Top 4 # Phương Pháp Giải Toán Lớp 5 Xem Nhiều Nhất, Mới Nhất 3/2023 # Top Trend | Caffebenevietnam.com

Các Bài Toán Giải Bằng Phương Pháp Giả Thiết Tạm Lớp 5

Tài liệu bồi dưỡng học sinh giỏi lớp 5

Giải bài Toán bằng phương pháp giả thiết tạm

Các bài Toán giải bằng phương pháp giả thiết tạm lớp 5 được VnDoc sưu tầm, tổng hợp các bao gồm các bài tập minh họa có kèm theo đáp án chi tiết và các bài tập tự luyện giúp các em học sinh ôn tập, củng cố nâng cao kiến thức dạng Toán này ôn thi học sinh giỏi và thi vào lớp 6. Mời các thầy cô cùng các em học sinh tham khảo.

Trong các bài toán ở Tiểu học, có một dạng toán trong đó đề cập đến hai đối tượng (là người, vật hay sự việc) có những đặc điểm được biểu thị bằng hai số lượng chênh lệch nhau, chẳng hạn hai chuyển động có vận tốc khác nhau, hai công cụ lao động có năng suất khác nhau, hai loại vé có giá tiền khác nhau …

Ta thử đặt ra một trường hợp cụ thể nào đó không xảy ra, không phù hợp với điều kiện bài toán, một khả năng không có thật, thậm chí một tình huống vô lí. Tất nhiên giả thiết này chỉ là tạm thời để chúng ta lập luận nhằm đưa bài toán về một tình huống quen thuộc đã biết cách giải hoặc lập luận để suy ra được cái phải tìm. Chính vì thế mà phương pháp giải toán này phải đòi hỏi có sức tưởng tượng phong phú, óc suy luận linh hoạt…

Những bài toán giải được bằng phương pháp giả thiết tạm có thể giải bằng phương pháp khác. Tuy nhiên, trong nhiều trường hợp, cách giải bằng giả thiết tạm thường gọn gàng và mang tính “độc đáo”.

Giải Toán lớp 5 bằng phương pháp giả thiết tạm có đáp án

Bài 1:

2 người thợ làm chung một công việc thì phải làm trong 7 giờ mới xong. Nhưng người thợ cả chỉ làm 4 giờ rồi nghỉ do đó người thứ hai phải làm 9 giờ nữa mới xong. Hỏi nếu làm riêng thì mỗi người phải làm mấy giờ mới xong?

Lấy 4 giờ của người thợ thứ hai để cùng làm với thợ cả thì được: 4/7 (công việc)

Thời gian còn lại của người thứ hai: 9 – 4 = 5 (giờ)

5 giờ của người thứ hai làm được: 1 – 4/7 = 3/7 (công việc)

Thời gian người thợ thứ hai làm xong công việc: 5 : 3 x 7 = 11 giờ 40 phút.

7 giờ người thứ hai làm được: 3/7 : 5 x 7 = 0,6 (công việc)

7 giờ người thợ cả làm được: 1 – 0,6 = 0,4 (công việc)

Thời gian người thợ cả làm xong công việc: 1 : 0,4 x 7 = 17 giờ 30 phút

Bài 2:

Hai người cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất làm trong 3 giờ, người thứ hai làm trong 6 giờ thì họ làm 25% công việc. Hỏi mỗi người làm công việc đó một mình thì trong bao lâu sẽ hoàn thành công việc đó?

Lấy 3 giờ của người thứ 2 để cùng làm chung 3 giờ với người thứ nhất thì được 3/16 công việc, tương đương với 3 : 16 = 0,1875 = 18,75% (công việc)

3 giờ còn lại của người thứ 2 làm được: 25% – 18,75% = 6,25%

Thời gian người thứ hai làm xong công việc: 3 x 100 : 6,25 = 48 (giờ)

3 giờ người thứ nhất làm được: 18,75% – 6,25% = 12,5%

Thời gian người thứ nhất làm xong công việc: 3 x 100 : 12,5 = 24 (giờ)

Đáp số: 24 giờ; 48 giờ

Bài 3: Một quầy bán hàng có 48 gói kẹo gồm loại 0,5kg; loại 0,2kg và loại 0,1kg. Khối lượng cả 48 gói la 9kg. Hỏi mỗi loại có bao nhiêu gói (biết số gói 0,1kg gấp 3 lần số gói 0,2kg)

Như vậy nếu có 1 gói 0,2kg thì có 3 gói 0,1kg.

Tổng khối lượng 1 gói 0,2kg và 3 gói 0,1kg.

0,2 + 0,1 x 3 = 0,5 (kg)

Giả sử đều là gói 0,5kg thì sẽ có tất cả:

9 : 0,5 = 18 (gói)

Như vậy sẽ còn thiếu:

48 – 18 = 30 (gói)

Còn thiếu 30 gói là do ta đã tính (3+1=4) 4 gới (vừa 0,2g vừa 0,1kg) thành 1 gói.

Mỗi lần như vậy số gói sẽ thiếu đi:

4 – 1 = 3 (gói)

Số gói cần phải thay là: 30 : 3 = 10 (gói)

Số gói 0,5 kg: 18 – 10 = 8 (gói 0,5kg)

10 gói 0,2kg thì có số gói 0,1kg: 10 x 3 = 30 (gói 0,1kg)

Đáp số: 0,5kg có 8 gói; 0,2kg có 10 gói; 0,1kg có 30 gói

Bài 4: Có một số dầu hỏa, nếu đổ vào các can 6 lít thì vừa hết. Nếu đổ vào các can 10 lít thì thừa 2 lít và số can giảm đi 5can. Hỏi có bao nhiêu lít dầu?

Nếu đổ đầy số can 10 lít bằng với số can 6 lít thì còn thiếu:

10 x 5 – 2 = 48 (lít)

Thiếu 48 lít này do mỗi can 6 lít ít hơn:

10 – 6 = 4 (lít)

Số can 6 lít: 48 : 4 = 12 (can)

Số lít dầu: 6 x 12 = 72 (lít)

Bài 5:

Cô giáo đem chia một số kẹo cho các em. Cô nhẩm tính, nếu chia cho mỗi em 5 chiếc thì thừa 3 chiếc, nếu chia cho mỗi em 6 chiếc thì thiếu 5 chiếc. Hỏi cô giáo có bao nhiêu cái kẹo?

Do mỗi bạn thêm 1 chiếc kẹo nên mất số kẹo thừa ra 3 chiếc và phải thiếu đi 5 chiếc.

Số bạn là: 3 + 5 = 8 (bạn)

Số kẹo của cô là: 5 x 8 + 3 = 43 (chiếc)

Bài 6:

Có 145 tờ tiền mệnh giá 5000đ, 2000đ và 1000đ. Số tiền của 145 tờ tiền giấy trên là 312 000đ. Số tiền loại mệnh giá 2000đ gấp đôi loại 1000đ. Hỏi mỗi loại tiền có mấy tờ.

* Do Số tiền loại mệnh giá 2000đ gấp đôi loại 1000đ Nên số tờ mệnh giá 2000 bằng số tờ mệnh giá 1000

– Giả sử 145 tờ toàn là tiền mệnh giá 5000 đ thì tổng số tiền lúc này là:

5000 x 145 = 725000 đ

– Số tiền dôi lên là: 725000 – 312000 = 413000 đ

– Mỗi lần thay 2 tờ 5000đ bởi 1 tờ 2000 và 1 tờ 1000đ

Thì số tiền dôi lên là: 2 x 5000 – (2000 + 1000) = 7000đ

– Số lần thay thế là: 413000 : 7000 = 59 lần

Số tờ mệnh giá 5000đ là: 145 – (59 x 2) = 27 tờ

Đáp số:

– Loại 5000 đ có 27 tờ

– Loài 2000 đ có 59 tờ

– Loại 1000 đ có 59 tờ

Bài 7:

Bác Toàn mua 5 cái bàn và 7 cái ghế với tổng tiền phải trả là 3 010 000 đồng. Giá 1 cái bàn đắt hơn 1 cái ghế 170 000 đồng. Nếu mua 1 cái bàn và 2 cái ghế thì hết bao nhiêu tiền?

Bây giờ ta giả sử giá của 1 cái ghế tăng thêm 170.000 đồng

Khi đó giá 1 cái bàn bằng giá 1 cái ghế

Khi đó tổng số tiền phải trả là: 3.010.000 + 170.000×7 = 4.200.000 (đồng)

Do đó:

Giá một cái bàn là: 4.200.000 : (5 + 7) = 350.000 (đồng)

Giá một cái ghế là: 350.000 – 170.000 = 180.000 (đồng)

Vậy số tiền để mua 1 cái bàn và 2 cái ghế là:

350.000 x 1 + 180.000 x 2 = 710.000 (đồng)

ĐS: 710.000 (đồng)

Bài 8:

Một nhóm học sinh lớp 4 tham gia sinh hoạt ngoại khóa được chia thành các tổ để sinh hoạt.Nếu mỗi tổ 6 nam và 6 nữ thì thừa 20 bạn nam. Nếu mỗi tổ 7 nam và 5 nữ thì thừa 20 nữ . Hỏi có bao nhiêu nam, bao nhiêu nữ?

Nếu mỗi tổ 6 nam thì ít hơn: 7- 6 = 1 (nam).

Do cách chia mỗi tổ ít hơn 1 nam nên số tổ là: 20 : 1 = 20 (tổ)

Số nam là: 6x 20 + 20 = 140 (nam)

Số nữ là: 6 x 20 = 120 (nữ)

Thử lại:

Mỗi tổ trường hợp thứ hai.

140 : 20 = 7 (nam)

(120-20) : 20 = 5 (nữ)

Bài 9:

Có một số l dầu và một số can. Nếu mỗi can chứa 5 l dầu thì còn thừa 5 l; nếu mỗi can chứa 6 l dầu thì có một can để không. Hỏi có bao nhiêu can, bao nhiêu l dầu?

Cách 1:

Gọi N là số can thì ta có:

N x 5 + 5 = (N-1) x 6

N = 11 (can)

Số lít dầu là:

11 x 5 + 5 = 60 (lít)

Cách 2:

Mõi can đựng 6 lít thì nhiều hơn mối can đựng 5 lít là:

6 – 5 = 1 (lít)

Giả sử mỗi can đựng đầy 6 lít mà vẫn còn dư 5 lít thì số lít dầu sẽ hơn:

6 + 5 = 11 (lít)

(thêm một can không đựng 6 lít và 5 lít thừa ra.)

Do mỗi can nhiều hơn 1 lít nên số dầu nhiều hơn chính là số can. Vậy số can là 11 can.

Số dầu là: 5 x 11 + 5 = 60 (lít)

Đáp số: 11 can; 60 lít

Bài 10:

Nhà trưòng giao cho một số lớp trồng cả hai loại cây là cây thông và cây bạch đàn. Số lượng cây cả hai loại đều bằng nhau. Thầy Hiệu phó tính rằng: nếu mỗi lớp trồng 35 cây thông thì còn thừa 20 cây thông; nếu mỗi lớp trồng 40 cây bạch đàn thì còn thiếu 20 cây bạch đàn. Hỏi nhà trường đã giao tất cả bao nhiêu cây thông và cây bạch đàn cho mấy lớp đem trồng, biết toàn bộ số cây đó đã được trồng hết.

Cách 1:

Gọi L là số lớp thì: 35 x L +20 = 40 x L – 20

5xL = 40

L = 8

Số cây thông (cây bạch đàn) là:

35 x 8 + 20 = 300 (cây)

Cách 2:

Giả sử mỗi lớp trồng 40 cây mà vẫn còn dư 20 cây thì số cây sẽ nhiều hơn:

20 + 20 = 40 (cây)

Mỗi lớp trồng 40 cây nhiều hơn mỗi lớp tròng 35 cây là:

40 – 35 = 5 (cây)

Số lớp là: 40 : 5 = 8 (lớp)

Số cây là: 35 x 8 + 20 = 300 (cây)

Đáp số: 8 lớp ; 300 cây

Bài 11:

Tổng hai số bằng 104. Tìm hai số đó biết rằng 1/4 số thứ nhất kém 1/6 số thứ hai là 4 đơn vị.

Giả sử mỗi 1/4 số thứ nhất thêm 4 đơn vị thì sẽ bằng 1/6 số thứ hai.

Lúc này:

Số thứ nhất tăng thêm: 4 x 4 = 16

Tổng mới sẽ là: 104+16=120

Số thứ nhất có 4 phần, số thứ hai có 6 phần.

Tổng số phần bằng nhau: 4 + 6=10 (phần)

Số thứ hai: 120:10 x 6= 72

Số thứ nhất: 104 -72= 32

Đáp số: 32 và 72

Bài 12:

Một người mua 50 quả trứng, vừa trứng gà và trứng vịt hết tất cả 119000 đồng. Biết giá mỗi quả trứng gà là 2500 đồng, mỗi quả trứng vịt là 2200 đồng. Hỏi người đó mua bao nhiêu quả trứng mỗi loại?

Giả sử tất cả đều là trứng gà thì số tiền sẽ là:

2500 x 50 = 125 000 (đồng)

Số tiền nhiều hơn:

125000 – 119000 = 6 000 (đồng)

Giá tiền mỗi trứng gà hơn mỗi trứng vịt là:

2500 – 2200 = 300 (đồng)

Số trứng vịt là:

6000 : 300 = 20 (trứng vịt)

Số trứng gà là:

50 – 20 = 30 (trứng gà)

Đáp số: 20 trứng vịt ; 30 trứng gà

Bài 13:

Một vận động viên bắn súng trong một lần tập huấn phải bắn tất cả 50 viên đạn. Mỗi viên trúng đích được cộng 10 điểm, mỗi viên trượt đích bị trừ 5 điểm. Sau khi bắn hết 50 viên đạn vận động viên đó đạt được 440 điểm. Hỏi vận động viên đó bắn trúng đích bao nhiêu viên?

Mỗi viên trúng đích và trượt sẽ lệch nhau 10 + 5 = 15 (điểm)

Giả sử tất cả 50 viên đều trúng đích thì số điểm là:

10 x 50 = 500 (điểm)

Số điểm nhiều hơn:

500 – 440 = 60 (điểm)

Số viên bắt trượt là:

60 : 15 = 4 (viên)

Số viên trúng đích là:

50 – 4 = 46 (viên)

Đáp số: 46 viên

Bài 14:

Để chuẩn bị cho kì thi học sinh giỏi. Một học sịnh phải giải 40 bài toán. Biết 1 bài đạt loại giỏi được cộng 20 điểm, mỗi bài khá hay trung bình được cộng 5 điểm, 1 bài yếu kém trứ bớt đi 10 điểm. Làm xong 40 bài học sinh đó được tổng điểm là 155 điểm. Hỏi em làm được bao nhiêu bài bài loại giỏi, yếu kém. Biết số bài khá và trung bình là 13 bài.

Số bài còn lại: 40 – 13 = 27 (bài)

Số điểm của 13 bài loại Khá và TB là: 13 x 5 = 65 (điểm)

Số điểm còn lại của loại Giỏi và Yếu: 155 – 65 = 90 (điểm)

Nếu 27 bài còn lại đều loại giỏi thì số điểm là: 27 x 20 = 540 (điểm)

Số điểm nhiều hơn: 540 – 90 = 450 (điểm)

Nếu 1 bài loại Giỏi trở thành loại Yếu thì số điểm lệch đi: 20 + 10 = 30 (điểm)

Số bài đạt loại Yếu là: 450 : 30 = 15 (bài)

Số bài đạt loại Giỏi là: 27 – 15 = 12 (bài)

Đáp số: Giỏi 12 bài; Khá và TB 15 bài

Bài tập làm thêm giải bằng phương pháp giả thiết tạm – Chương 7 – Toán nâng cao lớp 5

Bài 1: Trong một nhà xe có: xe lam và xe ô tô, đếm cả 2 loại xe thì được tất cả là 40 chiếc, và 148 bánh xe. Biết rằng xe lam có 3 bánh, xe ô tô có 4 bánh.

Hỏi mỗi loại có bao nhiêu chiếc xe?

Bài 2: Một cái sọt có thể đựng đầy 14 kg táo hoặc đựng đầy 21 kg mận. Người ta đã đổ đầy sọt cả táo lẫn mận. Tính ra sọt nặng 18 kg và giá tiền cả sọt là 30 000 đồng. Hãy tính giá tiền 1 kg táo và 1 kg mận, biết trong 18 kg đó số tiền táo và mận bằng nhau.

Bài 3: An tham gia đấu cờ và đã đấu 20 ván. Mỗi ván thắng được 10 điểm, mỗi ván thua bị mất 15 điểm. Sau đợt thi An được 150 điểm. Hỏi An đã thắng bao nhiêu ván?

Bài 4: Lớp 5A có 43 học sinh. Trong bài thi học kì 1 cả lớp đều được điểm 9, hoặc điểm 10. Tổng số điểm của cả lớp là 406 điểm. Hỏi có bao nhiêu bạn được điểm 9, bao nhiêu bạn được điểm 10?

Bài 5: 12 con gà vừa gà vừa thỏ có tất cả 32 chân. Hỏi có bao nhiêu gà? Bao nhiêu thỏ?

Bài 6: Vừa gà vừa chó

Bó lại cho tròn

Ba mươi sáu con

Một trăm chân chẵn

Hỏi có bao nhiêu con gà, bao nhiêu con chó?

Bài 7: Có 10 xe chở gạo gồm 2 loại. Loại 1 chở được 45 tạ và loại 2 chở được 32 tạ. Tất cả chở được 39 tấn 8 tạ. Hỏi có bao nhiêu xe mỗi loại.

Bài 8: Có 8 sọt đựng được tất cả 1120 quả vừa cam vừa quýt. Một sọt cam đựng được 75 quả, một sọt quýt đựng được 179 quả. Hỏi mỗi loại có bao nhiêu quả?

Bài 9: 340 học sinh trường Đống Đa đi thăm quan bằng cả hai loại xe, loại xe 40 chỗ ngồi và loại xe 30 chỗ ngồi. Hỏi có bao nhiêu xe mỗi loại biết tất cả có 10 xe.

Bài 10: Có 22 quyển sách vừa sách văn vừa sách toán. Sách văn có 132 trang, sách toán có 150 trang. Tổng số trang cả hai loại là 3120 trang. Hỏi mỗi loại có bao nhiêu quyển?

Bài 11: Lớp em mua 45 vé xem xiếc gồm 3 loại: loại vé 5000 đồng, loại vé 3000 đồng, loại vé 2000 đồng hết tất cả 145000 đồng. Biết số vé 2000 đồng gấp đôi số vé 3000 đồng. Hỏi có bao nhiêu vé mỗi loại?

Bài 12: Lớp 5A có 5 tổ đi trồng cây, số người mỗi tổ đều bằng nhau. Mỗi bạn trồng được 4 cây hoặc 6 cây. Cả lớp trồng được tất cả 220 cây. Hỏi có bao nhiêu bạn trồng được 4 cây? Có bao nhiêu bạn trồng được 6 cây?

Bài 13: An mua sách toán và văn hết 14100 đồng. Bình mua sách toán và văn hết 12900 đồng. Hỏi An mua bao nhiêu quyển toán, bao nhiêu quyển văn? Biết 1 quyển toán giá 1500 đồng, 1 quyển văn giá 1200 đồng và An mua bao nhiêu quyển toán thì Bình mua bấy nhiêu quyển văn. Bình mua bao nhiêu quyển toán thì An mua bấy nhiêu quyển văn.

Bài 14: Có 15 ô tô gồm 3 loại: loại 4 bánh chở được 5 tấn, loại 6 bánh chở được 10 tấn và loại 6 bánh chở được 8 tấn. 15 xe đó chở được tất cả 121 tấn hàng, có tất cả 84 bánh xe. Hỏi mỗi loại có bao nhiêu xe?

Bài 15: Có 18 ô tô gồm 3 loại: 4 bánh chở 5 tấn, loại 6 bánh chở 6 tấn và loại 8 bánh chở 6 tấn. 18 xe đó có tất cả 106 bánh và chở được 101 tấn hàng. Hỏi mỗi loại có bao nhiêu xe?

Bài 16: Có 15 ô tô gồm 3 loại: loại 4 bánh chở 5 tấn, loại 4 bánh chở 6 tấn, loại 6 bánh chở 6 tấn. 15 xe đó có tất cả 70 bánh và chở được 93 tấn. Hỏi mỗi loại có bao nhiêu xe?

Bài 17: An tham gia đấu cờ và đấu được 20 ván. Mỗi ván thắng được 10 điểm, mỗi ván thua bị mất 15 điểm. Sau khi thi An được 150 điểm. Hỏi An đã thắng bao nhiêu ván?

Bài 18: Một quầy bán hàng gồm 48 gói kẹo gồm loại 0,5kg, loại 0,2kg, loại 0,1kg. Khối lượng cả 48 gói là 9kg. Hỏi mỗi loại có bao nhiêu gói, biết số gói 0,1kg gấp 3 lần số gói 0,2kg.

Bài 19: Sau buổi bán hàng, một cửa hàng đã thu được 315000 đồng gồm 3 loại tiền: loại 5000 đồng, loại 2000 đồng, loại 1000 đồng. Số tờ cả 3 loại là 145 tờ. Tính xem mỗi loại có bao nhiêu tờ biết số tờ loại 2000 đồng gấp đôi số tờ loại 1000 đồng.

Bài 20: Lớp 5B có 5 tổ đi trồng cây, số người trong mỗi tổ đều bằng nhau. Mỗi bạn trồng 4 cây hoặc 5 cây. Cả lớp trồng được 220 cây. Hỏi có bao nhiêu bạn trồng được 4 cây, bao nhiêu bạn trồng được 5 cây?

Bài 21: Có một cái sọt để đầy 14kg táo hoặc đầy 21 kg mận. Người ta đã đổ đầy sọt cả táo lẫn mận. Tính ra sọt nặng 18kg và giá tiền cả sọt là 30000 đồng. Em hãy tính giá tiền 1kg táo và 1kg mận, biết trong 18kg đó, số tiền táo và mận bằng nhau.

Phương Pháp Hướng Dẫn Học Sinh Lớp 5 Giải Toán Có Lời Văn

Chương trình giải toán tiểu học, việc giải bài toán có lời văn chiếm một vị trí rất quan trọng. Việc hình thành các khái niệm toán học, các quy tắc đều được giảng dạy thông qua giải toán có lời văn.

Ví dụ như: Muốn hình thành phép nhân một số thập phân cho một số tự nhiên. Trước hết ta phải đưa ra bài toán như SGK / 55: Hình tam giác ABC có ba cạnh dài bằng nhau, mỗi cạnh dài 1,2m. Hỏi chu vi của hình tam giác đó bằng bao nhiêu mét?

Học sinh phải giải bài toán bằng cách lấy 1,2 x 3 = ? (m). Từ đó chúng ta đã hình thành được cho học sinh quy tắc nhân. Đồng thời, thông qua giải toán cũng giúp giáo viên nắm được mức độ kiến thức, kĩ năng của từng học sinh, từ đó giúp giáo viên có hướng điều chỉnh phương pháp dạy học cho phù hợp với từng đối tượng nhằm phát huy tính tích cực, chủ động, sáng tạo của học sinh.

Việc hướng dẫn học sinh cả lớp giải đúng được bài toán đã khó nhưng việc giải đúng, lời giải hay, tạo ra nhiều cách giải lại càng khó hơn. Đa số giáo viên chỉ hướng dẫn học sinh giải đúng chứ chưa chú trọng đến việc giải hay và giải nhiều cách. Khi học sinh trình bày, giáo viên chữa bài thì chưa chú ý đến sáng tạo của học sinh trong khi đặt lời giải, vì học sinh đặt lời giải không giống nhau nhưng vẫn thể hiện đúng ý. Chính vì sợ mất nhiều thời gian nên nhiều giáo viên chưa khai thác hết các cách giải khác nhau hoặc chưa ra thêm bài tập đồng dạng và nâng cao hơn để học sinh tự rèn luyện.

Giải toán giúp học sinh vận dụng vào thực tế cuộc sống. Ví dụ như những bài toán về tính số tiền, tính số viên gạch, tính diện tích, chu vi thửa ruộng, mảnh đất,

PHƯƠNG PHÁP HƯỚNG DẪN HỌC SINH LỚP 5 GIẢI TOÁN CÓ LỜI VĂN ************** I-Đặt vấn đề: Chương trình giải toán tiểu học, việc giải bài toán có lời văn chiếm một vị trí rất quan trọng. Việc hình thành các khái niệm toán học, các quy tắc đều được giảng dạy thông qua giải toán có lời văn. Ví dụ như: Muốn hình thành phép nhân một số thập phân cho một số tự nhiên. Trước hết ta phải đưa ra bài toán như SGK / 55: Hình tam giác ABC có ba cạnh dài bằng nhau, mỗi cạnh dài 1,2m. Hỏi chu vi của hình tam giác đó bằng bao nhiêu mét? Học sinh phải giải bài toán bằng cách lấy 1,2 x 3 = ? (m). Từ đó chúng ta đã hình thành được cho học sinh quy tắc nhân. Đồng thời, thông qua giải toán cũng giúp giáo viên nắm được mức độ kiến thức, kĩ năng của từng học sinh, từ đó giúp giáo viên có hướng điều chỉnh phương pháp dạy học cho phù hợp với từng đối tượng nhằm phát huy tính tích cực, chủ động, sáng tạo của học sinh. Việc hướng dẫn học sinh cả lớp giải đúng được bài toán đã khó nhưng việc giải đúng, lời giải hay, tạo ra nhiều cách giải lại càng khó hơn. Đa số giáo viên chỉ hướng dẫn học sinh giải đúng chứ chưa chú trọng đến việc giải hay và giải nhiều cách. Khi học sinh trình bày, giáo viên chữa bài thì chưa chú ý đến sáng tạo của học sinh trong khi đặt lời giải, vì học sinh đặt lời giải không giống nhau nhưng vẫn thể hiện đúng ý. Chính vì sợ mất nhiều thời gian nên nhiều giáo viên chưa khai thác hết các cách giải khác nhau hoặc chưa ra thêm bài tập đồng dạng và nâng cao hơn để học sinh tự rèn luyện. Giải toán giúp học sinh vận dụng vào thực tế cuộc sống. Ví dụ như những bài toán về tính số tiền, tính số viên gạch, tính diện tích, chu vi thửa ruộng, mảnh đất,... Chính vì thế việc giải toán có lời văn của học sinh còn nhiều hạn chế. Để giúp học sinh giải tốt dạng toán này trước tiên mỗi giáo viên phải thực sự yêu nghề, phải có sự đầu tư kĩ lưỡng từ phương pháp hướng dẫn cho đến việc hướng dẫn giải nhiều cách và ra bài tập nâng cao hơn. Từ những điều trên tôi thấy đây là một vấn đề không chỉ là nỗi lo của học sinh, của giáo viên mà là sự quan tâm sát sao của phụ huynh, của ngành. Khi giảng dạy lớp 5, tôi nghĩ bất kỳ một giáo viên nào thực sự tâm huyết với nghề đều phải dày công nghiên cứu làm cách nào, bằng biện pháp nào để nâng cao kĩ năng giải toán cho học sinh lớp 5 nhằm góp phần nâng cao tỉ lệ học sinh khá, giỏi của lớp mình. Vì những lí do trên mà tôi chọn đề tài: Phương pháp hướng dẫn học sinh lớp 5 giải toán có lời văn II-Nội dung - Biện pháp thực hiện: 1/-Nguyên nhân làm cho việc giải toán của học sinh lớp 5 còn hạn chế: *Do đặc điểm tâm lí: -Nhiều năm liền tiếp xúc với học sinh lớp 5, qua trao đổi với các em về môn Toán, đa số các em đều cảm thấy chán ngán đối với những bài toán giải. Dù biết rằng những dạng toán điển hình các em đã được học lặp đi lặp lại nhưng khi tiếp xúc với toán giải thì các em bị ức chế, ngán ngại. -Đặc thù của toán giải là mang tính khô khan dễ nhàm chán. Nhưng nếu giáo viên xác định, tìm ra phương pháp dạy học thích hợp sẽ gây hứng thú cho học sinh nhưng nếu chúng ta không có phương pháp hướng dẫn phù hợp học sinh sẽ không khắc sâu kiến thức và không giải được dẫn đến nhàm chán, không phát huy được tính tích cực chủ động, sáng tạo của học sinh, dẫn đến các em bị ức chế khi giải toán. -Khi lên lớp 5, các em có sự thay đổi tâm lí rõ rệt. Các em dạn dĩ hơn, quan sát, nhận xét các sự vật tỉ mỉ hơn. Nhưng các em cũng rất hay mặc cảm, tự ti khi chưa hiểu rõ vấn đề hoặc thắc mắc về một vấn đề nào đó các em chưa mạnh dạn trao đổi với bạn hay thầy (cô) vì sợ bạn cười. Ngoài ra các em còn chịu sự chi phối của các phương tiện thông tin hiện đại mà các em tiếp xúc hằng ngày. *Do hoàn cảnh gia đình: -Trường thuộc địa bàn xã, nằm cách xa thị xã, thị trấn nên đa số học sinh thuộc gia đình lao động nghèo, phải vất vả kiếm sống nên bố mẹ không quan tâm đến việc học của con em (nhất là học sinh yếu), dẫn đến các em chưa có ý thức học tốt. Phụ huynh bị hạn chế về trình độ nên khi học sinh học ở nhà gặp lúc không hiểu thì không biết hỏi ai. Hoặc phụ huynh không kiểm tra việc học ở nhà, quan tâm đến việc làm bài tập ở nhà của học sinh. Từ đó kiến thức ngày càng mai mọt, mau quên, các em rơi vào tình trạng chán nản. *Do chưa nắm vững dạng toán và phương pháp giải toán: một phần giáo viên đứng lớp chưa nắm hết các dạng toán điển hình ở tiểu học và phương pháp giải đặc trưng cho từng dạng toán. Chưa phát huy hết tác dụng của đồ dùng dạy học và các đồ dùng dạy học sáng tạo để kích thích tinh thần học tập của học sinh. Qua kết quả giảng dạy môn Toán của những năm học trước do lớp tôi chủ nhiệm cho thấy chất lượng dạy học Toán chưa cao (nhất là học sinh khá, giỏi). Năm học Sĩ số Giỏi Khá Trung bình Yếu Ghi chú SL TL SL TL SL TL SL TL 2006 - 2007 26 5 19,3% 8 30,7% 11 42,3% 2 7,7% Cả năm 2007 - 2008 32 7 21,9% 10 31,2% 13 40,6% 2 6,3% Cả năm Trước thực trạng trên, tôi luôn tự hỏi mình phải làm sao để nâng tỉ lệ học sinh khá, giỏi môn toán. 2/-Tìm hiểu hoàn cảnh gia đình, đặc điểm kiến thức từng học sinh: Đầu năm học, khi nhận bàn giao, tôi tìm hiểu tình hình học tập của lớp qua trao đổi với giáo viên lớp 4 tôi chú trọng những học sinh có năng khiếu học Toán và những học sinh yếu Toán ghi lại danh sách. -Khi thực hiện giảng dạy một, hai tuần đầu ôn tập lại kiến thức và kiểm tra chất lượng đầu năm. Qua đó, tôi tách ra học sinh giỏi, học sinh khá, học sinh trung bình và học sinh yếu môn Toán. Qua một, hai tuần đầu thực tế đứng lớp tôi luôn tạo điều kiện thăm hỏi hoàn cảnh gia đình của từng đối tượng về hoàn cảnh kinh tế, về địa bàn cư trú, về lí lịch,... Qua đó, tôi có thể nhận biết vì sao một số em lại học giỏi Toán hoặc yếu Toán. 3/-Lập kế hoạch hướng dẫn học sinh giải toán có lời văn: Muốn hướng dẫn học sinh giải được bài toán có lời văn thì trước hết giáo viên cần nắm vững các dạng toán cơ bản mà học sinh đã được học ở tiểu học và những phương pháp để giải các dạng toán đó, nhất là các dạng Toán ở lớp 4+ 5. Từ đó, đề xuất nhiều phương pháp dạy học phù hợp với từng đối tượng học sinh. Các dạng toán cơ bản đó là: -Tìm số trung bình cộng. -Tìm hai số khi biết tổng và hiệu của hai số đó. -Tìm hai số khi biết tổng và tỉ của hai số đó. -Tìm hai số khi biết hiệu và tỉ của hai số đó. -Bài toán về tỉ số phần trăm. -Bài toán về chuyển động đều. -Bài toán có nội dung hình học (chu vi, diện tích, thể tích). ............................................................... ............................................................... ................................................................. Một số phương pháp giải toán có lời văn ở Tiểu học thường là: - Phương pháp dùng sơ đồ đoạn thẳng. -Phương pháp chia tỉ lệ. -Phương pháp thay thế. -Phương pháp thử. -Phương pháp tính ngược từ cuối. -Phương pháp lựa chọn. ............................................. .............................................. ................................................ Sau khi nhận thấy bản thân đã nắm vững được các dạng toán điển hình và các phương pháp giải toán tôi tiến hành làm một số công việc như sau: a/-Gặp gỡ phụ huynh đầu năm (phiên họp lần 1) trao đổi vấn đề học tập của học sinh: -Giáo viên nêu khó khăn, thuận lợi, tình hình học tập của học sinh qua một, hai tuần thực học. -Thông qua chất lượng kiểm tra đầu năm. Từ đó, kiến nghị phụ huynh quan tâm hơn, theo dõi, nhắc nhở con em làm bài tập về nhà đầy đủ, thường xuyên hơn, cần sự hỗ trợ của gia đình nhiều hơn. b/-Phân nhóm học sinh theo trình độ: -Qua danh sách học sinh giỏi, khá, trung bình, yếu đã lập sau khi kiểm tra chất lượng đầu năm tôi chia học sinh của lớp thành 3 nhóm: +Nhóm 1: Những học sinh giỏi Toán, có kiến thức cơ bản vững chắc, đa số các em thuộc thành phần gia đình khá, có điều kiện học tập tốt, được cha mẹ quan tâm hoặc gia đình nghèo nhưng có ý chí học tập tốt nên học giỏi. +Nhóm 2: Những học sinh khá Toán cũng nắm kiến thức khá vững nhưng do thiếu cẩn thận. +Nhóm 3: Những học sinh thuộc dạng trung bình, yếu Toán, đa số các em bị mất căn bản do: phụ huynh không quan tâm, gia đình lao động nghèo, nghỉ học thường xuyên để giúp đỡ gia đình hoặc lười học. 4/-Tổ chức các biện pháp: Sau khi phân nhóm học tập theo trình độ tôi tiến hành một số biện pháp nâng cao kĩ năng giải toán của học sinh qua các công việc cụ thể: a/-Sinh hoạt với từng nhóm đối tượng và giao việc cụ thể: +Đối với nhóm 1: Tôi tiếp xúc với từng em và nắm được những điểm mạnh của từng em. Tôi ra các bài tập nâng cao hơn và yêu cầu các em giải bằng nhiều cách. Khuyến khích các em hỗ trợ lẫn nhau trong quá trình giải toán (nhất là học sinh yếu). Phân các em gần nhà lập thành một nhóm nhỏ để giúp đỡ nhau học tập. +Đối với nhóm 2: Tiếp xúc với các em qua 1, 2 tuần đầu, tôi nắm được những hạn chế thiếu sót của từng em. Từ đó, tôi luôn khuyến khích các em cần phải lưu ý, cẩn thận hơn. Cần học tập, trao đổi thêm cách giải toán với bạn, giải toán và hỗ trợ những em chưa biết giải toán hoặc giải chậm. +Đối với nhóm 3: Đây là những đối tượng học sinh cần được quan tâm nhiều hơn. Tôi lên kế hoạch phụ đạo 1 buổi / tuần, trong những giờ phụ đạo đó tôi củng cố lại cho học sinh nắm từng cách giải cho từng dạng toán, ra bài tập cụ thể theo dạng toán đó (đặc biệt là số nhỏ, dễ tính) để các em chủ yếu là biết cách giải, giải được, rồi từ từ ra bài tập khó hơn một chút. Ngoài ra tôi còn khuyến khích các em là phải mạnh dạn trao đổi khi họp nhóm và nên thắc mắc với giáo viên khi chưa hiểu được gì khi giải toán. Tôi còn thông tin cho các em biết sắp tới phải học nhóm nhỏ ở nhà và phải cố gắng làm bài tập nhiều hơn. -Đối với học sinh cá biệt như em Nguyễn Trí Hiếu: đầu óc hay quên, hay em Nguyễn Hữu Phong: nhà nghèo, ba mẹ làm ăn xa, sống với ông nội già yếu. Tôi luôn tạo điều kiện cho các em thực hành giải toán nhiều trên bảng lớp (nhất là những bài tập đơn giản). Bằng tình cảm chân thành, yêu thương, lo lắng cho các em từ đó tôi thấy các em thích làm bài tập hơn, tôi thường ra thêm bài tập đồng dạng cho học sinh tự giải ở nhà. b/-Giao việc cụ thể và tiến hành thực hiện: *Giao việc cụ thể cho học sinh: Tôi tiến hành lập các nhóm nhỏ (5 - 6 học sinh). Mỗi nhóm như thế bao gồm đủ các đối tượng học sinh: học sinh giỏi, học sinh khá, học sinh trung bình, học sinh yếu. Tôi dặn dò các em cần phải có sự hỗ trợ, giúp đỡ lẫn nhau trong khi học nhóm; học sinh giỏi phải làm gương, giảng giải cách làm cho các bạn học yếu chưa biết giải toán. Học sinh khá cố gắng khắc phục những thiếu sót, tính toán cẩn thận hơn. Các học sinh trung bình, yếu chưa biết giải toán phải chăm chú nghe hướng dẫn của bạn, làm bài tập nhiều hơn. Tôi đưa vào tiêu chí thi đua giữa các tổ. Mỗi ngày, sau buổi học tôi ra bài tập về nhà. Đầu buổi học hôm sau tôi tổ chức chữa bài, sau khi chữa bài xong, các em đổi vở cho nhau kiểm tra; Mỗi em làm đúng thì được ghi một điểm 10 cho tổ. Qua hai năm thực hiện tôi rất tâm đắc về điều này. Chỉ cần 1, 2 bài tập mỗi ngày, các em sẽ giải được bài dễ, dần dần giải bài khó hơn, nhiều cách hơn. Cứ như thế cuối mỗi buổi học là các em yêu cầu tôi ra bài tập về nhà. *Tiến hành thực hiện: Khi giảng dạy trên lớp tôi cố gắng nghiên cứu kĩ từng bài toán giải và đề ra phương pháp hướng dẫn, nội dung câu hỏi chính xác, phù hợp từng đối tượng học sinh. Khi học sinh chưa trả lời được tôi ra câu hỏi gợi ý, giảng giải; sau đó cho các em lặp lại ý đúng nhiều lần để khắc sâu kiến thức. Tôi cải tiến phương pháp hướng dẫn giải toán bằng nhiều cách. *Sử dụng phương pháp theo 4 bước: Để có thể giải được một bài toán, thường phải tuân theo một đường lối chung gồm bốn bước như sau: -Bước 1: Đọc kĩ đề toán (ít nhất là hai lần), để nắm vững nội dung, ý nghĩa của bài toán: xác định đâu là cái đã cho, đâu là cái phải tìm. Cần hết sức lưu ý tìm hiểu ý nghĩa cho các từ quan trọng trong đề toán. Chớ vội bắt tay vào tính toán khi chưa đọc kĩ đề. -Bước 2: Tóm tắt đề toán bằng sơ đồ, hình vẽ hoặc ngôn ngữ ngắn gọn. Thông qua đó, thiết lập mối quan hệ giữa những cái đã cho và những cái phải tìm. Ví dụ 1: Với bài toán "Lớp em có 46 bạn. Số bạn trai nhiều hơn số bạn gái 6 bạn. Hỏi số bạn trai và số bạn gái của lớp em? Ta có thể tóm tắt như sau: ? Bạn gái: 6 46 bạn Bạn trai: ? Ví dụ 2: Với bài toán "3 thùng mật ong đựng được 27lít. Hỏi có 5 thùng như vậy thì đựng được bao nhiêu lít?". Ta có thể tóm tắt theo một vài cách như sau: *Cách 1: 3 thùng : 27 lít 5 thùng : ? lít *Cách 2: 27 l ? l v.v... Ví dụ 3: Với bài toán "Cứ 13,5m vải thì may được 9 cái áo đồng phục cho học sinh. Biết rằng lớp 5A có 45 học sinh, lớp 5B có ít hơn 5A là 3 học sinh. Hỏi cần phải dùng bao nhiêu mét vải để may áo đồng phục cho cả hai lớp?", ta có thể tóm tắt như sau: Dùng phương pháp sơ đồ đoạn thẳng 13,5m 9 áo 45hs 5A 3hs ? hs ? m 5B -Bước 3: Phân tích bài toán để tìm cách giải Thường thường, ta xuất phát từ cái phải tìm, tức là từ câu hỏi của bài toán mà suy luận ngược lên cho tới những điều đã cho để tìm cách giải (phương pháp này là phân tích). Như vậy, ta thường phải tự hỏi mình: +Bài toán hỏi gì? +Muốn trả lời được câu hỏi đó thì phải biết cái gì? +Muốn biết cái đó thì phải thực hiện phép tính nào? Ví dụ: Với bài toán nêu trong "Ví dụ 3" ở trên, có thể phân tích để tìm cách giải như sau: +Bài toán hỏi gì? (Số mét vải cần dùng cho cả hai lớp) +Muốn tìm số vải đó ta phải làm như thế nào? (Lấy tổng số học sinh của cả hai lớp nhân với số vải để may 1 áo) +Muốn tìm tổng số học sinh của hai lớp ta làm thế nào? (Lấy số học sinh lớp 5A cộng lớp 5B) +Số học sinh lớp 5A biết chưa? (Biết rồi, 45) +Số học sinh lớp 5B biết chưa? (Chưa biết). Có thể tính bằng cách nào? (Lấy học sinh lớp 5A trừ đi 3) +Bấy giờ, muốn tìm số vải để may 1 áo ta làm thế nào? (Lấy số vải đã dùng để may 9 áo chia cho 9; tức là 13,5m : 9) Quá trình phân tích trên thường được lần lượt ghi lại vắn tắt thành sơ đồ như sau: Tổng số vải = Tổng số HS x Số vải để may 1 áo 5A + 5B (Số vải để may 9 áo) : 9 45 5A - 3 13,5m : 9 Đi ngược lại sơ đồ trên (từ dưới lên) ta có trình tự giải bài toán: Đây là phương pháp tổng hợp, giúp học sinh trình bày lời giải của bài toán (1) Tính số học sinh lớp 5B (Số học sinh lớp 5A - 3) (2) Tính tổng số học sinh hai lớp (3) Tính số vải để may 1 áo (13,5m : 9) (4) Tính tổng số vải cần dùng (Kết quả bước 2 nhân với bước 3) -Bước 4: Thực hiện chính xác các phép tính và trình bày bài giải +Thực hiện các phép tính theo trình tự đã được thiết lập để tìm đáp số. Mỗi khi thực hiện phép tính xong cần thử lại xem đã tính đúng chưa. Giải xong, phải thử xem đáp số có phù hợp với các điều kiện của bài toán không? +Trình bày bài giải của bài toán: Ví dụ, với bài toán nêu ở trên, ta trình bày bài giải như sau: Giải: Số vải để may một áo là: 13,5 : 9 = 1,5 (m) Số học sinh lớp 5B là: 45 - 3 = 42 (học sinh) Số học sinh cả hai lớp là: 45 + 42 = 87 (học sinh) Tổng số vải cần dùng là: 1,5 x 87 = 130,5 (m) Đáp số: 130,5m *Sử dụng phương pháp lựa chọn: Ví dụ: Cho 1 số có hai chữ số, trong đó chữ số hàng đơn vị gấp đôi chữ số hàng chục. Nếu lấy số đó cộng với 7 thì được số có hai chữ số giống nhau. Hãy tìm số đã cho. Giải Số có 2 chữ số, trong đó chữ số hàng đơn vị gấp đôi chữ số hàng chục. Vậy số đó có thể là: 12 ; 24 ; 36 ; 48 Xét lại điều kiện của bài toán: Nếu lấy số đó cộng với 7 thì được số có hai chữ số giống nhau. Vậy ta có: 12 + 7 = 19 ( loại ) 24 + 7 = 31 ( loại ) 36 + 7 = 42 ( loại ) 48 + 7 = 55 ( nhận ) Vậy số cần tìm là : 55 *Sử dụng hình ảnh trực quan, thực tế: Đối với những bài toán mang tính suy luận tôi thường sử dụng hình ảnh trực quan, thực tế để mang đến cho các em sự hứng thú khi giải toán. Ví dụ như: Bài 2 trang 21 / SGK: Một gia đình gồm 3 người (bố, mẹ và một con). Bình quân thu nhập hằng tháng là 800000 đồng mỗi người. Nếu gia đình đó có thêm một con nữa mà tổng thu nhập của gia đình không thay đổi thì bình quân thu nhập hằng tháng của mỗi người bị giảm đi bao nhiêu tiền? -Tôi sẽ mời 3 học sinh đứng trước lớp đóng vai bố, mẹ và con. Mỗi bạn cầm 1 tờ phiếu ghi số 800000 đồng, tôi hỏi: +Lúc đầu gia đình có mấy người? (Có 3 người) +Bình quân hằng tháng mỗi người thu nhập được bao nhiêu tiền? (800000 đồng) +Đề bài cho biết có thêm mấy người nữa? (1 người) +Vậy gia đình đó có tất cả mấy người? (4 người); Giáo viên gọi thêm 1 học sinh nữa bước vào nhóm +Đề bài cho biết số tiền thu nhập hằng tháng của mỗi người có tăng thêm không? (không) +Nhiệm vụ của các em sẽ tìm gì? (Số tiền thu nhập hằng tháng của mỗi người sẽ bị giảm đi bao nhiêu?) *Sử dụng đồ dùng dạy học linh hoạt, sáng tạo: Đây là một yếu tố vô cùng quan trọng. Ngoài những đồ dùng dạy học sẵn có, tôi cùng với đồng nghiệp bàn luận hoặc sưu tầm thêm để gây sự chú ý cho học sinh Ví dụ 1: Khi dạy bài 1 / 31 SGK: "Để lát nền một căn phòng hình chữ nhật, người ta dùng loại gạch men hình vuông có cạnh 30cm. Hỏi cần bao nhiêu viên gạch để lát nền căn phòng đó, biết rằng căn phòng đó có chiều rộng 6m, chiều dài 9m?" (Diện tích phần mạch vữa không đáng kể) Tôi mang theo viên gạch hình vuông cạnh 30cm để các em quan sát. Sau khi cho học sinh tìm hiểu đề, tôi hỏi: +Bài toán cho biết gì? (Người ta dùng loại gạch men hình vuông cạnh 30cm để lát kín căn phòng có chiều rộng 6m, chiều dài 9m) +Bài toán hỏi gì? (Cần bao nhiêu viên gạch để lát kín căn phòng?) +Để tìm được số viên gạch để lát kín căn phòng, ta cần biết gì? (Diện tích căn phòng và diện tích một viên gạch) -Giáo viên giới thiệu viên gạch: Đây là viên gạch hoa hình vuông có số đo một cạnh là 30cm (Giáo viên dùng thước đo kiểm tra lại cho cả lớp quan sát) +Khi biết được diện tích căn phòng và diện tích một viên gạch ta tìm số viên gạch bằng cách nào? (Lấy diện tích căn phòng chia cho diện tích một viên gạch) -Giáo viên cần giới thiệu cho học sinh hiểu phần mạch vữa không đáng kể nghĩa là diện tích chỗ tiếp xúc giữa 2 viên gạch khi lát nền căn phòng không tính. Kết quả là các em nhớ lâu dạng toán này và ham thích học. Ví dụ 2: Khi dạy bài 3 / 60 SGK: Trên bảng đồ tỉ lệ 1 : 1000000, quãng đường từ Thành phố Hồ Chí Minh đến Phan Thiết đo được 19,8cm. Hỏi độ dài thực của quãng đường từ Thành phố Hồ Chí Minh đến Phan Thiết là bao nhiêu ki - lô - mét? Tôi sử dụng bản đồ phân môn địa lý tạo sự hứng thú, say mê cho học sinh khi tiếp xúc dạng toán này. Có thể cho học sinh đo đạc trực tiếp trên bản đồ giúp các em vận dụng hiểu biết vào thực tế. *Sử dụng các hoạt động ôn tập hỗ trợ: Thường xuyên liên hệ với phụ huynh học sinh để cùng với gia đình đôn đốc, nhắc nhở các em học tập tốt hơn, làm bài tập đầy đủ hơn. Vì hằng ngày, cuối mỗi buổi học tôi thường ra bài tập về nhà dạng nâng cao cho học sinh làm thêm. Khi gặp bài toán khó, ngoài khả năng hỗ trợ của những phụ huynh, phụ huynh đến hỏi tôi nhiệt tình giải thích từ đó phụ huynh rất hài lòng về cách làm của tôi và đôn đốc các em học tập tốt hơn. Điều quan trọng nhất đối với môn Toán là ôn luyện kiến thức một cách thường xuyên. Đây là yếu tố quan trọng quyết định kết quả học tập của các em. Tôi thường tổ chức ôn tập, củng cố lại kiến thức mà các em hay quên và hạn chế vào chiều thứ sáu hàng tuần, đầu giờ ôn bài và 5 - 10 phút sau mỗi buổi học. 5/-Tác dụng của sáng kiến kinh nghiệm: Qua nhiều năm áp dụng biện pháp nêu trên tôi nhận thấy chất lượng dạy học môn Toán nâng lên đáng khích lệ (nhất là tỉ lệ học sinh khá, giỏi), học sinh trung bình yếu tiến bộ rõ rệt. Các em nắm chắc các dạng toán và giải chính xác hơn. Bi

Các Dạng Toán Và Phương Pháp Giải Toán Lớp 6

CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI TOÁN LỚP 6 TẬP HỢP, PHẦN TỬ CỦA TẬP HỢP I. LÍ THUYẾT 1. Tập hợp. Phần tử của tập hợp: - Tập hợp là một khái niệm cơ bản. Ta hiểu tập hợp thông qua các ví dụ. - Tên tập hợp được đặt bằng chữ cái in hoa. - Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, cách nhau bởi dấu ";" (nếu có phần tử là số) hoặc dấu ",". Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý. - Kí hiệu: 1 Î A đọc là 1 thuộc A hoặc 1 là phần tử của A; 5 Ï A đọc là 5 không thuộc A hoặc 5 không là phần tử của A; - Để viết một tập hợp, thường có hai cách: + Liệt kê các phần tử của tập hợp. + Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp đó. - Một tập hợp có thể có một phần tử, có nhiều phần tử, có vô số phần tử, cũng có thể không có phần tử nào (tức tập hợp rỗng, kí hiệu . - Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A gọi là tập hợp con của tập hợp B. Kí hiệu: A Ì B đọc là: A là tập hợp con của tập hợp B hoặc A được chứa trong B hoặc B chứa A. - Mỗi tập hợp đều là tập hợp con của chính nó. Quy ước: tập hợp rỗng là tập hợp con của mọi tập hợp. - Giao của hai tập hợp (kí hiệu: Ç) là một tập hợp gồm các phần tử chung của hai tập hợp đó. 2. Tập hợp các số tự nhiên: Kí hiệu N - Mỗi số tự nhiên được biểu diễn bởi một điểm trên tia số. Điểm biểu diễn số tự nhiên a trên tia số gọi là điểm a. - Tập hợp các số tự nhiên khác 0 được kí hiệu là N*. - Thứ tự trong tập hợp số tự nhiên: + Trong hai số tự nhiên khác nhau, có một số nhỏ hơn số kia. Trên hai điểm trên tia số, điểm ở bên trái biểu diễn số nhỏ hơn. + Nếu a < b và b < c thì a < c. + Mỗi số tự nhiên có một số liền sau duy nhất, chẳng hạn số tự nhiên liền sau số 2 là số 3; số liền trước số 3 là số 2; số 2 và số 3 là hai số tự nhiên liên tiếp. Hai số tự nhiên liên tiếp thì hơn kém nhau một đơn vị. + Số 0 là số tự nhiên nhỏ nhất. Không có số tự nhiên lớn nhất. + Tập hợp các số tự nhiên có vô số phần tử. 3. Ghi số tự nhiên: Có nhiều cách ghi số khác nhau: - Cách ghi số trong hệ thập phân: Để ghi các số tự nhiên ta dùng 10 chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Cứ 10 đơn vị ở một hàng thì làm thành một đơn vị ở hàng liền trước nó. + Kí hiệu: chỉ số tự nhiên có hai chữ số, chữ số hàng chục là a, chữ số hàng đơn vị là b. Viết được chỉ số tự nhiên có ba chữ số, chữ số hàng trăm là a, chữ số hàng chục là b, chữ số hàng đơn vị là c. Viết được - Cách ghi số La Mã: có 7 chữ số Kí hiệu I V X L C D M Giá trị tương ứng trong hệ thập phân 1 5 10 50 100 500 1000 + Mỗi chữ số La Mã không viết liền nhau quá ba lần. + Chữ số có giá trị nhỏ đứng trước chữ số có giá trị lớn làm giảm giá trị của chữ số có giá trị lớn. - Cách ghi số trong hệ nhị phân: để ghi các số tự nhiên ta dùng 2 chữ số là : 0 và 1. - Các ví dụ tách một số thành một tổng: Trong hệ thập phân: 6478 = 6. 103 + 4. 102 + 7. 101 + 8. 100 Trong hệ nhị phân: 1101 = 1. 23 + 1. 22 + 0. 21 + 1. 20 II. CÁC DẠNG TOÁN Dạng 1: Viết một tập hợp cho trước Phương pháp giải Dùng một chữ cái in hoa (A,B..) và dấu ngoặc nhọn { }, ta có thể viết một tập hợp theo hai cách: -Liệt kê các phần tử của nó. -Chỉ ra tính chất đặc trưng cho các phần tử của nó. Ví dụ: Viết tập M gồm các số tự nhiên có 1 chữ số. Cách 1: M={ 0;1;2;3;4;5;6;7;8;9 }. Dạng 2: Sử dụng các kí hiệu và Phương pháp giải Nắm vững ý nghĩa các kí hiệu và Kí hiệu đọc là “phần tử của” hoặc “thuộc”. Kí hiệu đọc là “không phải là phần tử của” hoặc ‘không thuộc”. Kí hiệu diễn tả quan hệ giữa một phần tử với một tập hợp; kí hiệu diễn tả một quan hệ giữa hai tập hợp. A M : A là phần tử của M; A M : A là tập hợp con của M Ví dụ: Cho A = {1; 3; a; b} ; B = {3; b} Điền các kí hiệu thích hợp vào dấu (.) 1 ......A ; 3 ... A ; 3....... B ; B ...... A. Giải: 1 A ; 3 A ; 3 B ; B A. Dạng 3: Minh họa một tập hợp cho trước bằng hình vẽ Phương pháp giải Sử dụng biểu đồ ven. Đó là một đường cong khép kín, không tự cắt, mỗi phần tử của tập hợp được biểu diễn bởi một điểm ở bên trong đường cong đó. Giải: 5 6 8 7 A Dạng 4: Tìm số liền sau, số liền trước của một số tự nhiên cho trước Phương pháp giải -Để tìm số liền sau của số tự nhiên a, ta tính a+1 -Để tìm số liền trước của số tự nhiên a khác 0, ta tính a-1 Chú ý: -Số 0 không có số liền trước. -Hai số tự nhiên liên tiếp thì hơn kém nhau 1 đơn vị. Ví dụ: Tìm số liền sau và liền trước của các số sau: 1009; 2n; 3n+4; 2n-2. Giải: Số Số liền trước Số liền sau 1009 1008 1010 2n 2n-1 2n+1 3n+4 3n+3 3n+5 2n-2 2n-3 2n-1 Dạng 5: Tìm các số tự nhiên thỏa mãn điều kiện cho trước Phương pháp giải Liệt kê tất cả các số tự nhiên thỏa mãn đồng thời các điều kiện đã cho. Ví dụ: Tìm x N : sao cho x là số chẵn và 12<x<20. Giải: Gọi tập hợp các số cần tìm là A: A=={14;16;18 } Dạng 6: Biểu diễn trên tia số các số tự nhiên thỏa mãn điều kiện cho trước Phương pháp giải -Liệt kê các số tự nhiên thỏa mãn đồng thời các điều kiện đã cho -Biểu diễn các số vừa liệt kê trên tia số Ví dụ: Viết tập hợp A các số tự nhiên không vượt quá 6 bằng 2 cách, biểu diễn trên tia số các phần tử của tập hợp A. Giải: Cách 2: A=={0;1;2;3;4;5;6 } Biểu diễn trên tia số: Tập hợp A : Dạng 7: Ghi các số tự nhiên Phương pháp giải -Sử dụng cách tách số tự nhiên thành từng lớp để ghi. -Chú ý phân biệt: Số với chữ số, số chục với chữ số hàng chục, số trăm với chữ số hàng trăm Ví dụ: Số đã cho Số trăm Chữ số hàng trăm Số trục Chữ số hàng trục 1235 12 2 123 3 2356 23 3 235 5 Dạng 8: Viết tất cả các số có n chữ số từ n chữ số cho trước Phương pháp giải Giả sử từ ba chữ số a, b, c khác 0, ta viết các số có ba chữ số như sau: Chọn a là chữ số hàng trăm ta có: , ; Chọn b là chữ số hàng trăm ta có: , ; Chọn c là chữ số hàng trăm ta có: , . Vậy tất cả có 6 số có ba chữ số lập được từ ba chữ số khác 0: a, b và c. *Chú ý: Chữ số 0 không thể đứng ở hàng cao nhất của số có n chữ số phải viết. Ví dụ: Dùng các số 1,2,3,4,5 viết được bao nhiêu số tự nhiên khác nhau có 3 chữ số. Giải: Gọi số cần tìm là abc a có 5 cách chọn. b có 4 cách chọn (Vì các chữ số khác nhau). c có 3 cách chọn. Vậy ta được 3.4.5=60 số có 3 chữ số khác nhau từ các số trên. Ví dụ: Dùng các số 1,2,3,4,5 viết được bao nhiêu số tự nhiên có 3 chữ số. Giải: Gọi số cần tìm là abc a có 5 cách chọn. b có 5 cách chọn (Vì các chữ số có thể giống nhau). c có 5 cách chọn. Vậy ta được 5.5.5=125 số có 3 chữ số từ các số trên. Dạng 9: Tính số các số có n chữ số cho trước Phương pháp giải Để tính số các chữ số có n chữ số ta lấy số lớn nhất có n chữ số trừ đi số nhỏ nhất có n chữ số rồi cộng với 1. Với các số cách nhau một khoảng không đổi, ta dùng công thức sau: Số các chữ số = Số cuối-Số đầuKhoảng cách+1 Ví dụ: Có bao nhiêu số có 5 chữ số: Giải: Số lớn nhất có 5 chữ số là : 99999 Số nhỏ nhất có 5 chữ số là: 10000 Số các số có 5 chữ số là : (99999-10000)+1=90000 Ví dụ: Có bao nhiêu số chẵn có 3 chữ số: Giải: Số chẵn lớn nhất có 3 chữ số là 998. Số chẵn nhỏ nhất có 3 chữ số là 100. Hai số chẵn cách nhau 2 đơn vị nên số các số chẵn có 3 chữ số là: 998-1002+1=450 số Dạng 10: Sử dụng công thức đếm số các số tự nhiên Phương pháp giải Để đếm các số tự nhiên từ a đến b, hai số liên tiếp cách nhau d đơn vị. ta dùng công thức sau: +1 nghĩa là Số cuối-Số đầuKhoảng cách+1 Ví dụ: Muốn viết các số từ 100 đến 999 dùng bao nhiêu chữ số 9: Các số chứa các chữ số 9 ở hàng đơn vị là: 109, 119, 999 có.. các số cách nhau 10 đơn vị nên có 999-10910+1=90 chữ số 9. Các số chứa số 9 ở hàng trăm là :190, 191199; 290, 291.299; ..990, 991999 có: 10.9=90 chữ số 9. Các số chứa chữ số 9 ở hàng trăm: 900, 901.999 có: .. 999-9001+1=100 chữ số 9. Vậy có tất cả 90+90+100=280 chữ số 9 Dạng 11: Đọc và viết các số bằng chữ số la mã Phương pháp giải Cách viết: Sử dụng quy ước ghi số La Mã. I: 1 V: 5 X: 10 L: 50 C: 100 D:500 M:1000 * Thông thường người ta quy định các chữ số I, X, C, M, không được lặp lại quá ba lần ; các chữ số V, L, D không được lặp lại quá một lần (nghĩa là không lặp lại) * Chữ số cơ bản được lặp lại 2 hoặc 3 lần biểu thị giá trị gấp 2 hoặc gấp 3. Ví dụ: +      I = 1   ;   II = 2   ;  III = 3 +     X = 10 ; XX = 20  ;  XXX = 30 +     C = 100   ;   CC = 200   ;  CCC = 300 +     M = 1000  ; MM =2000   : MMM = 3000 * Phải cộng, trái trừ:     Chữ số thêm vào bên phải là cộng thêm (nhỏ hơn chữ số gốc) và cũng không được thêm quá 3 lần:  Ví dụ: + V = 5 ; VI = 6 ; VII = 7 ; VIII = 8 +Nếu viết: VIIII = 9 (không đúng) + L = 50 ; LX = 60 ; LXX = 70 ; LXXX = 80 + C = 100 ; CI = 101  : CL =150 + 3833 gồm : 3000 + 800 + 30 + 3 nên được viết:  MMMDCCCXXXIII +2787 gồm: 2000 + 700 + 80 + 7 nên được viết: MMDCCLXXXVII Chữ số viết bên trái là bớt đi (nghĩa là lấy số gốc trừ đi số viết bên trái thành giá trị của số được hình thành - và dĩ nhiên số mới nhỏ hơn số gốc. Chỉ được viết một lần) Ví dụ: + số 4 (4= 5-1) viết là     IV + số 9 (9=10-1)  Viết là     IX + số 40 = XL      ;  + số 90  = XC + số 400 = CD    ; + số 900 = CM + MCMLXXXIV = 1984 +MMXIV = 2014 Nói cách khác: Người ta dùng các chữ số I, V, X, L, C, D, M, và các nhóm chữ số IV, IX, XL, XC, CD, CM để viết số La Mã. Tính từ trái sang phải giá trị của các chữ số và nhóm chữ số giảm dần. Một vài ví dụ: Ví dụ: * MMMDCCCLXXXVIII = ba nghìn tám trăm tám mươi tám * MMMCMXCIX = ba nghìn chín trăm chín mươi chín Cách đọc:             Đọc số nhỏ thì dễ nhưng đọc các số lớn cũng khó lắm đấy. Như trên đã nói: Tính từ trái sang phải giá trị của các chữ số và nhóm chữ số giảm dần nên ta chú ý đến chữ số và nhóm chữ số hàng ngàn trước đến hàng trăm, hàng chục và hàng đơn vị (như đọc số tự nhiên) Ví dụ: -Số: MMCMXCIX  ta chú ý: hàng ngàn: MM = hai ngàn ; hàng trăm: CM = chín trăm ; hàng chục: XC = Chín mươi ; hàng đơn vị: IX = chín. Đọc là: Hai ngàn chín trăm chín mươi chín. -Số: MMMDXLIV ta chú ý: MMM = ba ngàn ; D = năm trăm; XL = bốn mươi ; IV = bốn. Đọc là: ba nghìn năm trăm bốn mươi bốn. Chú ý: - I chỉ có thể đứng trước V hoặc X, - X chỉ có thể đứng trước L hoặc C, - C chỉ có thể đứng trước D hoặc M. Đối với những số lớn hơn (4000 trở lên), một dấu gạch ngang được đặt trên đầu số gốc để chỉ phép nhân cho 1000: M : Đọc là một triệu IV: Bố nghìn Đối với những số rất lớn thường không có dạng thống nhất, mặc dù đôi khi hai gạch trên hay một gạch dưới được sử dụng để chỉ phép nhân cho 1.000.000. Điều này có nghĩa là X gạch dưới (X) là mười triệu. Số La Mã không có số 0 VD: đọc các số La Mã sau: XIV; XXVI. Viết các số La Mã: 17; 25 SỐ PHẦN TỬ CỦA TẬP HỢP, TẬP CON Dạng 1: Tìm số phần tử của một tập hợp cho trước Phương pháp giải -Căn cứ vào các phần tử đã được liệt kê hoặc căn cứ vào tính chất đặc trưng cho các phần tử của tập hợp cho trước, ta có thể tìm được số phần tử của tập hợp đó. - Sử dụng các công thức sau: Tập hợp các số tự nhiên từ a đến b có: b – a + 1 phần tử (1) Tập hợp các số chẵn từ số chẵn a đến số chẵn b có: (b – a) : 2 + 1 phần tử ( 2) Tập hợp các số lẻ từ số lẻ m đến số lẻ n có: (n-m): 2 + 1 phần tử ( 3) Tập hợp các số tự nhiên từ a đến b, hai số kế tiếp cách nhau d đơn vị, có: (b-a): d +1 phần tử ( Các công thức (1), (2), (3) là các trường hợp riêng của công thức (4) ) . Chú ý: ự khác nhau giữa các tập sau: , {0}, {} Ví dụ: Tìm số phần tử các tập hợp sau: x+1=3; A={1, 3, 5, 99} x.0=0; B={1, 4, 7, 301} Giải: x.0=0 với mọi giá trị x nên tập hợp có vô số phần tử. A={1, 3, 5, 99} có số phần tử là: 99-12+1=50 phần tử. B={1, 4, 7, 301} có số phần tử là: 301-13+1=101 phần tử. Dạng 2: Viết tất cả các tập hợp con của tập cho trước Phương pháp giải Giả sử tập hợp A có n phần tử. Ta viết lần lượt các tập hợp con: Không có phần tử nào (); Có 1 phần tử; Có 2 phần tử; . . . Có n phần tử. Chú ý: Tập hợp rỗng là tập hợp của mọi tập hợp: E. Người ta chứng minh được rằng nếu một hợp có n phần tử thì số tập hợp con của nó bằng 2n. Ví dụ: cho A={1, 3, 5, 9} Viết tất cả các tập con của A. Giải: Tập con không có phần tử nào là: Tập con có một phần tử là: {1}, {3}, {5}, {9}. Tập con có 2 phần tử là: {1;3}; {1;5}; {1;9}; {3;5}; {3;9}; {5;9}. Tập con có 3 phần tử là: {1;3;5}; {1;3;9}; {1;5;9}; {3;5;9} Tập con có 4 phần tử là: {1;3;5;9} III. BÀI TẬP Bài 1: Cho tập hợp A là các chữ cái trong cụm từ “Thành phố Hồ Chí Minh” Hãy liệt kê các phần tử của tập hợp A. Điền kí hiệu thích hợp vào ô vuông a) b A ; b) c A ;. c) h A Lưu ý HS: Bài trên không phân biệt chữ in hoa và chữ in thường trong cụm từ đã cho. Bài 2: Cho tập hợp các chữ cái X = {A, C, O} a/ Tìm cụm chữ tạo thành từ các chữ của tập hợp X. b/ Viết tập hợp X bằng cách chỉ ra các tính chất đặc trưng cho các phần tử của X. Bài 3: Cho các tập hợp A = {1; 2; 3; 4; 5; 6;8;10} ; B = {1; 3; 5; 7; 9;11} a/ Viết tập hợp C các phần tử thuộc A và không thuộc B. b/ Viết tập hợp D các phần tử thuộc B và không thuộc A. c/ Viết tập hợp E các phần tử vừa thuộc A vừa thuộc B. d/ Viết tập hợp F các phần tử hoặc thuộc A hoặc thuộc B. Bài 4: Cho tập hợp A = {1; 2;3;x; a; b} a/ Hãy chỉ rõ các tập hợp con của A có 1 phần tử. b/ Hãy chỉ rõ các tập hợp con của A có 2 phần tử. c/ Tập hợp B = {a, b, c} có phải là tập hợp con của A không? Bài 5: Cho tập hợp B = {a, b, c}. Hỏi tập hợp B có tất cả bao nhiêu tập hợp con? Hướng dẫn - Tập hợp con của B không có phần từ nào là tập.. - Các tập hợp con của B có một phần tử là . - Các tập hợp con của B có hai phần tử là . - Tập hợp con của B có 3 phần tử chính là Vậy tập hợp A có tất cả . tập hợp con. Ghi chú. Một tập hợp A bất kỳ luôn có hai tập hợp con đặc biệt. Đó là tập hợp rỗng và chính tập hợp A. Ta quy ước là tập hợp con của mỗi tập hợp. Bài 6: Cho A = {1; 3; a; b} ; B = {3; b} Điền các kí hiệu thích hợp vào dấu (.) 1 ......A ; 3 ... A ; 3....... B ; B ...... A Bài 7: Cho các tập hợp ; N .... N* ; A ......... B Bài 8: Gọi A là tập hợp các số tự nhiên có 3 chữ số. Hỏi tập hợp A có bao nhiêu phần tử? Bài 9: Hãy tính số phần tử của các tập hợp sau: a/ Tập hợp A các số tự nhiên lẻ có 3 chữ số. b/ Tập hợp B các số 2, 5, 8, 11, , 296, 299, 302 c/ Tập hợp C các số 7, 11, 15, 19, , 275 , 279 Bài 10: Cha mua cho em một quyển số tay dày 145 trang. Để tiện theo dõi em đánh số trang từ 1 đến 256. Hỏi em đã phải viết bao nhiêu chữ số để đánh hết cuốn sổ tay? Bài 11:Cho hai tập hợp M = {0,2,4,..,96,98,100;102;104;106}; a) Mỗi tập hợp có bao nhiêu phần tử? b)Dùng kí hiệu để thực hiên mối quan hệ giữa M và Q. Viết các tập hợp trên; Mỗi tập hợp có bao nhiêu phần tử; Dùng kí hiệu để thực hiên mối quan hệ giữa hai tập hợp đó. Bài 13: Hãy tính số phần tử của các tập hợp sau: a/ Tập hợp A các số tự nhiên lẻ có 3 chữ số. b/ Tập hợp B các số 2, 5, 8, 11, , 296, 299, 302 c/ Tập hợp C các số 7, 11, 15, 19, , 275 , 279 Hướng dẫn a/ Tập hợp A có (999 – 101):2 +1 = 450 phần tử. b/ Tập hợp B có (302 – 2 ): 3 + 1 = 101 phần tử. c/ Tập hợp C có (279 – 7 ):4 + 1 = 69 phần tử. Cho HS phát biểu tổng quát: Tập hợp các số chẵn từ số chẵn a đến số chẵn b có (b – a) : 2 + 1 phần tử. Tập hợp các số lẻ từ số lẻ m đến số lẻ n có (n – m) : 2 + 1 phần tử. Tập hợp các số từ số c đến số d là dãy số các đều, khoảng cách giữa hai số liên tiếp của dãy là 3 có (d – c ): 3 + 1 phần tử. Bài 14: Cha mua cho em một quyển số tay dày 145 trang. Để tiện theo dõi em đánh số trang từ 1 đến 256. Hỏi em đã phải viết bao nhiêu chữ số để đánh hết cuốn sổ tay? Hướng dẫn: - Từ trang 1 đến trang 9, viết 9 chữsố. - Từ trang 10 đến trang 99 có 90 trang, viết 90 . 2 = 180 chữ số. - Từ trang 100 đến trang 145 có (145 – 100) + 1 = 46 trang, cần viết 46 . 3 = 138 chữ số. Vậy em cần viết 9 + 180 + 138 = 327số. Bài 15: Các số tự nhiên từ 1000 đến 10000 có bao nhiêu số có đúng 3 chữ số giống nhau. Hướng dẫn:- Số 10000 là số duy nhất có 5 chữ số, số này có hơn 3 chữ số giống nhau nên không thoả mãn yêu cầu của Bài. Vậy số cần tìm chỉ có thể có dạng: , , , với a b là các chữ số. - Xét số dạng , chữ số a có 9 cách chọn ( a 0) có 9 cách chọn để b khác a. Vậy có 9 . 8 = 71 số có dạng . Lập luận tương tự ta thấy các dạng còn lại đều có 81 số. Suy ta tất cả các số từ 1000 đến 10000 có đúng 3 chữ số giống nhau gồm 81.4 = 324 số. Bài 16: Có bao nhi êu số có 4 chữ số mà tổng các chữ số bằng 3? HD Giải 3 = 0 + 0 + 3 = 0 + 1 + 1 + 1 = 1 + 2 + 0 + 0 3000 1011 2001 1002 1110 2100 1200 1101 2010 1020 1 + 3 + 6 = 10 số Bài 17: Tính nhanh các tổng sau a, 29 + 132 + 237 + 868 + 763 b, 652 + 327 + 148 + 15 + 73 HD: a, 29 + 132 + 237 + 868 + 763 = 29 + (132 + 868) + (237 + 763) = 29 + 1000 + 1000 = 2029 b, 652 + 327 + 148 + 15 + 73 = (652 + 148) + (327 + 73) + 15 = 700 + 400 + 15 = 1115 Bài 18: Cho hai tập hợp M = {0,2,4,..,96,98,100;102;104;106}; a) Mỗi tập hợp có bao nhiêu phần tử? b)Dùng kí hiệu để thực hiên mối quan hệ giữa M và Q. Viết các tập hợp trên; Mỗi tập hợp có bao nhiêu phần tử; Dùng kí hiệu để thực hiên mối quan hệ giữa hai tập hợp đó. Bài 20: Viết các tập hợp sau và cho biết mỗi tập hợp có bao nhiêu phần tử: a) Tập hợp A các số tự nhiên x mà 17 – x = 5 ; b) Tập hợp B các số tự nhiên y mà 15 – y = 18; c) Tập hợp C các số tự nhiên z mà 13 : z = 1; d) Tập hợp D các số tự nhiên x , x N* mà 0:x = 0; Bài 21: Tính số điểm về môn toán trong học kì I . lớp 6A có 40 học sinh đạt ít nhất một điểm 10 ; có 27 học sinh đạt ít nhất hai điểm 10 ; có 29 học sinh đạt ít nhất ba điểm 10 ; có 14 học sinh đạt ít nhất bốn điểm 10 và không có học sinh nào đạt được năm điểm 10. dung kí hiệu để thực hiên mối quan hệ giữa các tập hợp học sinh đạt số các điểm 10 của lớp 6A , rồi tính tổng số điểm 10 của lớp đó. Bài 22:Bạn Thanh đánh số trang của một cuốn sách bằng các số tự nhiên từ 1 đến359 .hỏi bạn nam phải viết tất cả bao nhiêu chữ số? Bài 23: Để đánh số trang một quyển sách từ trang 1 đến trang cuối người ta đã dùng hết tất cả 834 chữ số. Hỏi a. Quyển sách có tất cả bao nhiêu trang? b. Chữ số thứ 756 là chữ số mấy? Bài 24. Viết các tập hợp sau rồi tìm số phần tử của tập hợp đó. a) Tập hợp A các số tự nhiên x mà 8:x =2. b) Tập hợp B các số tự nhiên x mà x+3<5. c) Tập hợp C các số tự nhiên x mà x-2=x+2. d)Tập hợp D các số tự nhiên mà x+0=x Bài 25. Cho tập hợp A = { a,b,c,d} a) Viết các tập hợp con của A có một phần tử. b) Viết các tập hợp con của A có hai phần tử. c) Có bao nhiêu tập hợp con của A có ba phần tử? có bốn phần tử? d) Tập hợp A có bao nhiêu tập hợp con? Bài 26. Xét xem tập hợp A có là tập hợp con của tập hợp B không trong các trờng hợp sau. a, A={1;3;5}, B = { 1;3;7} b, A= {x,y}, B = {x,y,z} c, A là tập hợp các số tự nhiên có tận cùng bằng 0, B là tập hợp các số tự nhiên chẵn. Bài 27. Ta gọi A là tập con thực sự của B nếu ;. Hãy viết các tập con thực sự của tập hợp B = {1;2;3}. Bài 28. Cho tập hợp A = {1;2;3;4} và B = {3;4;5}. Hãy viết các tập hợp vừa là tập con của A, vừa là tập con của B. Bài 29. Chứng minh rằng nếu thì Bài 30. Có kết luận gì về hai tập hợp A,B nếu biết. a, thì b, thì , thì . Bài 31. Cho H là tập hợp ba số lẽ đàu tiên, K là tập hợp 6 số tự nhiên đầu tiên. a, Viết các phần tử thuộc K mà không thuộc H. b,CMR c, Tập hợp M với . - Hỏi M có ít nhất bao nhiêu phần tử? nhiều nhất bao nhiêu phần tử? - Có bao nhiêu tập hợp M có 4 phần tử thỏa mãn điều kiện trên? Bài 32. Cho . Hãy xác định tập hợp M = {a-b}. Bài 33. Cho tập hợp A = {14;30}. Điền các ký hiệu vào ô trống. a, 14 A ; b, {14} A; c, {14;30} A. Bài 34: Có bao nhiêu số tự nhiên không vượt quá n ( n thuộc N) Bài 35: Cho A={x thuộc N: x chia hết 2,3 và x<100} B={x thuộc N: x chia hết 8 và x<100} a. Liệt kê các phân tử của A và B b. Có nhận xét gì về các

Phương Pháp Giải Toán Có Lời Văn Lớp 1

Sinh năm 1964, làm nhà giáo được 25 năm cô Đỗ Thị Tuyết Mai đến từ thủ đô Hà Nội là giáo viên giỏi cấp thành phố. Với lòng đam mê nghề nghiệp, chuyên môn vững vàng cô xin chia sẻ đến các bạn đồng nghiệp một số kinh nghiệm dạy toán, đặc biệt là phương pháp giải toán có lời văn ở lớp 1.

GV: Đỗ Thị Tuyết Mai – chia sẻ kinh nghiệm dạy Toán lớp 1

1. Đọc kỹ đề bài và tìm hiểu nội dung bài toán

Hướng dẫn học sinh lớp 1 hiểu rằng mỗi bài toán có lời văn luôn được cấu thành bởi hai phần:

-Phần đã cho (giả thiết của bài toán)

-Phần phải tìm (kết luận của bài toán)

Khi giải toán có lời văn lớp 1 tôi thường lưu ý cho học sinh hiểu rõ những điều đã cho, những vấn đề phải tìm, biết chuyển đổi ngôn ngữ thông thường thành ngôn ngữ toán học. Từ đó tìm ra mối quan hệ giữa phần đã cho và phần tìm (hay còn gọi là mối tương quan giữa giả thiết và kết luận).

2. Quy trình thực hiện một bài toán hoàn chỉnh

Hướng dẫn học sinh đọc đúng, hiểu đúng ngôn ngữ trong đề bài, biết phân tích ý nghĩa thực tế trong bài toán, trình bày bài toán một cách cô đọng, đủ ý để làm nổi bật phần đã cho và phần phải tìm, các bước đó gọi là tóm tắt bài toán.

Cách 1: Tóm tắt dưới dạng sơ đồ, đoạn thẳng.

Cách 2: Tòm tắt dưới dạng hình vẽ minh hoạ.

Cách 3: Tóm tắt dưới dạng câu văn ngắn gọn.

b) Lựa chọn phép tính thích hợp để giải toán.

Hướng dẫn học sinh hiểu được bản chất của ngôn ngữ trong lời văn

Dựa vào các dạng toán đã được phân chia để biết học sinh đang gặp khó khăn trong dạng bài tập nào.

Hướng dẫn học sinh thực hiện phép tính cộng hoặc trừ để tìm kết quả

Trình bày lời giải, câu văn, ngôn từ phù hợp với học sinh lớp 1.

3. Một số ví dụ minh hoạ kèm lời giải chi tiết

Bài 1: Đàn gà có 3 con gà trống và 6 con gà mái. Hỏi đàn gà có tất cả bao nhiêu con gà?

Đàn gà có tất cả là:

Đáp số: 9 con gà

Bài 2: Điền số thích hợp vào chỗ chấm

Bình có 8 nhãn vở, cô Liên cho Bình 2 nhãn vỡ. Bình có tất cả … nhãn vở?

Thảo có tất cả số nhãn vở là:

8 + 2 = 10 (nhãn vở)

Đáp số: 10 nhãn vở

Bài 3: Có 4 con vịt đang bơi dưới ao. Có thêm 5 con ngỗng xuống ao. Hỏi có mấy con vịt và ngỗng ở dưới ao?

Số vị và ngỗng ở dưới ao là:

Bìa 4: Lớp 1A có 15 học sinh giỏi. Lớp 1B có ít hơn lớp 1A là 3 học sinh giỏi. Hỏi lớp 1B có bao nhiêu học sinh giỏi?

Số học sinh giỏi lớp 1B là:

15 – 3 = 12 (học sinh giỏi)

Đáp số: 12 học sinh giỏi.

Bài 5: Có một thanh gỗ được cưa thành hai mảnh dài 34 cm và 50 cm. Hỏi thanh gỗ lúc đầu dài bao nhiêu cm?

Thanh gỗ lúc đầu có độ dài là:

– Học sinh cần nhớ một số từ ngữ quan trọng hay có trong bài toán để sử dụng phép công, trừ phù hợp: “cho đi”, “nhận thêm”, “ít hơn”, “nhiều hơn”…

– Các đơn vị thời gian, độ dài, cân nặng… trong bài toán cần thống nhất đơn vị.

– Sau lời văn phải có dấu hai chấm, đơn vị phải nằm trong dấu ngoạc đơn (…), cuối bài phải ghi đáp số.