Top 5 # Skkn Giải Toán Có Lời Văn Lớp 4 Xem Nhiều Nhất, Mới Nhất 3/2023 # Top Trend | Caffebenevietnam.com

Skkn Giải Toán Có Lời Văn Ở Lớp 4

SÁNG KIẾN KINH NGHIỆM VỀ GIẢI TOÁN CÓ LỜI VĂN Ở LỚP 4

Họ và tên: Phan Thị Thanh Hà Đơn vị công tác: Trường tiểu học số 2 Quảng Phúc

THÁNG 01 NĂM 2011 11

Phan Thị Thanh Hà

2

Phan Thị Thanh Hà Phần thứ hai

NỘI DUNG I. CƠ SỞ KHOA HỌC: 1/ Cơ sở lý luận: Giải toán là một thành phần quan trọng trong chương trình giảng dạy môn toán ở bậc tiểu học. Nội dung của việc giải toán gắn chặt một cách hữu cơ với nội dung của số học và số tự nhiên, các đại lượng cơ bản và các yếu tố đại số, hình học có trong chương trình. Vì vậy, việc giải toán có lời văn có một vị trí quan trọng thể hiện ở các điểm sau: a) Các khái niệm và các quy tắc về toán trong sách giáo khoa, nói chung đều được giảng dạy thông qua việc giải toán. Việc giải toán giúp học sinh củng cố, vận dụng các kiến thức, rèn luyện kỹ năng tính toán. Đồng thời qua việc giải toán của học sinh mà giáo viên có thể dễ dàng phát hiện những ưu điểm hoặc thiếu sót của các em về kiến thức, kỹ năng và tư duy để giúp các em phát huy hoặc khắc phục. b) Việc kết hợp học và hành, kết hợp giảng dạy với đời sống được thực hiện thông qua việc cho học sinh giải toán, các bài toán liên hệ với cuộc sống một cách thích hợp giúp học sinh hình thành và rèn luyện những kỹ năng thực hành cần thiết trong đời sống hàng ngày, giúp các em biết vận dụng những kỹ năng đó trong cuộc sống. c) Việc giải toán góp phần quan trọng trong việc xây dựng cho học sinh những cơ sở ban đầu của lòng yêu nước, tinh thần quốc tế vô sản, thế giới quan duy vật biện chứng: việc giải toán với những đề tài thích hợp, có thể giới thiệu cho các em những thành tựu trong công cuộc xây dựng CNXH ở nước ta và các nước anh em, trong công cuộc bảo vệ hoà bình của nhân dân thế giới, góp phần giáo dục các em ý thức bảo vệ môi trường, phát triển dân số có kế hoạch v.v… Việc giải toán 3

4

5

Phan Thị Thanh Hà II. CÁC PHƯƠNG PHÁP DÙNG ĐỂ DẠY GIẢI BÀI TOÁN CÓ LỜI VĂN: 1/ Phương pháp trực quan: Nhận thức của trẻ từ 6 đến 10 tuổi còn mang tính cụ thể , gắn với các hình ảnh và hiện tượng cụ thể, trong khi đó kiến thức của môn toán lại có tính trừu tượng và khái quát cao. Sử dụng phương pháp này giúp học sinh có chỗ dựa cho hoạt động tư duy, bổ xung vốn hiểu biết, phát triển tư duy trừu tượng và vốn hiểu biết. Ví dụ: khi dạy giải toán ở lớp Bốn, giáo viên có thể cho học sinh quan sát mô hình hoặc hình vẽ, sau dó lập tóm tắt đề bài qua, rồi mới đến bước chọn phép tính. 2/ Phương pháp thực hành luyện tập: Sử dụng phương pháp này để thực hành luyện tập kiến thức, kỹ năng giải toán từ đơn giản đến phức tạp (Chủ yếu ở các tiết luyện tập ). Trong quá trình học sinh luyện tập, giáo viên có thể phối hợp các phương pháp như: gợi mở – vấn đáp và cả giảng giải – minh hoạ. 3/ Phương pháp gợi mở – vấn đáp: Đây là phương pháp rất cần thiết và thích hợp với học sinh tiểu học, rèn cho học sinh cách suy nghĩ, cách diễn đạt bằng lời, tạo niềm tin và khả năng học tập của từng học sinh. 4/ Phương pháp giảng giải – minh hoạ: Giáo viên hạn chế dùng phương pháp này. Khi cần giảng giải minh hoạ thì giáo viên nói gọn, rõ và kết hợp với gợi mở – vấn đáp. Giáo viên nên phối hợp giảng giải với hoạt động thực hành của học sinh ( Ví dụ: Bằng hình vẽ, mô hình, vật thật…) để học sinh phối hợp nghe, nhìn và làm. 5/ Phương pháp sơ đồ đoạn thẳng:

6

Phan Thị Thanh Hà Giáo viên sử dụng sơ đồ đoạn thẳng để biểu diễn các đại lượng đã cho ở trong bài và mối liên hệ phụ thuộc giữa các đại lượng đó. Giáo viên phải chọn độ dài các đoạn thẳng một cách thích hợp để học sinh dễ dàng thấy được mối liên hệ phụ thuộc giữa các đại lượng tạo ra hình ảnh cụ thể để giúp học sinh suy nghĩ tìm tòi giải toán.

III. MỘT SỐ BIỆN PHÁP ĐỂ NÂNG CAO CHẤT LƯỢNG GIẢI CÁC BÀI TOÁN CÓ LỜI VĂN Ở LỚP 4 : Muốn phân tích được tình huống, lựa chọn phép tính thích hợp, các em cần nhận thức được: cái gì đã cho, cái gì cần tìm, mối quan hệ giữa cái đã cho và cái phải tìm. Trong bước đầu giải toán, việc nhận thức này, việc lựa chọn phép tính thích hợp đối với các em là một việc khó. Để giúp các em khắc phục khó khăn này, cần dựa vào các hoạt động cụ thể của các em với vật thật, với mô hình, dựa vào hình vẽ , các sơ đồ toán học…. nhằm làm cho các em hiểu khái niệm ” gấp ” với phép nhân, khái niệm ” một phần … ” với phép chia” trong tương quan giữa các mối quan hệ trong bài toán. Trong một bài toán, câu hỏi có một chức năng quan trọng vì việc lựa chọn phép tính thích hợp được quy định không chỉ bởi các dữ kiện mà còn bởi các câu hỏi. Với cùng các dữ kiện như nhau có thể đặt các câu hỏi khác nhau do đó việc lựa chọn phép tính cũng khác nhau, việc thấu hiểu câu hỏi của bài toán là điều kiện căn bản để giải đúng bài toán đó. Nhưng trẻ em ở giai đoạn đầu khi mới giải toán chưa nhận thức được đầy đủ chức năng của câu hỏi trong bài toán. Để rèn luyện cho các em suy luận đúng, cần giúp các em nhận thức được chức năng quan trọng của câu hỏi trong bài toán. Muốn vậy có thể dùng biện pháp: thường xuyên gợi cho các em phân tích đề toán để xác định cái đã cho, cái phải tìm, các dữ kiện của bài toán , câu hỏi của bài toán, 7

Phan Thị Thanh Hà + Xác lập mối quan hệ giữa các điều kiện đã cho với yêu cầu của bài toán phải tìm và tìm được phép tính số học thích hợp. a) Thực hiện cách giải và trình bày lời giải bằng các thao tác: – Thực hiện các phép tính đã xác định ( có thể viết phép tính sau khi viết câu lời giải và thực hiện phép tính) – Viết câu lời giải. – Viết phép tính tương ứng. b) Kiểm tra bài giải: – Kiểm tra số liệu. – Kiểm tra tóm tắt. – Kiểm tra phép tính. – Kiểm tra lời giải. – Kiểm tra kết quả cuối cùng có đúng với yêu cầu bài toán. *Ví dụ một bài cụ thể ở lớp 4 như sau: Bài toán: Một thửa ruộng hình chữ nhật có chu vi bằng chu vi của hình vuông có cạnh 40m. Biết rằng chiều rộng bằng 1/3 chiều dài. Tính diện tích của thửa ruộng đó. a) Tổ chức cho học sinh tìm hiểu nội dung và nhận dạng bài toán: – Đọc bài toán ( Tuỳ theo hình thức lớp học, có thể cho học sinh đọc to, đọc nhỏ, đọc thầm…) để học sinh biết những dữ kiện ban đầu của bài toán. – Thuật ngữ ” chu vi hình chữ nhật bằng chu vi hình vuông” ( chu vi hình vuông cũng chính là chu vi hình chữ nhật) – Nhận dạng bài toán: Bài toán về tìm hai số khi biết tổng và tỉ số của hai số đó. * Nắm bắt nội dung bài toán: 10

Phan Thị Thanh Hà + Biết thửa ruộng hình chữ nhật có chi vi bằng thửa ruộng hình vuông cạnh 40m. + Chiều rộng của thửa ruộng bằng 1/3 chiều dài. + Tính diện tích của thửa ruộng đó. b) Hướng dẫn học sinh tóm tắt bài toán: Tóm tắt Chu vi HCN = Chu vi HV cạnh 40m Chiều rộng = 1/3 chiều dài Diện tích : ? m2 – Lập kế hoạch giải toán. – Xác định trình tự giải toán theo cách thông thường. + Muốn tính diện thửa ruộng ta làm thế nào? ( Phải biết chiều dài và chiều rộng của thửa ruộng ) + Để tính chiều dài và chiều rộng ta làm thế nào? ( Tính nửa chu vi của thửa ruộng) + Muốn tính nửa chu vi? ( Phải biết chu vi của thửa ruộng hình chữ nhật ) + Muốn tính chu vi của thửa ruộng hình chữ nhật ta làm thế nào? ( tính chu vi của thửa ruộng hình vuông vì chu vi của thửa ruộng hình vuông chính là chu vi của thửa ruộng hình chữ nhật) * Theo hệ thống câu hỏi phân tích trên GV yêu cầu học sinh nối trình tự giải của bài toán + Thiết lập trình tự giải:  Tính chu vi của thửa ruộng hình vuông.  Tính nửa chu vi của thửa ruộng hình chữ nhật.  Tìm chiều dài của thửa ruộng. 11

Phan Thị Thanh Hà  Tìm chiều rộng của thửa ruộng.  Tìm diện tích của thửa ruộng. + Thực hiện giải và trình bày bài giải: Bài giải Chu vi của thửa ruộng hình vuông là: 40 x 40 = 160 (m) Nửa chu vi của thửa ruộng hình chữ nhật là: 160 : 2 = 80 (m) Ta có sơ đồ: Chiều dài :

80m

Chiều rộng : Tổng số phần bằng nhau là: 3 + 1 = 4 (phần) Chiều dài của thửa ruộng là: 80 : 4 x 3 = 60 (m) Hiều rộng của thửa ruộng là: 80 – 60 = 20 (m)

Diện tích của thửa ruộng hình chữ nhật là: 60 x 20 = 1200 ( m 2 ) Đáp số: 1200 m 2  Giải xong yêu cầu học sinh kiểm tra lại đáp số và yêu cầu của bài toán xem đã phù hợp chưa, chính xác chưa.  Học sinh có thể giải bài này với cách giải gọn hơn như sau: Đối với các bài toán có lời văn như trên, giáo viên nên khuyến khích học sinh tự nêu ra các giả thiết đã biết, cái cần phải tìm, cách tóm tắt bài toán và tìm đường lối giải. Các phép tính giải chỉ là khâu thứ yếu mang tính kĩ thuật. 12

Phan Thị Thanh Hà IV/ RÈN LUYỆN NĂNG LỰC KHÁI QUÁT, NÂNG DẦN MỨC ĐỘ PHỨC TẠP TRONG MỐI QUAN HỆ GIỮA SỐ ĐÃ CHO (ĐIỀU KIỆN BÀI TOÁN) VÀ SỐ PHẢI TÌM.

– Tổ chức cho học sinh giải toán, nâng dần mức độ phức tạp trong mối quan hệ giữa số đã cho( điều kiện bài toán) và số phải tìm. – Giải bài toán có nhiều cách giải khác nhau. Làm quen với các bài toán thiếu hoặc thừa dữ liệu. – Lập và biến dổi bài toán dưới nhiều hình thức. – Đặt câu hỏi cho bài toán mới chỉ biết số liệu hoặc điều kiện. – Lập bài toán tương tự với bài toán đã giải. – Lập bài toán ngược với bài toán đã giải.Chẳng hạn lập bài toán ngược với ví dụ trên như sau: Một thửa ruộng hình chữ

nhật có diện tích 1 200 m 2 Biết rằng chiều rộng bằng 20 m. Một thửa ruộng hình vuông có chu vi bằng chu vi của thửa ruộng hình chữ nhật. Tính diện tích thửa ruộng hình vuông. – Lập bài toán theo cách giải cho sẵn. – Giải toán có lời văn ở lớp 4 phần nào đã mang tính trừu tượng so với lứa tuổi, đòi hỏi các em phải biết quan sát, phân tích, so sánh, trình bày đầy đủ từng yêu cầu của từng dạng bài. Do ậy mà người giáo viên không ngừng tìm tòi nghiên cứu để đúc rút kinh nghiệm quý báu nhằm giúp các em thực hiện tốt việc giải toán có lời văn nối riêng và học toán nói chung ở bậc tiểu học. –

13

Phan Thị Thanh Hà V/ KẾT QUẢ NGHIÊN CỨU: Qua một thời gian nghiên cứu đề ra một số biện pháp giải toán có lời văn ở lớp 4 , tôi đã mạnh dạn đề xuất với Ban Giám hiệu tổ chức thực hiện chuyên đề toán, về phương pháp, về cách giải toán có lời văn cho học sinh lớp 4 đã được nâng cao và đạt hiệu quả khá tốt. Do vậy đã được triển khai áp dụng thực hiện ở các lớp trong khối 4. – Kết quả đạt được cụ thể ở lớp 4B cuối năm học 2009 -2010 như sau:

Thời

Tổng số

gian

học

kiểm tra

sinh

Đầu năm

30

Cuối năm

30

Kết quả Giỏi

Khá

TB

Yếu

SL

%

11

36.7

9

30.0

8

26.7

2

6.6

Từ những kết quả đạt được nêu trên, tôi thấy dạy học giải toán có lời văn ở lớp 4 không những chỉ giúp cho học sinh củng cố vận dụng các kiến thức đã học, mà còn giúp các em phát triển tư duy, sáng tạo trong học toán và biết vận dụng thực thành vào thực tiễn cuộc sống.

Phần thứ ba 14

Phan Thị Thanh Hà KẾT LUẬN Giải toán có lời văn là nội dung khá hấp dẫn đối với người dạy lẫn người học, nó hấp dẫn bởi các yếu tố toán học khô khan được che đậy bởi lời văn và tranh vẽ hấp dẫn, đa dạng, song đây cũng chính là nội dung khó trong chương trình toán tiểu học. Vì vậy giải toán có lời văn ở lớp 4 nói riêng và giải toán ở tiểu học nối chung, yêu cầu người giáo viên phải có sự say mê, nghiên cứu, tìm tòi, nắm vững nội dung từng chương, từng phần ở SGK, sách tham khảo, hiểu cốt lõi từng đơn vị kiến thức, cốt lõi từng đơn vị toán học. Từ đó mới hướng dẫn các em tường tận theo đúng quy trình các bước giải. Muốn các em có kỹ năng giải toán, giáo viên phải hướng dẫn các em cách phân tích bài toán, cách loại bỏ yếu tố bài toán theo lôgic khoa học, cách khai thác các từ khóa, cách nhận dạng để tìm ra cách giải nhanh, giải đúng. Để phát huy tính tích cực chủ động cho học sinh, giáo viên không nên áp dặt mà nên gợi mở để các em tự tìm ra hướng đi cho mình, giáo viên là trọng tài phân định đúng, sai, nhanh, chậm cho các em. Do vậy, việc giảng dạy toán có lời văn một cách hiệu quả giúp các em trở thành những con người linh hoạt, sáng tạo, làm chủ trong mọi lĩnh vực và trong cuộc sống thực tế hàng ngày. Những kết quả mà chúng tôi đã thu được trong quá trình nghiên cứu không phải là cái mới so với kiến thức chung về môn toán ở bậc tiểu học, song lại là cái mới đối với bản thân tôi. Trong quá trình nghiên cứu, tôi đã phát hiện và rút ra nhiều điều lý thú về nội dung và phương pháp dạy học giải toán có lời văn ở bậc tiểu học. Tôi tự cảm thấy mình được bồi dưỡng thêm lòng kiên trì, nhẫn lại, sự ham muốn, say sưa với việc nghiên cứu. Trong thời gian qua, được sự giúp đỡ của ban giám hiệu nhà trường, đặc biệt là đồng chí phụ trách chuyên môn cùng với sự học 15

Phan Thị Thanh Hà hỏi, tìm tòi của bản thân. Tôi đã rút ra được một vài kinh nghiệm nhỏ để cùng bàn với các đồng nghiệp về cách dậy giải toán có lời văn ở lớp 4. Mong hội đồng khoa học các cấp xem xét, góp ý để đề tài được áp dụng rộng rãi và nâng cao hơn về mặt chất lượng.

Quảng Phúc, ngày 25 tháng 5 năm 2010 Người thực hiện

Phan Thị Thanh Hà

16

17

18

Skkn Giải Toán Có Lời Văn Lớp 5

SÁNG KIẾN KINH NGHIỆMĐề tài

HƯỚNG DẪN HỌC SINH THỰC HIỆN TỐT CÁCH GIẢI BÀI TOÁN CÓ LỜI VĂN – LỚP 5( Dạng toán : ” Toán chuyển động đều ” )

I /- ĐẶT VẤN ĐỀ :Toán học có vị trí rất quan trọng phù hợp với cuộc sống thực tiễn, đó cũng là công cụ cần thiết cho các môn học khác và để giúp cho học sinh nhận thức thế giới xung quanh, để hoạt động có hiệu quả trong mọi lĩnh vực.Khả năng giáo dục nhiều mặt của môn toán rất to lớn: Nó phát triển tư duy, trí tuệ, có vai trò quan trọng trong việc rèn luyện tính suy luận, tính khoa học toàn diện, chính xác, tư duy độc lập sáng tạo, linh hoạt, góp phần giáo dục tính nhẫn nại, ý chí vượt khó khăn.Từ vị trí và nhiệm vụ vô cùng quan trọng của môn toán, vấn đề đặt ra cho người thầy là làm thế nào để giờ dạy – học toán có hiệu quả cao, học sinh phát triển tính tích cực, chủ động sáng tạo trong việc chiếm lĩnh kiến thức toán học. Theo tôi, các phương pháp dạy học bao giờ cũng phải xuất phát từ vị trí, mục đích và nhiệm vụ, mục tiêu giáo dục của bài học môn toán. Nó không phải là cách thức truyền thụ kiến thức, cách giải toán đơn thuần mà là phương tiện tinh vi để tổ chức hoạt động nhận thức tích cực, độc lập và giáo dục phong cách làm việc một cách khoa học, hiệu quả.Hiện nay, giáo dục tiểu học đang thực hiện yêu cầu đổi mới phương pháp dạy học theo hướng phát huy tính tích cực của học sinh, làm cho hoạt động dạy học trên lớp “nhẹ nhàng, tự nhiên, hiệu quả”. Để đạt được yêu cầu đó, giáo viên phải có phương pháp và hình thức dạy học để vừa nâng cao hiệu quả cho học sinh, vừa phù hợp với đặc điểm tâm sinh lý của lứa tuổi tiểu học và trình độ nhận thức của học sinh, để đáp ứng với công cuộc đổi mới của đất nước nói chung và của ngành giáo dục tiểu học nói riêng.Trong chương trình môn toán tiểu học, giải toán có lời văn giữ một vai trò quan trọng . Thông qua việc giải toán, học sinh tiểu học thấy được nhiều khái niệm trong toán học như các số, các phép tính, các đại lượng, các yếu tố hình học . . . đều có nguồn gốc trong cuộc sống hiện thực, trong thực tiễn hoạt động của con người, thấy được mối quan hệ biện chứng giữa các sự kiện, giữa cái đã cho và cái phải tìm. Qua việc giải toán sẽ rèn luyện cho học sinh năng lực tư duy và những đức tính của con người mới, có ý thức vượt khó khăn, đức tính cẩn thận, làm việc có kế hoạch, thói quen xét đoán có căn cứ, thói quen tự kiểm tra kết quả công việc mình làm và độc lập suy nghĩ, óc sáng tạo giúp học sinh vận dụng các kiến thức, rèn luyện kĩ năng tính toán, kĩ năng ngôn ngữ. Đồng thời qua việc giải toán của học sinh mà giáo viên có thể dễ dàng phát hiện những ưu điểm, thiếu sót của các em về kiến thức, kĩ năng, tư duy để giúp học sinh phát huy những mặt được và khắc phục những mặt thiếu sót.Chính vì vậy, tôi chọn đề tài ” Hướng dẫn học sinh thực hiện tốt cách giải bài toán có lời văn lớp 5 ( Dạng: Toán chuyển động đều ) ” với mong muốn đưa ra giải pháp nhằm nâng cao chất lượng học toán và giúp học sinh lớp 5 biết cách giải bài toán có lời văn đạt hiệu quả cao hơn. Nhưng trong thực tế giảng dạy môn Toán – giải bài toán có lời văn, bản thân tôi cũng gặp nhiều khó khăn như sau :

II / – KHÓ KHĂN: Đa số học sinh xem môn toán là môn học khó khăn, dễ chán. Trình độ nhận thức của học sinh không đồng đều : một số học sinh còn chậm, nhút nhát, kĩ năng tóm tắt bài toán còn hạn chế, chưa có thói quen đọc và tìm hiểu bài toán, dẫn tới thường nhầm lẫn giữa các dạng toán, lựa chọn phép tính còn sai, chưa bám sát vào yêu cầu bài toán để tìm lời giải thích hợp với các phép tính. Một số em tiếp thu bài một cách thụ động, ghi nhớ bài còn máy móc nên còn chóng quên các dạng bài toán.Từ những khó khăn trên, để giúp học sinh có kĩ năng giải bài toán có lời văn ở lớp 5, với dạng bài toán ” chuyển động đều ” đạt hiệu quả, bản thân tôi đã thực hiện và tổ chức các hoạt động như sau:

III / – GIẢI PHÁP KHẮC PHỤC:Giải toán đối với học sinh là một hoạt động trí tuệ khó khăn, phức tạp. Việc hình thành kĩ năng giải toán khó hơn nhiều so với kĩ năng tính vì bài

Skkn Rèn Kĩ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 4

TT Nội dung Trang 1 I. MỞ ĐẦU 1 2 1. Lí do chọn đề tài: 1 3 2. Mục đích nghiên cứu. 2 4 3. Đối tượng nghiên cứu. 2 5 4. Phương pháp nghiên cứu. 2 6 II. NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2 7 1. Cơ sở lí luận 2 8 2. Thực trạng của vấn đề 3 9 3. Các giải pháp 5 10 4. Hiệu quả của sáng kiến kinh nghiệm 13 11 III. KẾT LUẬN VÀ KIẾN NGHỊ 14 12 1. Kết luận. 14 13 2. Kiến nghị. 14 I. MỞ ĐẦU 1. LÍ DO CHỌN ĐỀ TÀI Như chúng ta đã biết, Toán học là một trong những môn học đòi hỏi sự tư duy sáng tạo cả người dạy và người học. Chính vì thế, để mỗi học sinh chiếm lĩnh được tri thức nói chung và Toán học nói riêng thì mỗi người thầy cô phải thật sự tâm huyết khơi nguồn tri thức đến mỗi học sinh. Thật vậy, tri thức trong xã hội là chìa khóa vạn năng để mở tất cả các cánh cửa của loài người. Muốn có tri thức thì mỗi người học sinh phải học và phải học thật tốt. Việc học phải trải qua quá trình nghiền ngẫm, suy luận tìm tòi mới có được. Một trong những nhiệm vụ quan trọng nhất của nhà trường hiện nay là hình thành, phát triển trí tuệ cho học sinh. Trong các môn học nói chung và môn Toán nói riêng đều có nhiệm vụ trao dồi kiến thức, rèn luyện kĩ năng góp phần tích cực vào việc đào tạo con người. Trong các môn khoa học và kĩ thuật , Toán học giữ một vai trò nổi bật. Nó còn là môn thể thao trí tuệ giúp ta rèn luyện phương pháp suy nghĩ, suy luận, học tập và giải quyết vấn đề. Toán học còn giúp ta phát huy một số đức tính quý báu như: cần cù, nhẫn nại, tự lực cánh sinh, ý chí vượt khó, yêu thích sự chính xác, khẳng định chân lí. Môn Toán là một trong những môn học bắt buộc được dạy trong chương trình Tiểu học. Cùng với môn Tiếng Việt, môn Toán có vị trí hết sức quan trọng. Các kiến thức và kĩ năng của môn Toán ở Tiểu học có nhiều ứng dụng trong cuộc sống, trong lao động cũng như trong quá trình học sinh học lên các cấp học sau này. Trong chương trình môn Toán ở Tiểu học được cấu trúc theo vòng tròn đồng tâm và chia làm hai giai đoạn. Giai đoạn một là các lớp 1, 2, 3 và giai đoạn hai là các lớp 4, 5. Vì trong chương trình Toán lớp 4 nói chung và Toán có lời văn lớp 4 nói riêng là mở đầu là mở đầu giai đoạn hai ở tiểu học. Giai đoạn này, việc giải toán có sự yêu cầu và đòi hỏi cao hơn. Đó là, học sinh phải biết phân tích bài toán hợp thành bài toán đơn, đưa những bài toán phức tạp về các bài toán đơn giản hơn mà các em đã biết cách giải. Học sinh biết vận dụng phép phân tích, tổng hợp trong quá trình tìm, xây dựng kế hoạch và thực hiện kế hoạch giải. Vì vậy, đây là cơ sở ban đầu rất quan trọng của một giai đoạn mới trong quá trình học toán ở Tiểu học nói chung và giải toán có lời văn nói riêng. Xuất phát từ thực tế dạy học, năm học 2017- 2018 tôi được nhà trường phân công phụ trách lớp 4C. Ngay từ những ngày đầu năm học, khi dạy đến các bài toán có lời văn, tôi đã nhận thấy trong lớp mình còn nhiều học sinh gặp khó khăn khi giải toán. Qua khảo sát, điều tra cụ thể, có trên 40% số học sinh trong lớp kĩ năng giải toán chưa đạt yêu cầu. Và đây cũng là điều tôi suy nghĩ rất nhiều, nếu các em giải toán còn yếu thì làm sao nắm được cách giải các bài toán dựa vào sơ đồ đoạn thẳng, dùng chữ thay số, rút về đơn vị và một số dạng toán điển hình của lớp 4 như: tìm hai số khi biết tổng hiệu, tổng tỉ, hiệu tỉ. Xuất phát từ những lí do trên, tôi mạnh dạn đưa ra và nghiên cứu đề tài “Rèn kĩ năng giải toán có lời văn cho học sinh lớp 4”. Với hi vọng sau khi nghiên cứu sẽ góp phần nâng cao trình độ của bản thân, góp phần nâng cao chất lượng dạy học mạch kiến thức giải toán có lời văn ở lớp 4. Qua sáng kiến này tôi cũng muốn nhận được nhiều ý kiến trao đổi của bạn bè đồng nghiệp, nhằm nâng cao hơn nữa chất lượng dạy học giải toán có lời văn cho học sinh nói chung và học sinh lớp 4 nói riêng. 2. MỤC ĐÍCH NGHIÊN CỨU Như chúng ta đã biết, việc giải toán có lời văn của học sinh tiểu học nói chung và học sinh lớp 4 nói riêng là việc rất khó khăn đối với các em. Chính vì thế để giúp các em nắm được cách giải của một bài toán là một việc làm cần thiết. Mặt khác, để giải được một bài toán đúng các em cần phải nắm chắc và tổng hợp nhiều kiến thức toán học. Vì vậy, mục đích của đề tài này tôi đưa ra là: + Học sinh có khả năng phân tích, tổng hợp, nhận dạng bài toán và giải tốt các bài toán có lời văn. + Biết cách giải bài toán có lời văn lớp 4 một cách linh hoạt. + Biết cách trình bày bài toán một cách khoa học, chính xác, đầy đủ. + Đối với bản thân giáo viên: tự tìm tòi, nâng cao tay nghề, đức rút kinh nghiệm trong giảng dạy, nhất là mạch kiến thức toán có lời văn lớp 4. 3. ĐỐI TƯỢNG NGHIÊN CỨU Với mục đích nghiên cứu của đề tài này, khi nghiên cứu tôi hướng tới các bài toán có lời văn trong sách giáo khoa lớp 4. Được sự nhất trí và tạo điều kiện của ban giám hiệu nhà trường và tổ chuyên môn, tôi chọn đối tượng nghiên cứu là lớp 4C trường Tiểu học Hoàng Hoa Thám do tôi phụ trách. 4. PHƯƠNG PHÁP NGHIÊN CỨU Trong đề tài này tôi sử dụng một số phương pháp nghiên cứu sau: + Nghiên cứu trên cơ sở lí luận. + Phương pháp điều tra khảo sát thực tế. + Phương pháp thống kê dữ liệu. + Phương pháp trò chuyện, quan sát, điều tra, phỏng vấn. + Phương pháp thực nghiệm sư phạm, trao đổi với đồng nghiệp. + Phương pháp nghiên cứu qua sản phẩm của học sinh. II. NỘI DUNG 1. CƠ SỞ LÍ LUẬN Trong các môn học ở tiểu học, cùng với môn TV, môn Toán có vị trí hết sức quan trọng. Các kiến thức, kĩ năng của môn Toán ở tiểu học có nhiều ứng dụng trong đời sống; chúng rất cần thiết cho người lao động, rất cần thiết để học tốt các môn học khác ở Tiểu học và chuẩn bị cho việc học tốt môn Toán ở bậc trung học. Mặt khác, giải toán có lời văn góp phần quan trọng vào việc rèn luyện cho HS năng lực tư duy và đức tính tốt của con người lao động mới, hoạt động trí tuệ trong việc giải toán góp phần giáo dục các em ý chí vượt khó, đức tính cẩn thận, chu đáo làm việc có kế hoạch, thói quen xem xét có căn cứ, thói quen tự kiểm tra kết quả công việc mình làm, óc độc lập suy nghĩ, óc sáng tạo vv… Song đối với học sinh lớp 4, các em còn hiếu động, ham chơi, chưa ý thức được tầm quan trọng của việc học nên thường lơ là, xem thường việc học toán. Chính vì thế, việc rèn kĩ năng giải toán có lời văn là việc làm cần thiết, từ đó học sinh có kiến thức toán học một cách tốt hơn. * Nội dung chương trình Toán lớp 4 gồm : – Ôn tập về số tự nhiên. Bảng đơn vị đo khối lượng. – Bốn phép tính với só tự nhiên. Hình học. – Dấu hiệu chí hết cho 2,5,9,3. Giới thiệu hình bình hành. – Phân số – các phép tính với phân số. Giới thiệu hình thoi. – Ôn tập các nội dung trên. 2. THỰC TRẠNG CỦA VẤN ĐỀ. 2.1. Thực trạng chung Như chúng ta đã biết, chương trình toán lớp 4 là mở đầu cho giai đoạn hai của toán Tiểu học. Chính vì thế, lượng toán giải chiếm số lượng tương đối lớn, trong đó đa số là dạng toán điển hình. Mức độ khó của các bài toán giải cũng đã được nâng lên, chủ yếu là các bài toán hợp. Chính vì thế, để giải được bài toán đòi hỏi học sinh phải sử dụng nhiều kiến thức đã học để giải quyết vấn đề. Đứng trước tình hình đó, nhiều học sinh đã có biểu hiện không hứng thú với việc giải toán. Mặt khác, do đặc điểm tâm sinh lí lứa tuổi của các em thường vội vàng, hấp tấp hay đơn giản hóa vấn đề nên đôi khi chưa hiểu kĩ đề, làm bài chưa cẩn thận đã nộp bài. Từ đó dẫn đến bài làm còn nhiều khi bị sai, thiếu sót. Đối với giáo viên còn phải dạy nhiều môn học, số lượng học sinh trong một lớp đông, khả năng tiếp thu của các em không đồng đều, có sự chênh lệch nhiều. Chính vì thế, việc truyền tải kiến thức toán học nói chung và giải toán có lời văn nói riêng đến từng học sinh còn có phần hạn chế. Đối với các em tiếp thu chậm thì việc nắm kiến thức mới và giải các bài toán có lời văn là một việc vô cùng khó khăn. Bên cạnh đó, trong lớp còn có học sinh tâm lí không ổn định, một số em có hoàn cảnh gia đình khó khăn, bố mẹ chưa quan tâm đến việc học hành của con cái. Chính vì thế mà đôi khi, chưa có sự thống nhất cao giữa giáo viên và cha mẹ học sinh. Từ đó, hiệu quả học tập của các em chưa cao, nhất là việc giải toán có lời văn lại là sự cản trở lớn trong việc hoc tập của các em. 2.2.Thực trạng của trường, lớp Trường Tiểu học Hoàng Hoa Thám là ngôi trường nằm ở trung tâm thành phố Thanh Hóa. Bản thân tôi mới về nhận công tác được gần ba năm nhưng tôi nhận thấy, đây là ngôi trường luôn được sự quan tâm của các cấp lãnh đạo địa phương. Trường có một tập thể cán bộ giáo viên với nhiều bề dày kinh nghiệm, có trình độ chuẩn và trên chuẩn luôn tâm huyết với nghề. Cùng với đó là ban giám hiệu luôn quan tâm tạo điều kiện để giáo viên hoàn thành tốt nhiệm vụ được giao. Chính vì thế mà ngôi trường đã đón nhận gần một nghìn học sinh. Đây là ngôi trường mà các bậc phụ huynh luôn đặt niềm tin cao, để gửi gắm cho em mình về đây học tập. Bên cạnh những mặt thuận lợi trên thì bản thân tôi còn nhận thấy một số mặt khó khăn hạn chế mà trường và lớp tôi gặp phải đó là: khuôn viên trong trường đang hẹp so với số lượng học sinh, diện tích phòng học chưa đảm bảo, số lượng học sinh trong một lớp đông. Chính vì thế mà phần nào đã ảnh hưởng đến việc học tập, vui chơi và sinh hoạt của các em. Còn về phần lớp4C do tôi chủ nhiệm tổng số học sinh là 42 em, trong đó có 21 em nam và 21 em nữ. Nhìn chung các em ngoan, chịu khó học bài và làm bài, phụ huynh cũng trang bị đầy đủ sách vở và đồ dùng học tập. Song từ khi nhận lớp, tôi đã nhận thấy một số em trong lớp còn hiếu động, chưa tập trung tiếp thu bài, khả năng tiếp thu còn chậm, có cả học sinh tâm lí không bình thường.Phụ huynh đa số là buôn bán tự do, một số gia đình có hoàn cảnh khó khăn nên chưa sát sao đến việc học tập của con em mình. Chính vì thế, một số em đã có tính ỉ lại, chưa có sự chịu khó, vươn lên để học tập. Đặc biệt việc nắm kiến thức giải toán có lời văn đối với các em lại càng hạn chế hơn. Bên cạnh đó khả năng tiếp thu các kiến thức của các em không đồng đều. Đối với các em tiếp thu tốt thì việc vận dụng linh hoạt các kiến thức đã học vào từng bài cụ thể là rất tốt. Song đối với các em tiếp thu chậm, khả năng vận dụng kiến thức tổng hợp vào từng bài cụ thể là hết sức khó khăn. Do đó, đối với giáo viên việc vừa dạy kiến thức mới, vừa ôn tập củng cố và dẫn dắt học sinh giải một bài toán là việc làm thường xuyên và cần thiết. Ngay từ khi nhận lớp, tôi đã tiến hành khảo sát chất lượng của lớp để nắm bắt và phân loại đối tượng học sinh trong lớp cụ thể đề khảo sát là: Câu 1: Lớp 4D có 20 học sinh nam và 12 học sinh nữ. Hỏi số học sinh nữ ít hơn số học sinh nam là bao nhiêu em? Câu 2: Một xe ô tô chuyến trước chở được 3 tấn muối, chuyến sau chở nhiều hơn chuyến trước 3 tạ. Hỏi cả hai chuyến chở được bao nhiêu tạ muối? Câu 3: Lớp 4A trồng được 36 cây, lớp 4B trồng nhiều hơn lớp 4A 6 cây. Hỏi trung bình mỗi lớp trồng được bao nhiêu cây? Kết quả khảo sát thu được là: Tổng số Học sinh Giải đúng và nhanh SL TL Giải đúng nhưng còn chậm SL TL Giải chưa đúng SL TL 42 14 33,3 16 38,2 12 28,5 3. CÁC GIẢI PHÁP 3.1. Rèn cho học sinh các kiến thức và kĩ năng toán học, biết vận dụng linh hoạt các kiến thức và kĩ năng đó vào việc giải toán có lời văn. Để giải bài toán này thì học sinh cần vận dụng hai mạch kiến thức để giải. Đó là tính tổng số cân nặng của 4 em và lấy tổng chia cho 4 để ra trung bình số cân nặng của mỗi em. Song đối với những em tiếp thu chậm, chỉ tính số cân nặng của 4 em là xong. Ví dụ: Trung bình mỗi em cân nặng là: ( 36 + 38 + 40 + 34) = 148 ( kg) – Muốn tìm trung bình mỗi em nặng bao nhiêu trước hết ta phải làm gì? ( Tính tổng số tuổi của 4 em) – Để tìm trung bình cộng số tuổi của 4 em ta làm như thế nào? ( Ta lấy tổng số tuổi chia cho 4) Qua đó, học sinh sẽ hiểu rõ hơn, để giải quyết bài toán này cần phải vận dụng hai mạch kiến thức đã học. Với bài toán khác: Một hình chữ nhật có nửa chu vi là 35m, chiều dài bằng 3 Chiều rộng. Tính diện tích hình chữ nhật đó? 2 Để học sinh giải tốt được bài toán này thì giáo viên cần giúp học sinh nắm tổng hợp các kiến thức. Khi phân tích đề giáo viên có thể biểu diễn bằng sơ đồ đoạn thẳng để học sinh dễ dàng nhận ra. Chiều dài: 35m Chiều rộng: Nhìn vào sơ đồ, học sinh có thể thấy nửa chu vi hình chữ nhật chính là tổng của một chiều dài và một chiều rộng và là tổng của hai số. Đến đây học sinh dễ dàng nhận ra đây là dạng toán “ Tìm hai số khi biết tổng và tỉ của hai số đó”. Như vậy, để tìm được chiều dài, chiều rộng của hình chữ nhật học sinh phải vận dụng cách giải dạng toán trên. Khi tìm được chiều dài, chiều rộng thì một kiến thức cần củng cố cho học sinh là cách tính diện tích hình chữ nhật. 3.2. Rèn luyện qua các bước giải để học sinh có kĩ năng giải bài toán Như chúng ta đã biết, để giải được bài toán, ta phải tiến hành qua một số bước cụ thể như sau: Bước 1: Rèn kĩ năng đọc và phân tích bài toán – Kĩ năng đọc là một trong các kĩ năng được quan tâm chú trọng ngay từ khi các em vào học lớp 1. Kĩ năng này vẫn được rèn luyện cho các em ở các lớp trên thông qua môn tập đọc và một số môn khác. Tuy là học sinh lớp 4 nhưng kĩ năng đọc của một số em chưa tốt. – Với những em đọc chưa tốt thì tôi luôn dành nhiều thời gian hơn cho các em được rèn kĩ năng đọc, không những trong giờ tập đọc mà còn trong cả tiết học khác như: Lịch Sử, Địa Lý, Khoa Học…Không những các em ngắt nghỉ chưa đúng mà việc đọc bỏ từ, thiếu từ thì sẽ dẫn đến các em hiểu sai đề. Ví dụ: với đề toán “ Cả hai lớp 4A và 4B trồng được 600 cây. Lớp 4A trồng được ít hơn lớp 4B là 500 cây. Hỏi mỗi lớp trồng được bao nhiêu cây?” ( Trang 47- SGK Toán 4). Nếu học sinh đọc không cẩn thận sẽ bỏ đi từ “ ít” thì cách hiểu bài toán lại hoàn toàn ngược lại. Chính vì thế, bước đầu tiên phải giúp học sinh đọc đề chính xác. Mặt khác, các em đọc đề tốt cũng chưa hẳn các em hiểu đề tốt. Do đó, khâu phân tích đề cũng rất quan trọng. Trong bài toán, đôi khi người ta sử dụng bằng các ngôn ngữ tự nhiên như “ bay đi”, “ cho đi”, “ ăn đi”… có nghĩa là số lượng đã được bớt đi. Hay các từ “ đổ đều”, có nghĩa là chia đều. Hay với những dạng toán tổng hiệu, tổng tỉ, hiệu tỉ. Đôi khi trong bài toán người ta không nói rõ đâu là tổng, đâu là hiệu và đâu là tỉ. Song qua việc phân tích đề bài ta phải xác định ra đâu là các dữ kiện bài toán đã cho tương ứng với từng dạng toán. Có bài toán dạng tổng tỉ như sau: Ví dụ: “Có 10 túi gạo nếp và 12 túi gạo tẻ cân nặng tất cả là 220kg. Biết rằng số gạo trong mỗi túi đều cân nặng bằng nhau. Hỏi có bao nhiêu kg gạo mỗi loại?” ( Trang 152-SGK Toán 4). Trong bài toán này các em phải hiểu được “ tổng” của hai số được thay bằng cụm từ “ nặng tất cả”, tỉ số của hai số đó chính là số túi gạo nếp và số túi gạo tẻ. Chính vì thế, trước một bài toán các em phải biết phân tích đề và đưa bài toán về các dạng toán quen thuộc để giải. Mặt khác, trong cuộc sống hằng ngày cũng như trong học toán có nhiều từ gần như là “ mặc định” trong đầu các em. Ví dụ các em cứ thấy từ “ nhiều hơn” là nghĩ đến phép cộng và từ “ ít hơn” là nghĩ đến phép trừ. Nên khi gặp một bài toán có các từ như thế thì các em dễ giải sai. Ví dụ bài toán: Trong đợt phát động trồng cây, lớp 4A trồng được 32 cây, lớp 4B trồng được nhiều hơn lớp 4A là 3 cây nhưng ít hơn lớp 4C là 6 cây. Hỏi trung bình mỗi lớp trồng được bao nhiêu cây? Có một số học sinh đã trình bày bài giải như sau: Lớp 4B trồng được số cây là: 32 + 6 = 38 ( cây) Lớp 4C trồng được số cây là: 32 – 6 = 26 ( cây) Như vậy, các em đã bị ám bởi từ “ít hơn”, từ này đã làm lạc hướng học sinh nên các em đã chọn phép tính trừ trong phép tính thứ hai, trong khi phép tính đúng là phép cộng. Thật vậy, để giúp học sinh đọc kĩ bài toán thì tôi luôn rèn cho học sinh kĩ năng đọc, đồng thời để học sinh phân tích, xác định được dạng toán thì cần phải giúp học sinh hiểu đề. Như chúng ta đã biết, mỗi đề toán thường có hai bộ phận, bộ phận thứ nhất là những điều đã cho, bộ phận thứ hai là những điều chúng ta phải tìm. Muốn giải bất kì bài toán nào thì chúng ta cũng phải xác định đúng hai bộ phận đó. Chúng ta cần giúp học sinh tập trung vào những từ quan trọng gọi là từ khóa của đề toán. Từ nào chưa hiểu thì phải tìm hiểu ý nghĩa của nó. Cần giúp học sinh phân biệt rõ những gì thuộc về bản chất của đề toán, những gì không thuộc về bản chất của đề toán, để từ đó hướng sự chú ý của mình vào những chỗ cần thiết. Đồng thời khi giải toán tôi yêu cầu học sinh đọc đề nhiều lần, rồi hướng học sinh phân tích xem bài toán cho ta biết gì? Hỏi ta điều gì? Từ đó học sinh phân biệt được các yếu tố cơ bản của bài toán có lời văn. Những dữ kiện ( cái đã cho), những ẩn số (cái chưa biết, cần tìm), những điều kiện ( quan hệ giữa các điều kiện và ẩn số). Khi học sinh đọc đề toán mà giáo viên nhận thấy từ nào trong đề bài mà học sinh có khả năng không hiểu thì bằng nhiều cách khác nhau để giúp học sinh hiểu từ đó. Ví dụ, với bài toán đã nêu ở trên, tôi nhận thấy rằng, nếu để các em tự lực thì sẽ có nhiều em lựa chọn sai phép tính ở lời giải thứ hai. Chính vì thế, khi học sinh đọc đề và phân tích đề, tôi cho học sinh giải thích xem là em hiểu “ Lớp 4B trồng được nhiều hơn lớp 4A là 3 cây nhưng ít hơn lớp 4C là 6 cây có nghĩa là như thế nào?” Từ các lí do nêu trên cho chúng ta thấy việc đọc đề, phân tích và hiểu đề là một trong những việc làm cần thiết để giải bài toán có lời văn. Bước 2: Tóm tắt đề và lập kế hoạch giải bài toán Thật vậy, sau bước đọc đề và phân tích đề thì

Skkn: Nâng Cao Chất Lượng Giải Toán Có Lời Văn Lớp 1

Nâng cao chất lượng giảng dạymạch kiến thức “Giải toán có lời văn”Ở lớp Một…..***…..PHẦN MỞ ĐẦU I-Bối cảnh của đề tài: Trong các môn khoa học và kỹ thuật, toán học giữ một vị trí nổi bật. Nó có tác dụng lớn đối với kỹ thuật, với sản xuất và chiến đấu. Nó là một môn thể thao của trí tuệ, giúp chúng ta nhiều trong việc rèn luyện phương pháp suy nghĩ, phương pháp suy luận, phương pháp học tập, phương pháp giải quyết các vấn đề, giúp chúng ta rèn luyện trí thông minh sáng tạo. Nó còn giúp chúng ta rèn luyện nhiều đức tính quý báu khác như: Cần cù và nhẫn nại, tự lực cánh sinh, ý chí vượt khó, yêu thích chính xác, ham chuộng chân lý.Để đáp ứng những yêu cầu mà xã hội đặt ra, Giáo dục và đào tạo phải có những cải tiến, điều chỉnh, phải thay đổi về nội dung chương trình, đổi mới phương pháp giảng dạy cho phù hợp.Phương pháp giáo dục phổ thông phải phát huy tính tích cực, tự giác , chủ động sáng tạo của học sinh; phù hợp với đặc điểm của từng lớp học, môn học; bồi dưỡng phương pháp tự học, rèn luyện kỹ năng vận dụng kiến thức vào thực tiễn, tác động đến tình cảm, đem lại niềm vui, hứng thú học tập cho học sinh. II/ Lý do chọn đề tài: Đối với môn Toán lớp 1, môn học có vị trí nền tảng, là cái gốc, là điểm xuất phát của cả một bộ môn khoa học. Môn Toán mở đường cho các em đi vào thế giới kỳ diệu của toán học, giúp các em biết vận dụng những kiến thức đã học vào cuộc sống hằng ngày một cách thực tế.Qua thực tế giảng dạy nhiều năm tôi nhận thấy học sinh còn nhiều khiếm khuyết trong giải toán.Đặc biệt là giải toán có lời văn. Từ cơ sở lý luận và thực tiễn, qua thực tế giảng dạy tôi xin mạnh dạn đề xuất một số kinh nghiệm:”Nâng cao chất lượng giảng dạy mạch kiến thức”Giải toán có lời văn”ở lớp Một” III/Phạm vi nghiên cứu: Đối với mạch kiến thức :”Giải toán có lời văn”, là một trong những mạch kiến thức cơ bản xuyên suốt chương trình Toán cấp tiểu học. Thông qua giải toán có lời văn, các em được phát triển trí tuệ, được rèn luyện kỹ năng tổng hợp: đọc, viết, diễn đạt, trình bày, tính toán. Toán có lời văn là mạch kiến thức tổng hợp của các mạch kiến thức toán học, giải toán có lời văn các em sẽ được giải các loại toán về số học, các yếu tố đại số, các yếu tố hình học và đo đại lượng. Toán có lời văn là chiếc cầu nối giữa toán học và thực tế đời sống, giữa toán học với các môn học khác. Đối với đề tài “Giải toán có lời văn” tôi chỉ giới hạn ở chương trình lớp Một. IV/ Điểm mới trong kết quả nghiên cứu: Được áp dụng rộng rãi trong chương trình thay sách giáo khoa mới hiện nay,giáo viên dễ dàng áp dụng vào các dạng toán có lời văn ở lớp Một.PHẦN NỘI DUNG I – Cơ sở lý luận: Trong các mạch kiến thức toán ở chương trình toán Tiểu học thì mạch kiến thức “Giải toán có lời văn” là mạch kiến thức khó khăn nhất đối với học sinh, và càng khó khăn hơn đối với học sinh lớp Một. Bởi vì đối với lớp Một: Vốn từ, vốn hiểu biết, khả năng đọc hiểu, khả năng tư duy lôgic của các em còn rất hạn chế. Một nét nổi bật hiện nay là nói chung học sinh chưa biết cách tự học, chưa học tập một cách tích cực. Nhiều khi với một bài toán có lời văn các em có thể đặt và tính đúng phép tính của bài nhưng không thể trả lời hoặc lý giải là tại sao các em lại có được phép tính như vậy. Thực tế hiện nay cho thấy, các em thực sự lúng túng khi giải bài toán có lời văn. Một số em chưa biết tóm tắt bài toán, chưa biết phân tích đề toán để tìm ra đường lối giải, chưa biết tổng hợp để trình bày bài giải, diễn đạt vụng về, thiếu lôgic. Ngôn ngữ toán học còn rất hạn chế, kỹ năng tính toán, trình bày thiếu chính xác, thiếu khoa học, chưa có biện pháp, phương pháp học toán, học toán và giải toán một cách máy móc nặng về dập khuôn, bắt chước. II/ Thực trạng của vấn đề: 1.Kết quả khảo sát tại lớp 1D trường Tiểu học Phú Xuân (Năm học:2010-2011) Đề bài: (Bài tập 3 SGK Toán 1 trang 155)Lớp 1A trồng được