Top 6 # Phương Trình Lượng Giác Không Mẫu Mực Có Lời Giải Xem Nhiều Nhất, Mới Nhất 2/2023 # Top Trend | Caffebenevietnam.com

Phương Trình Lượng Giác Không Mẫu Mực

Phương trình lượng giác không mẫu mực

A. Phương pháp giải

Để giải các phương trình lượng giác không mẫu mực ta cần sử dụng:

* Các công thức lượng giác: Công thức cộng; công thức nhân đôi; công thức biến đổi tổng thành tích; tích thành tổng …

* Sử dụng các hằng đẳng thức đáng nhớ..

* Đánh giá: a2 ≥ 0 ; vế trái ≤ a; vế phải ≥ a. Từ đó; suy ra: Vế trái = vế phải= a.

B. Ví dụ minh họa

Ví dụ 1. Giải phương trình:

A.

B.

C.

D. Cả A và C đúng

Lời giải

Chọn B.

Ví dụ 2. Giải phương trình:

A.

B.

C.

D. Đáp án khác

Lời giải

Chọn A.

Ví dụ 3. Giải phương trình:

A.

B.

C. x= kπ

D.

Lời giải

Ta có: sin4x- cos4x = 1+ 4√2 sin⁡( x- π/4)

⇒ sin 4x – ( 1+ cos4x) = 4(sinx – cosx)

⇒ 2.sin2x. cos2 x- 2cos 2 2x = 4( sinx- cosx)

⇒ 2cos 2x.( sin2x – cos 2x) – 4(sinx- cosx)= 0

⇒ 2(cos 2 x- sin 2 x). ( sin2x- cos2x) – 4.(sinx- cosx) = 0

⇒ 2. ( cosx- sinx) . ( cosx+ sinx). (sin2x- cos2x) + 4( cosx + sinx) = 0

⇒ 2. ( cosx – sinx) .[ (cosx+ sinx) ( sin2x- cos2x) + 2] = 0

Chọn D.

Ví dụ 4. Giải phương trình sin3x. ( cosx- 2sin3x) + cos 3x.(1+ sinx- 2cos 3x) = 0

A. π/8+ kπ/2

B. k2π/3

C. kπ/4

D. Vô nghiệm

Lời giải

Ta có:

sin3x. ( cosx- 2sin3x) + cos 3x.(1+ sinx- 2cos 3x) = 0

⇒ sin3x. cosx – 2sin 23x + cos 3x + chúng tôi – 2cos 2 3x = 0

⇒ ( sin3x. cosx + cos3x.sinx) – 2( sin 2 3x+ cos 2 3x) + cos3x = 0

⇒ sin4x -2 + cos3x= 0

⇒ sin4x+ cos3x = 2 (*)

Với mọi x ta có: – 1 ≤ sin4x ≤ 1 và-1 ≤ cos3x ≤ 1

⇒ – 2 ≤ sin4x+cos3x ≤ 2

⇒ Không có giá trị nào của x thỏa mãn.

Vậy phương trình đã cho vô nghiệm

Chọn D

Ví dụ 5. Giải phương trình:

A.

B.

C.

D.Vô nghiệm

Lời giải

Chọn B.

Ví dụ 6. Giải phương trình sin 20x + cos 20 x= 1

A. x= kπ

B. x= kπ/2

C. x= π/2+kπ

D. x= kπ/4

Lời giaỉ

+ Với mọi x ta luôn có: – 1 ≤ sinx ≤ 1 ⇒ 0 ≤ sin 2 x ≤ 1

⇒ vế trái ≤ 0 (1)

+ Tương tự có: 1- cos 18 x ≥ 0

⇒ Vế phải ≥ 0 (2)

Từ (1) và (2) suy ra: vế trái= vế phải = 0

Vậy nghiệm phương trình đã cho là x= kπ/2

Chọn B.

Ví dụ 7. Giải phương trình

A. x= π/4+kπ

B. kπ

C. Vô nghiệm

D. Cả A và B đúng

Lời giải

Chọn C.

Ví dụ 8. Giải phương trình:

A.

B.

C.

D. Phương trình vô nghiệm

Lời giải

Chọn B .

Ví dụ 9. Giải phương trình:

A.

B.

C.

D. Đáp án khác

Lời giải

Chọn A.

Ví dụ 10. Giải phương trình

A.

B.

C.

D.

Lời giải

Chọn D.

Ví dụ 11. Cho phương trình: Nghiệm dương nhỏ nhất của phương trình có dạng πa/b với a; b là các số nguyên và nguyên tố cùng nhau. Tính S= b-a

A. 2

B. 3

C. 4

D.1

Lời giải.

Do đó phương trình đã cho trở thành:

2 2017.( sin 2018x + cos 2018 x ) .(sinx+ cosx) .cosx= cosx( sinx+ cosx)

⇒ 2 2017.( sin 2018x + cos 2018 x ) .(sinx+ cosx) .cosx- cosx( sinx+ cosx) = 0

⇒ cosx.( cosx+ sinx) .[ 2 2017.( sin 2018x + cos 2018 x )- 1] = 0

Chọn D.

Ví dụ 12. Giải phương trình :

A.

B.

C.

D.

Lời giải

+ Điều kiện: sinx ≠ 0

Chọn A.

Ví dụ 13. Giải phương trình: sin3x. ( cosx- 2sin3x) + cos3x. (1+ sinx – 2cos3x) =0

A.

B.

C.

D. Vô nghiệm

Lời giải

Ta có: sin3x. ( cosx- 2sin3x) + cos3x. (1+ sinx – 2cos3x) = 0

⇒ sin3x. cosx – 2sin 23x + cos3x + chúng tôi – 2cos 2 3x=0

⇒ ( sin3x. cosx + cos3x. sinx) – 2( sin 23x + cos 2 3x) +cos3x = 0

⇒ sin4x – 2+ cos3x= 0

⇒ sin4x + cos3x = 2 (1)

Vậy phương trình đã cho vô nghiệm.

Chọn D.

C. Bài tập vận dụng

Câu 1:Giải phương trình:

A.

B.

C.

D. Đáp án khác

Câu 2:Giải phương trình:

A.

B.

C.

D.

Câu 3:Giải phương trình

A.

B.

C.

D.

Câu 4:Giải phương trình:

A.

B.

C.

D.

Câu 5:Giải phương trình

A.

B.

C.

D.

Câu 6:Giải phương trình

A.

B.

C.

D.Vô nghiệm

Hiển thị lời giải

Chọn D.

Câu 6:Giải phương trình

A.

B.

C.

D.

Hiển thị lời giải

⇒ sin5x= – sin6x= sin( π-6x)

Chọn A.

Câu 7:Giải phương trình : 4sin3x. cos2x =1+ 6sinx – 8sin 3 x

A.

B.

C.

D.

Câu 8: Giải phương trình: cosx. cos2x. cos4x. cos 8x= 1/16 ( *)

A. x=

B. x=

C. x=

D. Đáp án khác

Hiển thị lời giải

Chọn D.

Câu 9: Nghiệm dương nhỏ nhất của phương trình cos3x. (2cos2x+ 1) = 1/2 có dạng πa/b với a ; b là các số nguyên và nguyên tố cùng nhau. Tính S= a. b

A. 6

B.7

C. 8

D. 9

Hiển thị lời giải

⇒ 2cos5x+ 2cosx+ 2cos3x=1

⇒ S= a.b= 1.7= 7

Chọn B.

Câu 10:Cho phương trình sin 2018x + cos 2018x = 2( sin 2020x+ cos 2020 x). Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là

A. 3

B. 4

C. 6

D. 8

Hiển thị lời giải

Chọn B.

A. 4

B. 3

C. 6

D. 8

Hiển thị lời giải

Chọn A.

Câu 12:Giải phương trình:

A. x= kπ/4

B. x= kπ/2

C. kπ

D. kπ/3

Hiển thị lời giải

⇒ sin 10x + cos 10 x = 1

Chọn B.

Câu 13:Cho phương trình: 4cos 2x+ tan 2 x+ 4= 2.(2cosx – tanx ) . Tìm số nghiệm của phương trình trên khoảng ( 0; 10π)?

A. 10

B.16

C. 22

D. Vô nghiệm

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k4: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Chương Viii: Phương Trình Lượng Giác Không Mẫu Mực

PHƯƠNG TRÌNH LƯỢNG GIÁC KHÔNG MẪU MỰC Trường hợp 1: TỔNG HAI SỐ KHÔNG ÂM Áp dụng Nếu A 0 B 0 A B 0 ≥ ∧ ≥⎧⎨ + =⎩ thì A = B = 0 Bài 156 Giải phương trình: 2 24 cos x 3tg x 4 3 cos x 2 3tgx 4 0 (*)+ − + + = Ta có: ( ) ( )⇔ − + + ⎧ =⎪⎪⇔ ⎨⎪ = −⎪⎩ π⎧ = ± + π ∈⎪⎪⇔ ⎨⎪ = −⎪⎩ π⇔ = − + π ∈ 2 2 (*) 2 cos x 3 3tgx 1 0 3cos x 2 1tgx 3 x k2 , k 6 1tgx 3 x k2 , k 6 = Bài 157 Giải phương trình: ( )28cos4x.cos 2x 1 cos3x 1 0 *+ − + = Ta có: ( ) ( )⇔ + + + −* 4 cos 4x 1 cos 4x 1 1 cos 3x 0= ( ) ( ) ⇔ + + + − ⇔ + + − = ⎧ ⎧= − = −⎪ ⎪⇔ ⇔⎨ ⎨⎪ ⎪= = π ∈⎩ ⎩ 2 2 4 cos 4x 4 cos 4x 1 1 cos 3x 0 2 cos 4x 1 1 cos 3x 0 1 1cos 4x cos 4x 2 2 cos 3x 1 3x k2 , k = ⎧ = −⎪⎪⇔ ⎨ π⎪ = ∈⎪⎩ 1cos 4x 2 k2x , k (có 3 đầu ngọn cung) 3 ⎧ = −⎪⎪⇔ ⎨ π π⎪ = − π = π = + π ∈⎪⎩ π⇔ = ± + π ∈ 1cos 4x 2 2 2x +m2 hay x m2 hay x m2 , m 3 3 2x m2 , m 3 (ta nhận = ±k 1 và loại k = 0 ) Bài 158 Giải phương trình: ( ) ( )22 3 3sin 3xsin x cos3xsin x sin3x cos x sin xsin 3x *3sin4x+ + = 2 Ta có: 3 chúng tôi 3x sin chúng tôi x+( ) ( ) ( ) = − + − = − + = − = = 3 3 3 3 3 3 2 4 cos x 3cos x sin x 3sin x 4 sin x cos x 3cos x sin x 3sin x cos x 3sin x cos x cos x sin x 3 3sin chúng tôi 2x sin 4x 2 4 2 ( ) ( ) ⇔ + = ≠ ⎛ ⎞⇔ − − + =⎜ ⎟⎝ ⎠ ⎛ ⎞⇔ − + − =⎜ ⎟⎝ ⎠ 2 2 2 2 2 4 2 2 2 2 2 1Vậy: * sin x sin 3x sin x sin 3x và sin 4x 0 4 1 1 1sin 3x sin x sin 3x sin 3x 0 và sin 4x 0 2 4 4 1 1sin 3x sin x sin 3x 1 sin 3x 0 và sin 4x 0 2 4 ≠ ≠ ⎛ ⎞⇔ − + =⎜ ⎟⎝ ⎠ ≠⎧⎪⎪⇔ =⎨⎪ = ∨ =⎪⎩ 2 2 2 2 1 1sin 3x sin x sin 6x 0 và sin 4x 0 2 16 sin 4x 0 1 sin 3x sin x 2 sin 3x 0 cos 3x 0 ≠ ≠⎧≠⎧ ⎪⎪ ⎪⇔ = ∨ =⎨ ⎨⎪ ⎪=⎩ = ±⎪⎩ sin 4x 0sin 4x 0 1sin 3x 0 sin x 2 sin x 0 (VN) sin 3x 1 ≠⎧⎪⎪⇔ =⎨⎪⎪ − =⎩ 3 sin 4x 0 1sin x 2 3sin x 4 sin x 1± ≠⎧⎪⇔ ⎨ =⎪⎩ ≠⎧⎪⇔ π π⎨ = + π ∨ + π ∈⎪⎩ π π⇔ = + π ∨ = + π ∈ sin 4x 0 1sin x 2 sin 4x 0 5x k2 k2 , k 6 6 5x k2 x k2 , k 6 6 Trường hợp 2 Phương pháp đối lập Nếu A M B A B ≤ ≤⎧⎨ =⎩ thì A B M= = Bài 159 Giải phương trình: − = +4 4sin x cos x sin x cos x (*) Ta có: (*) ⇔ − = +2 2sin x cos x sin x cos x ⇔ − = + ≤⎧⎪⇔ ⎨ = +⎪⎩ ≤⎧ ≤⎧⎪⇔ ⇔⎨ ⎨ = = ±− =⎪ ⎩⎩ ⇔ = − π⇔ = + π ∈ 2 2 cos 2x sin x cos x cos 2x 0 cos 2x 1 2 sin x cos x cos 2x 0 cos 2x 0 sin 2x 0 (cos 2x 1)sin 2x 2 sin 2x cos 2x 1 x k , k 2 Cách khác Ta có − ≤ ≤ ≤ +4 4 4x cos x sin x sin x sin x cos xsin Do đó =⎧⎪⇔ ⇔ =⎨ =⎪⎩ 4 cos x 0 (*) cos x 0 sin x sin x π= + π ∈ x k , k 2 ⇔ Bài 160: Giải phương trình: ( ) 2cos2x cos4x 6 2sin 3x (*)− = + Ta có: (*) 2 24 sin chúng tôi x 6 2sin 3x⇔ = + • Do: và 2sin 3x 1≤ 2sin x 1≤ nên 2 24 sin 3x sin x 4≤ • Do nên 6 2≥ −sin 3x 1 sin3x 4+ ≥ Vậy 2 24 sin 3x sin x 4 6 2sin 3x≤ ≤ + Dấu = của phương trình (*) đúng khi và chỉ khi ⎧ = ⎧⎪ == ⇔⎨ ⎨ = −⎩⎪ = −⎩ 2 2 2 sin 3x 1 sin x 1sin x 1 sin 3x 1sin 3x 1 π⎧ = ± + π ∈ π⎪⇔ ⇔ = +⎨⎪ = −⎩ π ∈ x k2 , k x k2 , k2 2sin 3x 1 Bài 161 Giải phương trình: 3 3cos x sin x 2cos2x (*) sin x cos x − =+ Điều kiện: si n x 0 cosx 0≥ ∧ ≥ Ta có: (*) ( ) ( ) ( ) ( )2 2cos x sin x 1 sin x cos x 2 cos x sin x sin x cos x⇔ − + = − + ( ) ( ) − =⎡⎢⇔ + = + +⎢⎣ cos x sin x 0 (1) 1 sin x cos x 2 cos x sin x sin x cos x (2) Ta có: (1) π⇔ = ⇔ = + π ∈ tgx 1 x k , k 4 Xét (2) Ta có: khi si thì n x 0≥ ≥ ≥ 2sin x sin x sin x Tương tự ≥ ≥ 2cos x cos x cos x Vậy si và nx cosx 1+ ≥ sin x cos x 1+ ≥ Suy ra vế phải của (2) thì 2≥ Mà vế trái của (2): 1 31 sin 2x 2 2 + ≤ Do đó (2) vô nghiệm Vậy: (*) π⇔ = + π ∈ x k , k 4 Bài 162: Giải phương trình: 3 cos x cos x 1 2(*)− − + = Ta có: (*) 3 cos x 2 cos x 1⇔ − = + + ( ) 3 cos x 5 cos x 4 cos x 1 2 cos x 1 4 cos x 1 ⇔ − = + + + ⇔ − + = + Ta có: ( )2 cosx 1 0 x− + ≤ ∀ mà 4 cos x 1 0 x+ ≥ ∀ Do đó dấu = của (*) xảy ra cosx 1⇔ = − ⇔ = π + π ∈ x k2 , k Bài 163: Giải phương trình: ( )2 2cos3x 2 cos 3x 2 1 sin 2x (*)+ − = + Do bất đẳng thức Bunhiacốpski: 2 2 2 2AX BY A B . X Y+ ≤ + + nên: ( )2 2 21cos3x 1 2 cos 3x 2. cos 3x 2 cos 3x 2+ − ≤ + − = Dấu = xảy ra 2cos3x 2 cos 3x⇔ = − 2 2 cos3x 0 cos 3x 2 cos 3x cos3x 0 cos3x 1 cos3x 1 ≥⎧⇔ ⎨ = −⎩ ≥⎧⇔ ⇔⎨ = ±⎩ = Mặt khác: ( )22 1 sin 2x 2+ ≥ dấu = xảy ra sin2x 0⇔ = Vậy: ( )2 2cos3x 2 cos 3x 2 2 1 sin 2x+ − ≤ ≤ + dấu = của (*) chỉ xảy ra khi: = ∧ = =⎧⎪⇔ ⎨ π= ∈⎪⎩ ⇔ = π ∈ cos 3x 1 sin 2x 0 cos 3x 1 kx , k ( có 4 đầu ngọn cun 2 x 2m ,m g ) Bài 164: Giải phương trình: 2 2 5tg x cotg x 2sin x (*) 4 π⎛ ⎞+ = +⎜ ⎟⎝ ⎠ Điều kiện: sin2x 0≠ • Do bất đẳng thức Cauchy: 2 2tg x cotg x 2+ ≥ dấu = xảy ra khi tgx cotgx= • Mặt khác: sin x 1 4 π⎛ ⎞+ ≤⎜ ⎟⎝ ⎠ nên 52sin x 2 4 π⎛ ⎞+ ≤⎜ ⎟⎝ ⎠ dấu = xảy ra khi sin x 1 4 π⎛ ⎞+ =⎜ ⎟⎝ ⎠ Do đó: 2 2 5tg x cotg x 2 2sin x 4 π⎛ ⎞+ ≥ ≥ +⎜ ⎟⎝ ⎠ Dấu = của (*) xảy ra tgx cotgx sin x 1 4 =⎧⎪⇔ π⎨ ⎛ ⎞+ =⎜ ⎟⎪ ⎝ ⎠⎩ ⎧ =⎪⇔ ⎨ π= + π ∈⎪⎩ π⇔ = + π ∈ 2tg x 1 x k2 , k 4 x k2 , k 4 Trường hợp 3: Áp dụng: Nếu A M và B M A Mthì A B M N B N ≤ ≤⎧ ⎧⎨ ⎨+ = + =⎩ ⎩ = =⎧+ = ⇔ ⎨ =⎩ sin u 1 sin u sin v 2 sin v 1 =⎧− = ⇔ ⎨ = −⎩ sin u 1 sin u sin v 2 sin v 1 = −⎧+ = − ⇔ ⎨ = −⎩ sin u 1 sin u sin v 2 sin v 1 Tương tự cho các trường hợp sau ± = ± ± = ±sin u cos v 2 ; cos u cos v 2 Bài 165: Giải phương trình: ( )3xcos2x cos 2 0 * 4 + − = Ta có: ( ) 3x* cos2x cos 4 ⇔ + 2= 3xDo cos2x 1 và cos 1 4 ≤ ≤ nên dấu = của (*) chỉ xảy ra ( ) = π ∈= ⎧⎧⎪ ⎪⇔ ⇔ ⇔ = ππ⎨ ⎨ = ∈=⎪ ⎪⎩ ⎩ ππ = ⇔ = = ∈ Ζ = ∈ x k , kcos 2x 1 x 8m , m8h3x x , hcos 1 34 8h 8hDo : k k 3 3 để k nguyên ta chọn h 3m m ( thì k 8m ) Cách khác = = π ∈⎧ ⎧⎪ ⎪⇔ ⇔ = π ∈⎨ ⎨ π= =⎪ ⎪⎩ ⎩ cos 2x 1 x k , k x 8m ,m3x 3kcos 1 cos 1 4 4 Bài 166: Giải phương trình: ( )cos2x cos4x cos6x cos x.cos2x.cos3x 2 *+ + = + ( ) 2cos2x cos4x cos6x 2cos3x cos x 2cos 3x 1 2cos3x cos x cos3x 1 4cos3x.cos2x.cos x 1 + + = + − = + − = − Vậy: ( )1cos3x.cos2x.cos x cos2x 6cos4x cos6x 1 4 = + + + Do đó: ( ) ( ) ( ) ⇔ + + = + + ⇔ + + = 1 9* cos 2x cos 4x cos 6x cos2x cos 4x cos6x 4 4 3 9cos 2x cos 4x cos 6x 4 4 + ⇔ + + = = = π ∈⎧ ⎧⎪ ⎪⇔ = ⇔ =⎨ ⎨⎪ ⎪= =⎩ ⎩ cos 2x cos 4x cos 6x 3 cos 2x 1 2x k2 , k (1) cos 4x 1 cos 4x 1 (2) cos 6x 1 cos 6x 1 (3) ⇔ = π ∈ ⇔ = π ∈ 2x k2 , k x k , k ( Thế (1) vào (2) và (3) ta thấy hiển nhiên thỏa) Bài 167: Giải phương trình: ( )cos2x 3 sin2x 3 sin x cos x 4 0 *− − − + = Ta có: ( ) ⎛ ⎞ ⎛⇔ = − + + +⎜ ⎟ ⎜⎜ ⎟ ⎜⎝ ⎠ ⎝ 1 3 3 1* 2 cos2x sin2x sin x cos x 2 2 2 2 ⎞⎟⎟⎠ π π⎛ ⎞ ⎛⇔ = − + +⎜ ⎟ ⎜⎝ ⎠ ⎝2 sin 2x sin x6 6 ⎞⎟⎠ ⎧ π⎛ ⎞ π π⎧− = − = + π ∈⎜ ⎟⎪ ⎪⎪ ⎝ ⎠ ⎪⇔ ⇔⎨ ⎨ π ππ⎛ ⎞⎪ ⎪ + = + π ∈+ =⎜ ⎟ ⎪⎪ ⎩⎝ ⎠⎩ π⎧ = + π ∈⎪ π⎪⇔ ⇔ = + π⎨ π⎪ = + π ∈⎪⎩ ∈ sin 2x 1 2x k2 , k6 6 2 x h2 , hsin x 1 6 26 x k , k 3 x h , h 3x h2 , h 3 Cách khác ⎧ π⎛ ⎞ ⎧ π⎛ ⎞− = − =⎜ ⎟⎪ ⎜ ⎟⎪⎪ ⎝ ⎠ ⎪ ⎝ ⎠⇔ ⇔⎨ ⎨π π π⎛ ⎞⎪ ⎪+ = + = + π ∈⎜ ⎟⎪ ⎪⎩⎝ ⎠⎩ sin 2x 1 sin 2x 16 6(*) sin x 1 x h2 , h 6 6 2 ⎧ π⎛ ⎞− =⎜ ⎟⎪ π⎪ ⎝ ⎠⇔ ⇔ = +⎨ π⎪ = + π ∈⎪⎩ π ∈ sin 2x 1 6 x h , h 3 x h2 , h 3 Bài 168: Giải phương trình: ( )4cos x 2cos2x cos4x 1 *− − = Ta có: ( ) ( ) ( )⇔ − − − −2 2* 4 cos x 2 2cos x 1 1 2sin 2x 1= ⇔ − + = ⇔ = − + = 2 2 2 2 4cosx 4 cos x 8sin x cos x 0 cos x 0 hay 1 cos x 2sin x cos x 0 ( )⇔ = + − = ⇔ = − = 2cos x 0 hay 1 cos x 2sin x 1 0 cos x 0 hay 1 cos x cos 2x 0 ( * *) ( )⇔ = − + = ⇔ = ∨ + = 1cos x 0 hay 1 cos 3x cos x 0 2 cos x 0 cos 3x cos x 2 =⎧⇔ = ∨ ⎨ =⎩ cos 3x 1 cos x 0 cos x 1 =⎧⇔ = ⇔ ⎨ − =⎩ ⇔ = ∨ = π⇔ = + π ∨ = π ∈ 3 cos x 1 cos x 0 4 cos x 3cos x 1 cos x 0 cos x 1 x k x k2 , k 2 Cách khác ⇔ = =( * *) cos x 0 hay cos x cos 2x 1 − = =⎧ ⎧⇔ = ∨ ∨⎨ ⎨= = −⎩ ⎩ cos x 1 cos x 1 cos x 0 cos 2x 1 cos 2x 1 = π ∈ = π + π ∈⎧ ⎧π⇔ = + π ∈ ∨ ∨⎨ ⎨= = −⎩ ⎩ x k2 , k x k2 , k ( loạix k , k cos 2x 1 cos 2x 12 ) π⇔ = + π ∨ = π ∈ x k x k2 , k 2 Bài 169: Giải phương trình: ( )1tg2x tg3x 0 * sin x cos2x cos3x + + = Điều kiện: sin2xcos2xcos3x 0≠ Lúc đó: ( ) ⇔ + +sin 2x sin 3x 1* 0 cos2x cos3x sin x.cos2x.cos3x = + = = ( ) ⇔ + ⇔ + + sin2xsin x cos3x sin3xsin x.cos2x 1 0 sin x sin2x cos3x sin3x cos2x 1 0 ( ) ⇔ = − ⇔ − − = − ⇔ − = = =⎧ ⎧=⎧ ⎪ ⎪⇔ ⇔ − = ⇔ −⎨ ⎨ ⎨= −⎩ ⎪ ⎪ =− = −⎩ ⎩ 3 3 2 sin x.sin5x 1 1 cos6x cos4x 1 2 cos6x cos4x 2 t cos2x t cos2x cos6x 1 4t 3t 1 4t 3t 1 cos4x 1 t 02t 1 1 = Do đó: (*) vô nghiệm. Cách khác = = −⎧ ⎧⇔ = − ⇔ ⎨ ⎨= − =⎩ ⎩ sin x 1 sin x 1 sin chúng tôi 5x 1 hay sin 5x 1 sin 5x 1 π π⎧ ⎧= + π ∈ = − + π ∈⎪ ⎪⇔ ⎨ ⎨⎪ ⎪= − =⎩ ⎩ x k2 , k x k2 , k hay2 2 sin 5x 1 sin 5x 1 x⇔ ∈∅ Bài 170: Giải phương trình: ( )2 2cos 3x.cos2x cos x 0 *− = Ta có: ( ) ( ) ( )⇔ + − +1 1* 1 cos6x cos2x 1 cos2x 0 2 2 = ( ) ⇔ = ⇔ + = ⇔ + = =⎧⇔ ⎨ =⎩ ⎧ − =⇔ ⎨ =⎩ ⎧ =⇔ ⎨ =⎩ ⇔ = ⇔ = π ∈ π⇔ = ∈ 2 2 cos 6x cos 2x 1 1 cos 8x cos 4x 1 2 cos 8x cos 4x 2 cos 8x 1 cos 4x 1 2cos 4x 1 1 cos 4x 1 cos 4x 1 cos 4x 1 cos 4x 1 4x k2 , k kx , k 2 Cách khác ⇔ =cos6x cos2x 1 = = −⎧ ⎧⇔ ⎨ ⎨= = −⎩ ⎩ cos 2x 1 cos 2x 1 hay cos 6x 1 cos 6x 1 = π ∈ = π + π ∈⎧ ⎧⇔ ⎨ ⎨= = −⎩ ⎩ 2x k2 , k 2x k2 , k hay cos6x 1 cos 6x 1 π= ∈ kx , k 2 Cách khác = =⎧ ⎧⇔⎨ ⎨= = π ∈⎩ ⎩ cos 8x 1 cos 8x 1 cos 4x 1 4x k2 , k π⇔ = ∈ kx , k 2 Trường hợp 4: DÙNG KHẢO SÁT HÀM SỐ y = ax là hàm giảm khi 0< a <1. Do đó ta có sin sin , , cos s , , m n m n x x n m x k k x co x n m x k k π π π π ∀ ≠ + ∈ ∀ ≠ + 2 2 ∈ sin sin , cos s , m n m n x x n m x x co x n m x ≤ ⇔ ≥ ≤ ⇔ ≥ ∀ ∀ Bài 171: Giải phương trình: ( )2×1 cos x 2 − = * Ta có: ( ) 2x* 1 cos 2 ⇔ = + x Xét 2xy cos x trên 2 = + R Ta có: y ‘ x sin x= − và y ” 1 cos x 0 x R= − ≥ ∀ ∈ Do đó y’(x) là hàm đồng biến trên R ( ) ( ) ( )x ,0 : x 0 nên y ‘ x y ‘ 0∀ ∈ −∞ < < = 0 Do đó: Vậy : 2xy cos x 1 x 2 = + ≥ ∀ ∈ R Dấu = của (*) chỉ xảy ra tại x = 0 Do đó ( )* x 0⇔ = • Bài 172: Giải phương trình sin sin sin sinx x x+ = +4 6 8 10 x (*) Ta có sin sin sin sin 2 2 và dấu =xảy ra khi và chỉ khi sin x = 1hay sinx = 0 và dấu =xảy ra khi và chỉ khi sin x = 1 hay sinx = 0 x x x x ⎧ ≥⎪⎨ ≥⎪⎩ 4 8 6 10 ⇔ sin2x = 1 sinx = 0 ∨ ⇔ x = ± ,k x k kπ π π+ ∨ = ∈2 2 2 Cách khác (*) sin sin sin sinx hay x x x⇔ = + = +4 2 4 60 1 sin sinx hay x⇔ = 20 1= BÀI TẬP Giải các phương trình sau ( ) − + = π⎛ ⎞− = + −⎜ ⎟⎝ ⎠ + = 2 3 2 2 2 1. lg sin x 1 sin x 0 2. sin 4x cos 4x 1 4 2 sin x 4 13. sin x sin 3x sin chúng tôi 3x 4 ( ) π = + = + − = + sin x 2 4. cos x 5. 2 cos x 2 sin10x 3 2 2cos chúng tôi x 6. cos 4x cos 2x 5 sin 3x ( ) ( ) ( ( ) ( ) + = − − + + − + = − =a 2 7. sin x cos x 2 2 sin 3x 8. sin 3x cos 2x 2sin 3x cos 3x 1 sin 2x 2cos 3x 0 9. tgx tg2x sin 3x cos 2x 10. 2 log cot gx log cos x ) = ( ) π⎡ ⎤= ∈ ⎢ ⎥⎣ ⎦ + = − + + sin x 13 14 11. 2 cos x với x 0, 2 12. cos x sin x 1 13. cos 2x cos 6x 4 sin 2x 1 0= ( )+ = − + = − − − + + 3 3 4 2 2 14. sin x cos x 2 2 cos 3x 15. sin x cos x 2 sin x 16. cos x 4 cos x 2x sin x x 3 0= + = + + − − + sin x 2 2 2 17. 2 sin x sin x cos x 18. 3cot g x 4 cos x 2 3 cot gx 4 cos x 2 0= Th.S Phạm Hồng Danh (TT luyện thi Vĩnh Viễn)

Giáo Án Chủ Đề Tự Chọn 11 Tiết 7: Phương Trình Lượng Giác Không Mẫu Mực

Tiết : 7 Vấn đề: PHƯƠNG TRÌNH LƯỢNG GIÁC KHÔNG MẪU MỰC. I. Mục tiêu: 1. Về kiến thức: Giúp cho học sinh một số phương pháp giải các phương trình không mẫu mực. 2.Về kỹ năng Rèn luyện kỹ năng dùng các công thức lượng giác đã học để biến đổi đưa một phương trình lượng giác chưa có dạng đã biết về phương trình lượng giác thường gặp. 3. Về tư duy và thái độ: Rèn luyện tính cẩn thận, chính xác. Học sinh và hứng thú tham gia bài học. II. Chuẩn bị của thầy và trò: 1.Chuẩn bị của thầy: Phiếu học tập, các bài tập chọn lọc. 2.Chuẩn bị của học sinh: Nắm vững cách giải phương trình lượng giác cơ bản, phương trình lượng giác thường gặp và nhớ các công thức lượng giác đã học. III. Phương pháp dạy học: Vấn đáp gợi mở, giảng giải, hoạt động nhóm. IV. Tiến trình bài học: 1. Ổn định lớp: Kiểm tra sĩ số . 2. Kiểm tra bài cũ: Giải phương trình sinx.cos2x=1 3. Bài mới: G/V nêu một số phương trình lượng giác không mẫu mực. Để giải các phương trình không mẫu mực ta dùng các công thức lượng giác đã học biến đổi đưa phương trình về dạng tích u.v = 0 hoặc tổng các bình phương bằng không cũng có thể áp dụng a. sinx+b. cosx= a+b thì sinx=1; cosx=1 hay sinu(x). cosv(x) =1 khi và chỉ khi sinu(x)=1 và cosv(x)=1 hoặc sinu(x)= -1 và cosv(x)= -1. Hoạt động 1: Rèn luyện kỹ năng biến đổi lượng giác đưa về phương trình đã biết cách giải. a) sinx + sin3x +sin5x = 0; b) sinx .sin2x. sin3x = sin4x ; c) 1+sinx – cosx –sin2x+2 cos2x= 0 + Chia lớp thành 6 nhomù, 2 nhóm 1 câu. + GV hướng dẫn Câu a/ Nhóm sinx+sin5x rồi dùng công thức biến đổi tổng thành tích, đưa về phương trình tích. Câu b/ Nhân hai vế với 4, biến đổi sin4x= 2 sin2x.cos2x, sau đó áp dụng công thức biến đổi tích thành tổng. Câu c/ Nhóm 1-sin2x = ; + Gọi đại diện các nhóm lên bảng trình bày lời giải. + Các nhóm còn lại nhận xét hoặc bổ sung(nếu cần). + Khẳng định kết quả. + Nghe, nhận nhiệm vụ. + Nghe hướng dẫn. + Các nhóm hoạt động. + Đại diện các nhóm lên bảng trình bày lời giải. + Các nhóm còn lại nhận xét. + Ghi nhận kiến thức. Giải: a) Phương trình tương đương với 2 sin3x.cos2x+sin3x = 0 sin3x(2cos2x +1) =0 sin3x = 0 hoặc cos2x = ( Đây là các phương trình lượng giác cơ bản đã biết cách giải). b)Phương trình đã cho tương đương với 4sinx.sin2x.sin3x- 2 sin2x.cos2x = 0 2.sin2x(2 sinx.sin3x-cos2x) = 0 2sin2x(-cos4x) = 0 c)Phương trình đã cho tương đương (sinx-cosx) + +2 ( đây là các phương trình đã biết cách giải. Hoạt động2: Các phương trình đưa được về tổng các bình phương bằng 0 Bài 2: Giải các phương trình: a/ . b/ + Hãy nêu cách giải bài 2 + Hướng dẫn từng câu bằng vấn đáp Câu a) Đưa vế trái về Câu b) Đưa vế trái về + Gọi hai học sinh lên bảng giải. + Khẳng định kết quả. + Nghe hướng dẫn Hai học sinh lên bảng giải. + Ghi nhận kiến thức. a)Phương trình đã cho tương đương với b)Phương trình đã cho tương đương vơiù 4/ Củng cố Cần nhớ các dạng bài tập cơ bản trong tiết này, lưu ý phải thuộc và sử dụng linh hoạt các công thức biến đổi lượng giác. 5/ Bài tập về nhà: Xem lại các bài tập đã giải. Làm thêm các bài tập: Giải các phương trình: a/ tan x +cot2x = 2 cot4x b/ (1-tanx)(1+sinx) = 1+ tan (Hướng dẫn: câu b/ viết sinx, tanx theo t = tan) c/ sinx+ 3 cos 2x= 4 (Hướng dẫn: câu c/ phương trình đã cho tương đương với sinx=1 và cos 2x =1. V/ Rút kinh nghiệm:

Tài liệu đính kèm:

tiet 7.doc

Cđ Giải Hpt Không Mẫu Mực

Published on

1. SỞ GIÁO DỤC VÀ ĐÀO TẠO VĨNH PHÚC TRƯỜNG THCS & THPT HAI BÀ TRƯNG MỘT SỐ PHƯƠNG PHÁP GIẢI HỆ PHƯƠNG TRÌNH KHÔNG MẪU MỰC NGUYỄN THỊ THANH HUYỀN PHÚC YÊN – 2014

3. MỞ ĐẦU 1. Lí do chọn đề tài Hệ phương trình là một dạng toán khá phổ biến trong các đề thi tuyển sinh vào các trường THPT chuyên, lớp chọn và đề thi học sinh giỏi các cấp, đặc biệt là thi học sinh giỏi môn toán lớp 9. Đối với nhiều học sinh, bài toán giải hệ phương trình được coi là bài toán khó, đòi hỏi người học phải có năng lực tư duy logic, kiến thức phải chắc chắn về hệ phương trình. Chính vì vậy giải hệ phương trình luôn gây được sự hấp dẫn đối với người dạy lẫn người học. Có nhiều phương pháp để giải hệ phương trình, tuy nhiên không có phương pháp nào vạn năng để giải được mọi bài toán. Trong quá trình giảng dạy học sinh ôn thi vào lớp 10 và bồi dưỡng học sinh giỏi toán 9,tôi thấy học sinh gặp phải khó khăn và lúng túng khi giải hệ phương trình đặc biệt là các hệ phương trình không mẫu mực. Làm thế nào để học sinh có thể tìm tòi khám phá đưa việc giải các hệ phương trình không mẫu mực về giải hệ phương trình quen thuộc, cơ bản là vấn đề trăn trở, suy nghĩ của bản thân tôi cũng như nhiều đồng nghiệp. Để bồi dưỡng chuyên môn đồng thời giúp các em học sinh lớp 9 có thêm một vài phương pháp giải hệ phương trình nên tôi viết chuyên đề với tên đề tài: “Một số phương pháp giải hệ phương trình không mẫu mực” Với một số phương pháp giải hệ này tôi hi vọng sẽ có tác dụng trong việc rèn luyện tư duy toán học cho các em học sinh và là nguồn tài liệu nhỏ giúp các em luyện tập nâng cao kiến thức phục vụ cho các kì thi

4. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán học sinh giỏi và ôn thi vào lớp 10. 2. Mục đích nghiên cứu Trang bị cho học sinh về một số phương pháp giải hệ phương trình không mẫu mực mạng lại hiệu quả rõ rệt. Bồi dưỡng cho học sinh về phương pháp, kĩ năng giải toán, qua đó học sinh nâng cao khả năng tư duy sáng tạo. 3. Nhiệm vụ nghiên cứu Thông qua tìm tòi, tổng hợp để đưa ra được các dạng bài tập và phương pháp giải cho từng dạng bài toán giúp học sinh có kiến thức chắc về nội dung hết sức quan trọng của chương trình. 4. Đối tượng nghiên cứu Hệ phương trình trong chương trình đại số 9. Phân loại các dạng toán và phương pháp giải mỗi dạng 5. Phạm vi nghiên cứu và giới hạn nghiên cứu Chuyên đề được xây dựng, nghiên cứu và triển khai trong chương trình toán đại số 9 Hệ phương trình không mẫu mực 6. Phương pháp nghiên cứu Tham khảo sách, báo, tài liệu. Thực tiễn giảng dạy GV: Nguyễn Thị Thanh Huyền Trang 4

5. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Tham khảo các đề thi HSG các tỉnh, đề thi các trường chuyên GV: Nguyễn Thị Thanh Huyền Trang 5

6. Chương 1 NỘI DUNG 1.1 MỘT SỐ HỆ PHƯƠNG TRÌNH THƯỜNG GẶP 1.1.1 HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN Định nghĩa 1.1. Là hệ phương trình có dạng: ax + by = c (1) a x + b y = c (2) trong đó phương trình (1), (2) là phương trình bậc nhất hai ẩn x và y. Cách giải: Với hệ này ta có thể giải bằng nhiều cách khác nhau như: * Phương pháp thế * Phương pháp cộng đại số * Phương pháp đồ thị * Sử dụng máy tính cầm tay * Phương pháp tính theo định thức,… 1.1.2 HỆ BA PHƯƠNG TRÌNH BẬC NHẤT BA ẨN Định nghĩa 1.2. Là hệ phương trình có dạng   a1x + b1y + c1z = d1 (1) a2x + b2y + c2z = d2 (2) a3x + b3y + c3z = d3 (3) trong đó phương trình (1), (2) và (3) là phương trình bậc nhất ba ẩn x, y và z. Cách giải: Với hệ này ta có thể giải bằng nhiều cách khác nhau như:

7. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán * Phương pháp thế * Phương pháp cộng đại số * Phương pháp đồ thị * Sử dụng máy tính cầm tay * Phương pháp tính theo định thức,… 1.1.3 HỆ GỒM MỘT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN VÀ MỘT PHƯƠNG TRÌNH KHÁC Định nghĩa 1.3. Là hệ phương trình có dạng ax + by + c = 0 f(x, y) = 0 trong đó x, y là ẩn và f(x, y) là biểu thức chứa hai biến x, y Cách giải: Với hệ này ta có thể giải bằng: * Phương pháp thế 1.1.4 HỆ ĐỐI XỨNG LOẠI 1 Định nghĩa 1.4. Là hệ phương trình mà khi ta thay đổi vai trò của hai ẩn cho nhau trong mỗi phương trình thì từng phương trình đó không thay đổi Cách giải: Bước 1: Biến đổi tương đương làm xuất hiện x + y và x.y Bước 2: Đặt S = x + y và P = x.y (với S2 ≥ 4P) GV: Nguyễn Thị Thanh Huyền Trang 7

8. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Bước 3: Giải hệ phương trình với ẩn mới là S, P. Tìm được S, P Bước 4: Tìm nghiệm x; y của hệ phương trình đã cho 1.1.5 HỆ ĐỐI XỨNG LOẠI 2 Định nghĩa 1.5. Là hệ phương trình mà khi ta thay đổi vai trò của hai ẩn cho nhau trong mỗi phương trình, phương trình này biến thành phương trình kia và ngược lại. Cách giải: Trừ vế cho vế tương ứng của các phương trình để biến đổi về phương trình tích có nhân tử là x − y, rồi thế ẩn này theo ẩn kia để giải hệ phương trình. 1.1.6 HỆ ĐẲNG CẤP BẬC HAI ĐỐI VỚI HAI BIẾN x & y Định nghĩa 1.6. Là hệ phương trình có dạng ax2 + bxy + cy2 = d a x2 + b xy + c y2 = d Cách giải: Nếu x = 0 thì ta đặt y = kx rồi nhận xét và chia vế cho vế ta được phương trình ẩn k, tìm được k từ đó tìm được x, y Nếu x = 0 thì viết lại hệ phương trình đã cho và giải hệ phương trình đó. 1.2 MỘT SỐ KIẾN THỨC CẦN NẮM VỮNG KHI GIẢI HỆ PHƯƠNG TRÌNH KHÔNG MẪU MỰC * Các hằng đẳng thức. * Các phương pháp phân tích đa thức thành nhân tử GV: Nguyễn Thị Thanh Huyền Trang 8

9. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán * Nhân đơn thức với đa thức, nhân đa thức với đa thức * Tính ∆ và ∆ * Cách giải phương trình bậc hai, bậc ba, bậc bốn,… * Các phép biến đổi tương đương. GV: Nguyễn Thị Thanh Huyền Trang 9

10. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán 1.3 MỘT SỐ PHƯƠNG PHÁP GIẢI HỆ PHƯƠNG TRÌNH KHÔNG MẪU MỰC Không có phương pháp chung để giải mọi hệ phương trình không mẫu mực. Tùy theo đặc trưng các phương trình của hệ mà ta lựa chọn những phương pháp như: Biến đổi tương đương, phương pháp thế, phương pháp đặt ẩn phụ, dùng bất đẳng thức,… để dưa hệ đã cho thành các hệ đơn giản hơn hoặc các hệ quen thuộc ( mẫu mực) từ đó ta tìm ra tập nghiệm của hệ phương trình. 1.3.1 PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG Phương pháp này chủ yếu là sử dụng các kĩ năng biến đổi đồng nhất đặc biệt là kĩ năng phân tích nhằm đưa một phương trình của hệ về dạng đơn giản hơn. DẠNG 1 Một phương trình trong hệ có thể đưa về dạng tích của các phương trình bậc nhất hai ẩn. Ví dụ 1.1. Giải hệ phương trình: xy + x + y = x2 − 2y2 (1) x √ 2y − y √ x − 1 = 2x − 2y (2) Nhận xét: Dễ dàng thấy phương trình (1) của hệ có thể đưa về phương trình tích, từ đó ta tìm được x theo y, thay vào phương trình (2), từ đó tìm được giá trị y, giá trị x. Lời giải * Điều kiện: x ≥ 1, y ≥ 0 (∗) pt (1) ⇔ x2 − xy − 2y2 − (x + y) = 0 ⇔ x2 − y2 − y (x + y) − (x + y) = 0 ⇔ (x + y) (x − 2y − 1) = 0 ⇔ x = 2y + 1, (x + y ≥ 1) GV: Nguyễn Thị Thanh Huyền Trang 10

11. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán * Thay x = 2y + 1 vào phương trình (2) và biến đổi: (y + 1) 2y − 2 = 0 ⇔ y = 2, (do y ≥ 0) ⇒ x = 5 * Do x = 5, y = 2 thỏa mãn điều kiện (*). Bằng cách thử, vậy hệ phương trình có nghiệm là (x; y) = (5; 2) Ví dụ 1.2. Giải hệ phương trình: 6×2 − 3xy + x = 1 − y (1) x2 + y2 = 1 (2) Lời giải pt (1) ⇔ 6×2 − 3xy + 3x − 2x + y − 1 = 0 ⇔ 6×2 − 2x − (3xy − y) + (3x − 1) = 0 ⇔ (3x − 1) (2x − y + 1) = 0 ⇔   x = 1 3 y = 2x + 1 * Thay x = 1 3 vào phương trình (2) và biến đổi ta được: y2 = 8 9 ⇔    y = 2 √ 2 3 y = − 2 √ 2 3 * Thay y = 2x + 1 vào phương trình (2) và biến đổi : x2 + (2x + 1)2 = 1 ⇔ 5×2 + 4x = 0 ⇔ x (5x + 4) = 0 ⇔   x = 0 x = − 4 5 GV: Nguyễn Thị Thanh Huyền Trang 11

12. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán * Với x = 0 thì y = 1 * Với x = − 4 5 thì y = − 3 5 Bằng cách thử, vậy hệ phương trình có nghiệm là: (x; y) = 1 3 ; 2 √ 2 3 , (x; y) = 1 3 ; − 2 √ 2 3 , (x; y) = (0; 1) , (x; y) = − 4 5 ; − 3 5 . DẠNG 2: Cộng hoặc trừ từng vế hai phương trình rồi biến đổi về phương trình tích Ví dụ 1.3. Giải hệ phương trình: x3 + y3 = 1 + y − x + xy (1) 7xy + y − x = 7 (2) Lời giải Cộng vế với vế của phương trình (1) và phương trình (2) ta được: x3 + y3 + 6xy = 8 ⇔ (x + y)3 − 23 − 3×2 y − 3xy2 + 6xy = 0 ⇔ (x + y − 2) x2 + y2 + 4 − xy + 2y + 2x = 0 ⇔ (x + y − 2) (x − y)2 + (x + 2)2 + (y + 2)2 = 0 ⇔ x + y − 2 = 0 (x − y)2 + (x + 2)2 + (y + 2)2 = 0 ⇔ y = 2 − x x = y = −2 GV: Nguyễn Thị Thanh Huyền Trang 12

13. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Với y = 2 − x, thay vào phương trình (2), ta được: 7×2 − 12x + 5 = 0 ⇔   x = 1 x = 5 7 ⇔       x = y = 1   x = 5 7 y = 9 7 Với x = y = −2, không thỏa mãn phương trình (2) của hệ loại Bằng cách thử, vậy hệ phương trình có nghiệm là: (x; y) = (1; 1) , (x; y) = 5 7 ; 9 7 Ví dụ 1.4. Giải hệ phương trình:    x2 + y + x3 y + xy2 + xy = − 5 4 (1) x4 + y2 + xy (1 + 2x) = − 5 4 (2) (I) Lời giải (I) ⇔    x2 + y + x3 y + xy2 + xy = − 5 4 x4 + 2×2 y + y2 + xy = − 5 4 ⇔    x2 + y + xy x2 + y + xy = − 5 4 (3) x2 + y 2 + xy = − 5 4 (4) Trừ vế với vế của phương trình (3) cho phương trình (4) ta được: x2 + y + xy x2 + y − x2 + y 2 = 0 ⇔ x2 + y x2 + y − 1 − xy = 0 ⇔ x2 + y = 0 x2 + y − 1 − xy = 0 ⇔ y = −x2 x2 + y = 1 + xy GV: Nguyễn Thị Thanh Huyền Trang 13

14. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Với y = −x2 , thay vào phương trình (2) ta được: x3 = 5 4 ⇔ x = 3 5 4 khi đó y = − 3 25 16 Với x2 + y = xy + 1 thay vào phương trình (4) ta được: (xy + 1)2 + xy = − 5 4 ⇔ (xy)2 + 3xy + 9 4 = 0 ⇔ xy + 3 2 2 = 0 ⇔ xy + 3 2 = 0 ⇔ xy = − 3 2 Khi đó    x2 + y = − 1 2 xy = − 3 2 ⇔    x = 1 y = − 3 2 Bằng cách thử, vậy hệ phương trình có nghiệm là: (x; y) = 3 5 4 ; − 3 25 16 ; (x; y) = 1; − 3 2 DẠNG 3:Biến đổi một phương trình của hệ về dạng phương trình bậc hai theo một ẩn chẳng hạn đó là ẩn y, lúc đó ta xem x là tham số. Biểu diễn y qua x bằng cách giải phương trình bậc hai ẩn y Ví dụ 1.5. Giải hệ phương trình: y2 = (x + 8) x2 + 2 (1) 16x − 8y + 16 = 5×2 + 4xy − y2 (2) Nhận xét: Viết phương trình (2) về dạng phương trình bậc hai ẩn y , x là tham số thì phương trình này có ∆ là bình phương của một biểu thức, ta tìm được giá trị y, từ đó tìm được x. GV: Nguyễn Thị Thanh Huyền Trang 14

15. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Lời giải Biến đổi phương trình (2) về dạng: y2 − (4x + 8) y + 16 + 16x − 5×2 = 0 (3) là phương trình bậc hai ẩn y, x là tham số. Có ∆ = 9×2 , phương trình (3) có hai nghiệm là y = 4−x hoặc y = 5x+4 Với y = 4 − x thay vào phương trình (1) ta được: (4 − x)2 = (x + 8) x2 + 2 ⇔ (x + 2) (x + 5) x = 0 ⇔     x = 0 x = −2 x = −5 Do đó hệ có nghiệm (x; y) = (0; 4) , (x; y) = (−2; 6) , (x; y) = (−5; 9) , Với y = 5x + 4 thay vào phương trình (1) ta được: (5x + 4)2 = (x + 8) x2 + 2 ⇔ x (x − 19) (x + 2) = 0 ⇔     x = 0 x = 19 x = −2 Do đó, Hệ có nghiệm: (x; y) = (0; 4) , (x; y) = (19, 99) , (x; y) = (−2; −6) , Bằng cách thử, vậy hệ phương trình có nghiệm là: (x; y) = (0; 4) , (x; y) = (19, 99) , (x; y) = (−2; −6) , (x; y) = (−2; 6) , (x; y) = (−5; 9) , Ví dụ 1.6. Giải hệ phương trình: x2 + 2 = 3x + y − xy (1) x2 + y2 = 2 (2) Nhận xét: Viết phương trình (1) về dạng phương trình bậc hai ẩn x , y là tham số thì phương trình này có ∆ là bình phương của một biểu thức, ta tìm được giá trị x, từ đó tìm được y. Lời giải Biến đổi phương trình (1) về dạng: x2 + (y − 3) x + (2 − y) = 0 (3) là phương trình bậc hai ẩn x, y là tham số. GV: Nguyễn Thị Thanh Huyền Trang 15

16. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Ta có: ∆ = (y − 1)2 , khi đó phương trình (3) có hai nghiệm là x = 1, x = 2 − y Với x = 1, thay vào phương trình (2) ta có y = ±1 Với x = 2−y, thay vào phương trình (2) ta có (2 − y)2 +y2 = 2 ⇔ y = 1 khi đó x = 1 Bằng cách thử, vậy hệ phương trình có nghiệm: (x; y) = (1; 1) , (x; y) = (1; −1) 1.3.2 PHƯƠNG PHÁP ĐẶT ẨN PHỤ * Phương pháp này có thể đặt một hoặc hai ẩn để đưa hệ đã cho thành hệ đơn giản hơn với các ẩn phụ mới. Giải hệ đối với ẩn phụ mới, từ đó suy ra nghiệm của hệ phương trình ban đầu. * Có thể từ hệ phương trình đã cho nhìn thấy ngay ẩn phụ mới, cũng có khi phải thông qua một vài phép biến đổi mới có thể nhìn thấy việc đặt ẩn phụ Ví dụ 1.7. Giải hệ phương trình: 2 x2 + 3y − y2 + 8x − 1 = 0 x (x + 8) + y (y + 3) − 13 = 0 Nhận xét: Cả 2 phương trình của hệ ta đều thấy có biểu thức: x2 + 3y và y2 + 8x nên ta dùng phương pháp đặt ẩn phụ hai ẩn mới. Lời giải Điều kiện: x2 + 3y ≥ 0 y2 + 8x ≥ 0 (∗) Đặt a = x2 + 3y; b = y2 + 8x (a ≥ 0, b ≥ 0) GV: Nguyễn Thị Thanh Huyền Trang 16

17. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Hệ phương trình đã cho trở thành: 2a − b = 1 a2 + b2 = 13 ⇔ b = 2a − 1 a2 + (2a − 1)2 = 13 ⇔ b = 2a − 1 (5a + 6) (a − 2) = 0 ⇔    b = 2a − 1   a = 2 a = − 6 5 (loại) Do đó a = 2 b = 3 ⇒ x2 + 3y = 2 y2 + 8x = 3 ⇔    y = 4 − x2 3 4 − x2 3 2 + 8x = 9 ⇔    y = 4 − x2 3 (x − 1) (x + 5) x2 − 4x + 13 = 0 ⇔    y = 4 − x2 3 x = 1 x = −5 ⇔        x = 1 y = 1 x = −5 y = −7 (thỏa mãn điều kiện) Bằng cách thử, vậy hệ có nghiệm là (x; y) = (1; 1), (x; y) = (−5; −7) Ví dụ 1.8. Giải hệ phương trình: x2 + y2 + 2y = 4 (1) 2x + y + xy = 4 (2) GV: Nguyễn Thị Thanh Huyền Trang 17

18. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Nhận xét: Chưa nhìn thấy ngay để dùng phương pháp đặt ẩn phụ, ta biến đổi phương trình (1) và phương trình (2) để xuất hiện biểu thức chung x(y + 1) và x + (y + 1) Lời giải x2 + y2 + 2y = 4 2x + y + xy = 4 ⇔ x2 + (y + 1)2 = 5 x (y + 1) + [x + (y + 1)] = 5 Đặt a = x + (y + 1), b = x(y + 1) Khi đó a2 − 2b = 5 a + b = 5 ⇔ b = 5 − a a2 − 10 + 2a = 5 ⇔ b = 5 − a a2 + 2a − 15 = 0 ⇔    b = 5 − a a = 3 a = −5 ⇔ a = 3; b = 2 a = −5; b = 10 Với a = 3, b = 2 ta có x + (y + 1) = 3 x (y + 1) = 2 ⇔ x = y = 1 x = 2; y = 0 Với a = −5, b = 10 ta có x + (y + 1) = −5 x (y + 1) = 10 hệ này vô nghiệm Bằng cách thử, vậy hệ có nghiệm: (x; y) = (1; 1), (x; y) = (2; 0) Ví dụ 1.9. Giải hệ phương trình: y + xy2 = 6×2 (1) 1 + x2 y2 = 5×2 (2) Nhận xét: * Nếu x = 0 không thỏa mãn hệ phương trình * Nếu x = 0 chia cả hai vế của phương trình (1) và phương trình (2) cho x2 = 0 để 2 phương trình xuất hiện biểu thức chung 1 x + y và y x GV: Nguyễn Thị Thanh Huyền Trang 18

19. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Lời giải Với x = 0, không thỏa mãn hệ phương trình Với x = 0 chia cả hai vế (1) và (2) cho x2 = 0 ta được:    y x2 + y2 x = 6 1 x2 + y2 = 5 ⇔    y x 1 x + y = 6 1 x + y 2 − 2 y x = 5 Đặt S = 1 x + y; P = y x . Khi đó ta có P.S = 6 S2 − 2P = 5 ⇔ S = 3 P = 2 Ta có x = 1 y = 2 hoặc    x = 1 2 y = 1 Bằng cách thử, Vậy hệ phương trình có nghiệm: (x; y) = (1; 2) , (x; y) = 1 2 ; 1 Ví dụ 1.10. Giải hệ phương trình:    (x + y) 1 + 1 xy = 5 x2 + y2 1 + 1 x2y2 = 49 Nhận xét: Đây là hệ đối xứng loại 1, nếu ta đặt ẩn phụ theo tổng và tích như cách thông thường thì được hệ phương trình ẩn mới vẫn phức tạp. Nhưng nếu thông qua một vài bước biến đổi, sau đó mới sử dụng phương pháp đặt ẩn phụ thì được hệ phương trình đơn giản hơn. Lời giải Điều kiện x = 0, y = 0 GV: Nguyễn Thị Thanh Huyền Trang 19

20. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Ta có    (x + y) 1 + 1 xy = 5 x2 + y2 1 + 1 x2y2 = 49 ⇔    x + 1 x + y + 1 y = 5 x2 + 1 x2 + y2 + 1 y2 = 49 Đặt a = x + 1 x ; b = y + 1 y Khi đó ta có hệ phương trình a + b = 5 a2 + b2 = 53 ⇔ a = 5 − b (5 − b)2 + b2 = 53 ⇔ a = 5 − b (b + 2) (b − 7) = 0 ⇔        a = 5 − b b = −2 a = 5 − b b = 7 ⇔        a = 7 b = −2 a = −2 b = 7 Do đó              x + 1 x = 7 y + 1 y = −2    x + 1 x = −2 y + 1 y = 7 ⇔             x = 7 √ 45 2 y = −1    x = −1 y = 7 √ 45 2 Bằng cách thử, vậy hệ phương trình có nghiệm là (x; y) = 7 + √ 45 2 ; −1 ; (x; y) = 7 − √ 45 2 ; −1 GV: Nguyễn Thị Thanh Huyền Trang 20

21. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán (x; y) = −1; 7 + √ 45 2 ; (x; y) = −1; 7 − √ 45 2 1.3.3 PHƯƠNG PHÁP THẾ Rút ra một ẩn hoặc 1 biểu thức hoặc một số từ phương trình này thế vào phương trình kia để được 1 phương trình đơn giản hơn, nhờ đó ta có hệ phương trình đơn giản hơn. Ta thường áp dụng cách này với các hệ mà ta quan sát thấy 1 phương trình của hệ mà một ẩn chỉ có bậc nhất hoặc ở cả hai phương trình của hệ có cùng 1 biểu thức chung Nhiều khi phải thông qua một vài bước biến đổi tương đương rồi mới có thể sử dụng phương pháp thế được Ví dụ 1.11. Giải hệ phương trình: x2 (y + 1) (x + y) = 3×2 − 4x + 1 (1) xy + x + 1 = x2 (2) Nhận xét: Dễ dàng rút y từ phương trình (2) của hệ, thay vào phương trình (1) ta được phương trình ần x, từ đó có lời giải như sau: Lời giải * Ta thấy x = 0 không thỏa mãn phương trình (2) * Với x = 0, thì (2) ⇔ xy = x2 − x − 1 ⇔ y = x2 − x − 1 x , thay vào GV: Nguyễn Thị Thanh Huyền Trang 21

22. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán phương trình (1) ta được: x2 . x2 − x − 1 x + 1 . x + x2 − x − 1 x = 3×2 − 4x + 1 ⇔ x2 − 1 2×2 − x − 1 = (x − 1) (3x − 1) ⇔ x (x − 1) 2×2 + x − 5 = 0 ⇔ (x − 1) 2×2 + x − 5 = 0 (vìx = 0) ⇔   x = 1 x = −1 ± √ 41 4 Với x = 1 thì y = −1 Với x = −1 + √ 41 4 thì y = −27 + 3 √ 41 20 Với x = −1 − √ 41 4 thì y = −27 − 3 √ 41 20 Bằng cách thử, vậy hệ phương trình có nghiệm là (x; y) = (1; −1) (x; y) = −1 + √ 41 4 ; −27 + 3 √ 41 20 , (x; y) = −1 − √ 41 4 ; −27 − 3 √ 41 20 Ví dụ 1.12. Giải hệ phương trình: √ 7x + y + √ 2x + y = 5 (1) √ 2x + y + x − y = 2 (2) Nhận xét: Cả hai phương trình của hệ đều có biểu thức √ 2x + y nên từ phương trình (2) ta rút √ 2x + y = 2+y −x rồi thế vào phương trình (1). Lời giải Điều kiện: 7x + y ≥ 0 2x + y ≥ 0 GV: Nguyễn Thị Thanh Huyền Trang 22

23. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán * Từ phương trình (2) suy ra √ 2x + y = 2 + y − x (x − y ≤ 2), thế vào phương trình (1) ta được: √ 7x + y = 3 + x − y (x − y ≥ −3) * Do đó ta được:    −3 ≤ x − y ≤ 2 7x + y = 9 + x2 + y2 + 6x − 2xy − 6y 2x + y = 4 + y2 + x2 + 4y − 4x − 2xy ⇔    −3 ≤ x − y ≤ 2 5x + 2y = 5 + 10x − 10y 2x + y = 4 + y2 + x2 + 4y − 4x − 2xy ⇔    −3 ≤ x − y ≤ 2 x = 2y − 1 2 (2y − 1) + y = 4 + y2 + (2y − 1)2 + 4y − 4 (2y − 1) − 2xy ⇔    −3 ≤ x − y ≤ 2 x = 2y − 1 y2 − 11y + 11 = 0 ⇔    −3 ≤ x − y ≤ 2             x = 10 + √ 77 y = 11 + √ 77 2   x = 10 − √ 77 y = 11 − √ 77 2 ⇔    x = 10 − √ 77 y = 11 − √ 77 2 Bằng cách thử, vậy hệ phương trình đã cho có nghiệm là (x; y) = 10 − √ 77; 11 − √ 77 2 GV: Nguyễn Thị Thanh Huyền Trang 23

24. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Ví dụ 1.13. Giải hệ phương trình: x3 + 2xy2 + 12y = 0 (1) x2 + 8y2 = 12 (2) Nhận xét: Nếu thay 12 = x2 + 8y2 vào phương trình (1) thì ta có thể biến đổi phương trình (1) thành phương trình tích Lời giải Thay 12 = x2 + 8y2 vào phương trình (1) ta được: x3 + 2xy2 + x2 + 8y2 y = 0 ⇔ (x + 2y) x2 − xy + 4y2 = 0 ⇔ x = −2y x2 − xy + 4y2 = 0 Hệ phương trình đã cho tương đương        x = −2y x2 + 8y2 = 12 (I) x2 − xy + 4y2 = 0 x2 + 8y2 = 12 (II) Giải hệ (I): x = −2y y2 = 1 ⇔        x = −2 y = 1 x = 2 y = −1 Giải hệ (II):    x − y 2 2 + 15 4 y2 = 0 x2 + 8y2 = 12 ⇔ x = 0; y = 0 x2 + 8y2 = 12 hệ vô nghiệm Bằng cách thử, vậy hệ phương trình có nghiệm là: (x; y) = (−2; 1) , (x; y) = (2; −1) Ví dụ 1.14. Giải hệ phương trình: y3 + xy2 + 3x − 6y = 0 (1) x2 + xy = 3 (2) GV: Nguyễn Thị Thanh Huyền Trang 24

25. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Lời giải Ta có y3 + xy2 + 3x − 6y = 0 (1) x2 + xy = 3 (2) ⇔ y3 + xy2 + 3x − 2.3y = 0 (3) x2 + xy = 3 Thay 3 = x2 + xy vào phương trình (3) ta được: y3 + xy2 + x2 + xy x − 2y x2 + xy = 0 ⇔ (x + y) (x − y)2 = 0 ⇔ x = −y x = y * Với x = −y, thay vào phương trình (2) ta được y2 −y2 = 3, phương trình vô nghiệm * Với x = y, thay vào phương trình (2), ta được: y2 + y2 = 3 ⇔     y = 3 2 y = − 3 2 Bằng cách thử, vậy hệ phương trình có nghiệm (x; y) = 3 2 ; 3 2 , (x; y) = − 3 2 ; − 3 2 GV: Nguyễn Thị Thanh Huyền Trang 25

26. Chương 2 MỘT SỐ BÀI TẬP TỰ LUYỆN 2.1 MỘT SỐ BÀI TẬP TỰ LUYỆN Bài tập 2.1. Giải hệ phương trình sau: y (xy − 2) = 3×2 y2 + x2 y + 2x = 0 Gợi ý: Cộng theo từng vế của hai phương trình rồi biến đổi thành phương trình tích Đáp số: (x; y) = (0; 0) , (x; y) = −1 3 √ 3 ; − 3 √ 3 , (x; y) = (2; −2) Bài tập 2.2. Giải hệ phương trình sau:    y2 + 1 y = x2 + 1 x x2 + 3y2 = 4 Gợi ý: Biến đổi phương trình (1) thành phương trình tích Đáp số: (x; y) = (1; 1) , (x; y) = (−1; −1) , (x; y) = √ 3; 1 √ 3 ; (x; y) = − √ 3; − 1 √ 3 Bài tập 2.3. Giải hệ phương trình sau: x2 + xy = 6 x3 + y3 + 18y = 27 Gợi ý: Thay 6 = x3 + xy vào phương trình (2) Đáp số: (x; y) = (2; 1)

27. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Bài tập 2.4. Giải hệ phương trình sau: xy + x + 1 = 7y x2 y2 + xy + 1 = 13y2 Gợi ý: Dùng phương pháp đặt ẩn phụ: Đặt x + 1 y = a, x y = b Đáp số: (x; y) = (3; 1) , (x; y) = 1; 1 3 Bài tập 2.5. Giải hệ phương trình sau: x2 − xy + x − y = 4 3×2 − 3xy − 5x + 5y = 4 Gợi ý: Thế 4 = (x + 1) (x − y) vào phương trình (2) rồi biến đổi thành phương trình tích Đáp số: (x; y) = (3; 2) Bài tập 2.6. Giải hệ phương trình sau: x2 + xy + y2 = 19(x − y)2 x2 − xy + y2 = 7 (x − y) Gợi ý: Viết phương trình (1) dưới dạng phương trình bậc hai ẩn x Đáp số: (x; y) = (0; 0) , (x; y) = (3; 2) , (x; y) = (−2; −3) , Bài tập 2.7. Giải hệ phương trình sau: 4×2 + y4 − 4xy3 = 1 4×2 + 2y2 − 4xy = 2 Gợi ý: Trừ theo từng vế của phương trình (2) và phương trình (1) rồi biến đổi thành phương trình tích Đáp số: (x; y) = (0; 1) , (x; y) = (1; 1) , (x; y) = (0; −1) , (x; y) = (−1; −1) , (x; y) = − 1 √ 5 ; 1 √ 5 , (x; y) = 1 √ 5 ; − 1 √ 5 , GV: Nguyễn Thị Thanh Huyền Trang 27

28. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Bài tập 2.8. Giải hệ phương trình sau x2 + y2 + x + y = 8 x2 − 3y2 + 2xy − x + 5y − 2 = 0 Gợi ý: Viết phương trình (2) dưới dạng phương trình bậc hai ẩn x Đáp số: (x; y) = (1; 2) , (x; y) = (−3; −2) , (x; y) = −1 + 3 √ 69 10 ; 7 + 3 √ 69 10 , (x; y) = −1 − 3 √ 69 10 ; 7 − 3 √ 69 10 . Bài tập 2.9. Giải hệ phương trình sau:    x2 + y2 + 2xy x + y = 1 √ x + y = x2 − y Gợi ý: Biến đổi phương trình (1) thành phương trình tích Đáp số: (x; y) = (1; 0) , (x; y) = (−2; 3) Bài tập 2.10. Giải hệ phương trình sau: x3 − y3 = 4x + 2y x2 − 1 = 3 1 − y2 Gợi ý: Thay 4 = x2 + 3y2 vào phương trình (1) và biến đổi thành phương trình tích Đáp số: (x; y) = (2; 0) , (x; y) = (−2; 0) , (x; y) = − 5 √ 7 7 ; √ 7 7 , (x; y) = 5 √ 7 7 ; − √ 7 7 , (x; y) = (−1; 1) , (x; y) = (1; −1) , GV: Nguyễn Thị Thanh Huyền Trang 28

29. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Bài tập 2.11. Giải hệ phương trình sau: x2 − 2xy + x − 2y + 3 = 0 y2 − x2 + 2xy + 2x − 2 = 0 Gợi ý: Nhân hai vế của phương trình (1) với (2) rồi cộng theo từng vế phương trình (2) Đáp số: (x; y) = −5 − √ 21 2 ; −1 − √ 21 2 , (x; y) = −5 + √ 21 2 ; −1 + √ 21 2 , Bài tập 2.12. Giải hệ phương trình sau: x xy − 2y2 = 3 x2 + y − 2xy = 4 Gợi ý: Trừ vế với vế phương trình (1) và phương trình (2) rồi biến đổi thành phương trình tích Đáp số: (x; y) = (3; 1) , (x; y) = (−1; −1) , (x; y) = 3 + √ 10; 3 , (x; y) = 3 − √ 10; 3 , Bài tập 2.13. Giải hệ phương trình sau:    x2 + 4 y2 = 4 x − 2 y − 4x y = −2 Gợi ý: Đặt x − 2 y = a, 4x y = b Đáp số: (x; y) = (0; 1) , (x; y) = 2 + 2 √ 7 3 ; 1 + √ 7 2 GV: Nguyễn Thị Thanh Huyền Trang 29

30. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán (x; y) = 2 − 2 √ 7 3 ; 1 − √ 7 2 Bài tập 2.14. Giải hệ phương trình sau:   x − 2y − 2 x + 1 = 0 x2 − 4xy + 4y2 − 4 x2 + 1 = 0 Gợi ý: Đặt x − 2y = a, 2 x = b Đáp số: (x; y) = (2; 1) Bài tập 2.15. Giải hệ phương trình sau: x4 − x3 y + x2 y2 = 1 x3 y − x2 + xy = −1 Gợi ý: Trừ vế với vế của phương trình (1) và phương trình (2), Rồi đặt x2 − xy = t Đáp số: (x; y) = (1; 0) , (x; y) = (−1; 0) , Bài tập 2.16. Giải hệ phương trình sau: (x − y) x2 + y2 = 13 (x + y) x2 − y2 = 25 Gợi ý: Trừ theo từng vế phương trình (1) và phương trình (2), rồi đặt x − y = a, xy = b Đáp số: (x; y) = (3; 2) , (x; y) = (−2; −3) , Bài tập 2.17. Giải hệ phương trình sau: x2 + y2 + x + y = 4 x (x + y + 1) + y (y + 1) = 2 Gợi ý: Phương pháp thế GV: Nguyễn Thị Thanh Huyền Trang 30

31. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán Đáp số: (x; y) = − √ 2; √ 2 , (x; y) = √ 2; − √ 2 (x; y) = (−2; 1) , (x; y) = (1; −2) Bài tập 2.18. Giải hệ phương trình sau: x4 + 2×3 y + x2 y2 = 2x + 9 x2 + 2xy = 6x + 6 Gợi ý: Thế xy = 6x + 6 − x2 2 vào phương trình (1) Đáp số: (x; y) = −4; 17 4 Bài tập 2.19. Giải hệ phương trình sau: x (x + 2) (2x + y) = 9 x2 + 4x + y = 6 Gợi ý: Đặt x (x + 2) = a; 2x + y = b Đáp số: (x; y) = (1; 1) , (x; y) = (−3; 9) Bài tập 2.20. Giải hệ phương trình sau: √ 2x + y + 1 − √ x + y = 1 3x + 2y = 4 Gợi ý: Đặt ẩn phụ Đáp số: (x; y) = (2; −1) Bài tập 2.21. Giải hệ phương trình sau:   4xy + 4 x2 + y2 + 3 (x + y)2 = 7 2x + 1 x + y = 3 Gợi ý: Đặt ẩn phụ Đáp số: (x; y) = (1; 0) GV: Nguyễn Thị Thanh Huyền Trang 31

32. Trường THCS &THPT Hai Bà Trưng Chuyên đề Toán GV: Nguyễn Thị Thanh Huyền Trang 32

33. KẾT LUẬN Kiến thức được trình bày trong chuyên đề đã được giảng dạy cho các em học sinh giỏi lớp 9 và các lớp luyện thi vào lớp 10 Kết quả thu được khả quan, các em hăng say học tập, hứng thú tìm tòi cái mới, cái hay, các em có niềm tin trong học tập, không ngại khó, yêu thích môn Toán. Với loại hệ phương trình này người thầy phải biết phân loại bài, biết vận dụng sáng tạo phương pháp và định hướng cách giải cho học sinh Mặc dù rất cố gắng khi thực hiện chuyên đề nhưng không tránh khỏi những thiếu xót, hạn chế nhất định. Vì vậy tôi mong muốn được đồng nghiệp đóng góp ý kiến để chuyên đề được hoàn thiện hơn. Để hoàn thành được chuyên đề này tôi xin được chân thành cảm ơn Ban giám hiệu, các đồng chí trong tổ Toán – Lý – Tin đã đóng góp ý kiến, giúp đỡ tôi trong suốt quá trình làm chuyên đề. Phúc Yên, ngày 07 tháng 03 năm 2014 Người viết Nguyễn Thị Thanh Huyền