Bày Đoạn Nhạc Có Giai Điệu Hoàn Toàn Giống Nhau Trong Bài Hát Mái Trường Mến Yêu, Giáo Trình âm Nhạc – Lý Thuyết âm Nhạc – Lê Anh Tuấn.pdf, ôn Tập Đọc Nhạc Số 6 Lớp 7 âm Nhạc Thưởng Thức,

【#8】Giải Bài Tập Sbt Toán Hình 12 Bài 2: Khối Đa Diện Lồi Và Khối Đa Diện Đều

Giải bài tập môn Toán Hình lớp 12

Bài tập môn Toán lớp 12

Giải bài tập SBT Toán hình 12 bài 2: Khối đa diện lồi và khối đa diện đều được VnDoc sưu tầm và đăng tải, tổng hợp lý thuyết. Đây là lời giải hay cho các câu hỏi trong sách bài tập nằm trong chương trình giảng dạy môn Toán lớp 12. Hi vọng rằng đây sẽ là những tài liệu hữu ích trong công tác giảng dạy và học tập của quý thầy cô và các em học sinh.

Giải bài tập SBT Toán Hình 12 bài 1: Khái niệm về khối đa diện

Giải bài tập SBT Toán Hình 12 bài 3: Khái niệm về thể tích khối đa diện

Câu 1: Tính sin của góc tạo bởi hai mặt kề nhau (tức là hai mặt có một cạnh chung) của một tứ diện đều.

Hướng dẫn làm bài:

Cho tứ diện đều ABCD cạnh bằng a. Gọi M và N theo thứ tự là trung điểm của AB và CD. Khi đó góc giữa hai mặt (CAB) và (DAB) bằng

Câu 2: Cho ba đoạn thẳng bẳng nhau, đôi một vuông góc với nhau và cắt nhau tại trung điểm của chúng. Chứng minh rằng các đầu mút của ba đoạn thẳng ấy là các đỉnh của một hình bát diện đều.

Hướng dẫn làm bài:

Gọi độ dài của ba đoạn thẳng đã cho là a. Khi đó các đầu mút của chúng là đỉnh của một hình tám mặt đều, mỗi mặt là tam giác đều có cạnh bằng

Câu 3: Cho một khối bát diện đều. Hãy chỉ ra một mặt phẳng đối xứng, một tâm đối xứng và một trục đối xứng của nó.

Hướng dẫn làm bài:

Ta có khối bát diện đều ABCDEF như hình vẽ. Gọi O là giao điểm của EF và (ABCD). Khi đó mặt phẳng (ABCD), điểm O và đường thẳng EF lần lượt là mặt phẳng đối xứng, tâm đối xứng và trục đối xứng của khối bát diện đều đã cho.

Câu 4: Cho khối bát diện đều ABCDEF (hình vẽ). Gọi O là giao điểm của AC và BD, M và N theo thứ tự là trung điểm của AB và AE. Tính diện tích thiết diện tạo bởi khối bát diện đó và mặt phẳng (OMN).

Hướng dẫn làm bài:

Ta có khối bát diện đều ABCDEF, cạnh a. Do MN // (DEBF) nên giao của mặt phẳng (OMN) với mặt phẳng (DEBF) là đường thẳng qua O và song song với MN.

Ta nhận thấy đường thẳng này cắt DE và BF tại các trung điểm P và S tương ứng của chúng. Do mặt phẳng (ADE) song song với mặt phẳng (BCF) nên (OMN) cắt (BCF) theo giao tuyến qua S và song song với NP. Dễ thấy giao tuyến này cắt FC tại trung điểm R của nó. Tương tự, (OMN) cắt DC tại trung điểm Q của nó. Từ đó suy ra thiết diện tạo bởi hình bát diện đã cho với mặt phẳng (OMN) là lục giác đều có cạnh bằng a/2 .

Do đó diện tích của nó bằng a 2.

【#9】Hướng Dẫn Giải Bài Tập Sgk Toán Lớp 8

Hướng dẫn giải bài tập SGK toán lớp 8 tập 1 trang 115. Bài học Đa giác. Đa giác đều.

Bài 1. (Trang 115 SGK Toán 8 – Tập 1)

Hãy vẽ một phác một lục giác lồi.

Hãy nêu cách nhận biết một đa giác lồi.

Cho ví dụ về đa giác không đều trong mỗi trường hợp sau:

a) Có tất cả các cạnh bằng nhau.

b) Có tất cả các góc bằng nhau.

a) Hình sau là ngũ giác không đều có tất cả các cạnh bằng nhau.

Cho hình thoi ABCD có . Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh rằng đa giác EBFGDH là lục giác đều.

AB = BC = CD = DA.

– Ta có:

là tam giác cân tại A và có

là tam giác đều.

Và EH, GF là đường trung bình của

nên:

– Từ (1) và (2) ta có:

– Ta còn có các tam giác:

là các tam giác đều nên:

(Vì đó là các góc ngoài của hai tam giác đều

)

Vậy đa giác

có 6 góc bằng nhau

Từ

suy ra đa giác

là hình lục giác đều (đpcm).

Bài 4. (Trang 115 SGK Toán 8 – Tập 1)

Đa giác n cạnh

Tổng số đo các góc của đa giác

Áp dụng các công thức để tính và điền vào ô trống.

Đa giác n cạnh

Tổng số đo các góc của đa giác

Bài 5. (Trang 115 SGK Toán 8 – Tập 1)

Tính số đo mỗi góc của ngũ giác đều, lục giác đều, n-giác đều.

Ta có hình n-giác đều có n-góc ở n-đỉnh và các góc này bằng nhau.

Tổng số đo các góc của đa giác đều n-cạnh bằng

Vậy số đo của mỗi góc tại đỉnh là:

+ Với hình ngũ giác đều: n = 5.

Số đo góc tại mỗi đỉnh là:

+ Với hình lục giác đều: n = 6.

Số đo các góc tại mỗi đỉnh là:

Hướng dẫn giải bài tập sách giáo khoa Diện tích hình chữ nhật

【#10】Toán 7 Bài 1: Hai Góc Đối Đỉnh

Toán 7 Bài 1: Hai góc đối đỉnh

Trả lời câu hỏi Toán 7 Tập 1 Bài 1 trang 81 : Em hãy nhận xét quan hệ về cạnh, về đỉnh của ∠O 1 và ∠O3

Lời giải

Nhận xét: mỗi cạnh của ∠O 1 là tia đối của một cạnh góc ∠O 3 và ngược lại

∠O 1 và ∠O 3 là hai góc đối đỉnh với nhau

Trả lời câu hỏi Toán 7 Tập 1 Bài 1 trang 81 : Hai góc ∠O 2 và ∠O4 (hình 1) có là hai góc đối đỉnh không ? Vì sao?

Lời giải

Ta có: Hai góc ∠O 2 và ∠O 4 là hai góc đối đỉnh vì mỗi cạnh góc ∠O 1 là tia đối của một cạnh ∠O 4 và ngược lại

Trả lời câu hỏi Toán 7 Tập 1 Bài 1 trang 81 : Xem hình 1.

a)Hãy đo góc O 1 , góc O 3 . So sánh số đo hai góc đó

b)Hãy đo góc O 2 , góc O 4 . So sánh số đo hai góc đó

c)Dự đoán kết quả rút ra từ câu a) , b)

Lời giải

Ta có kết quả sau khi đo các góc trong hình 1

c) Hai góc đối đỉnh thì số đo góc bằng nhau

Bài 1 (trang 82 SGK Toán 7 Tập 1): Vẽ hai đường thẳng xx’ và yy’ cắt nhau tại O như hình 2. Hãy điền vào ô trống trong các phát biểu sau:

a) Góc xOy và góc … là hai góc đối đỉnh vì cạnh Ox là tia đối của cạnh Ox’ và cạnh Oy là … của cạnh Oy’.

b) Góc x’Oy là góc xOy’ là … vì cạnh Ox là tia đối của cạnh … và cạnh …

Lời giải:

a) Góc xOy và góc x’Oy’ là hai góc đối đỉnh vì cạnh Ox là tia đối của cạnh Ox’ và cạnh Oy là tia đối của cạnh Oy’.

b) Góc x’Oy và góc xOy’ là hai góc đối đỉnh vì cạnh Ox’ là tia đối của cạnh Ox và cạnh Oy là tia đối của cạnh Oy’.

Bài 2 (trang 82 SGK Toán 7 Tập 1): Hãy điền vào chỗ trống trong các phát biểu sau:

a) Hai góc có mỗi cạnh của góc này là tia đối của một cạnh của góc kia được gọi là hai góc …

b) Hại đường thẳng cắt nhau tạo thành hai cặp góc …

Lời giải:

a) Hai góc có mỗi cạnh của góc này là tia đối của một cạnh của góc kia được gọi là hai góc đối đỉnh .

b) Hai đường thẳng cắt nhau tạo thành hai cặp góc đối đỉnh .

Bài 3 (trang 82 SGK Toán 7 Tập 1): Vẽ hai đường thằng zz’ và tt’ cắt nhau tại A. Hãy viết tên hai cặp góc đối đỉnh.

Lời giải:

Vẽ hình:

Cặp góc đối đỉnh thứ nhất là (vì Az và Az’; At’ và At là các cặp tia đối nhau).

Cặp góc đối đỉnh thứ hai là (vì Az và Az’; At và At’ là các cặp tia đối nhau)

Bài 4 (trang 82 SGK Toán 7 Tập 1): Vẽ góc xBy có số đo bằng 60 o . Vẽ góc đối đỉnh với góc xBy. Hỏi góc này có số đo bằng bao nhiêu độ ?

Lời giải:

Vẽ tia By’ là tia đối của tia By

Vẽ tia Bx’ là tia đối của tia Bx

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k8: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Video Giải bài tập Toán lớp 7 hay, chi tiết của chúng tôi được biên soạn bám sát sách giáo khoa Toán 7 Tập 1, Tập 2.