Hoặc bạn cũng có thể hiểu là gt.: giải tích, giáo trình cũng được.
Giải tích toán học (tiếng Anh: mathematical analysis), còn gọi đơn giản là giải tích, là ngành toán học nghiên cứu về các khái niệm giới hạn, đạo hàm, tích phân… Nó có vai trò chủ đạo trong giáo dục đại học hiện nay. Phép toán cơ bản của giải tích là “phép lấy giới hạn”. Để nghiên cứu giới hạn của một dãy số, hàm số,… ta phải “đo” được “độ xa gần” giữa các đối tượng cần xét giới hạn đó. Do vậy, những khái niệm như là Ma trận (toán học), tôpô được tạo ra để mô tả một cách chính xác, đầy đủ việc đo độ xa, gần ấy.
Ví dụ:
Đạo hàm là gì? Đạo hàm chẳng qua là tốc độ thay đổi. Từ “tốc độ” là từ quá quen thuộc đối với mọi người, nên bản thân khái niệm đạo hàm cũng chẳng có gì khó hiểu: tốc độ xe ô tô là đạo hàm theo thời gian của quãng đường đi được, tốc độ tăng trưởng dân số hay tăng trưởng kinh tế là đạo hàm của dân số hay sản lượng kinh tế theo thời gian, v.v. (nói chính xác hơn, thì là cần lấy logarithm nếu đo tăng trưởng theo tỷ lệ % chứ không theo giá trị tuyệt đối). Chỉ có công thức tính toán nó có thể hơi lằng nhằng trong một số trường hợp. Thế nhưng không nên lao vào các công thức phức tạp quá ở phổ thông, mà nên chú trọng việc hiểu ý nghĩa hơn. Từ hôi học cấp 2, tôi và một số bạn bè đã biết dùng đạo hàm để tìm cực trị của hàm số. Đó cũng là một công dụng (gọi là phương pháp biến phân của Fermat) khiến đạo hàm trở nên có ích. Tại sao hình vuông lại là hình có diện tích lớn nhất trong các hình chữ nhật có cùng chu vi chẳng hạn, điều này có thể giải thích qua đạo hàm.
Thế tích phân là gì? Chẳng qua là phép tính ngược của đạo hàm, cho phép tính các giá trị nào đó (ví dụ như quĩ đạo của vệ tinh, thể tích của một hình khối, v.v.) qua việc xác định tốc độ thay đổi của nó theo biến nào đó. Nếu như bắt học sinh phải học thuộc đến cả trăm công thức tính tích phân khác nhau, thì hẳn là tích phân trở thành thứ rắm rối và vô bổ. Nhưng nếu chỉ cần học ít công thức thôi, và có nhiều ví dụ cụ thể cho thấy ý nghĩa của việc tính tích phân, thì nó sẽ trở nên không quá khó, và cũng không vô bổ tẹo nào. Các ví dụ có ý nghĩa thực tế mà đòi hỏi tích phân thì có đầy, chỉ cần các nhà giáo dục chịu khó ngồi tổng hợp lại một số ví dụ hay, thay vì ngồi bịa các hàm rắm rối bắt học sinh tính tích phân.