Nguyễn Trọng Luật – BM Điện Tử – Khoa Điện-Điện Tử – ĐH Bách Khoa TP. HCM BÀI TP CÓ LI GII – PHN 1 MÔN K THUT S B môn in t i H c Bách Khoa chúng tôi Câu 1 Cho 3 s A, B, và C trong h thng s c s r, có các giá tr: A = 35, B = 62, C = 141. Hãy xác nh giá tr c s r, nu ta có A + B = C. 2 nh ngha giá tr: A = 3r + 5, B = 6r +2, C = r + 4r + 1 2 A + B = C (3r + 5) + (6r + 2) = r + 4r + 1 2 PT bc 2: r – 5r – 6 = 0 r = 6 và r = – 1 (loi) H thng c s 6 : tuy nhiên k t qu cng không hp lý vì B = 62: không ph i s c s 6 Câu 2 S dng tiên và nh lý: a. Chng minh ng thc: A B + A C + B C + A B C = A C VT: A B + A C + B C + A B C = B ( A + A C) + A C + B C = B ( A + C ) + A C + B C ; x + x y = x + y = A B + B C + A C + B C = A B + A C + C ( B + B ) = A B + A C + C = A B + A + C = A ( B + 1) + C = A + C = A C : VP b. Cho A B = 0 và A + B = 1, chng minh ng thc A C + A B + B C = B + C VT: A C + A B + B C = (A + B) C + A B ; A + B = 1 = C + A B = C + A B + A B ; A B = 0 = C + ( A + A ) B = B + C : VP 1 Nguyễn Trọng Luật – BM Điện Tử – Khoa Điện-Điện Tử – ĐH Bách Khoa TP. HCM Câu 3 a. Cho hàm F(A, B, C) có s logic như hình v. Xác nh biu thc ca hàm F(A, B, C). A B . F C . Chng minh F có th thc hin ch bng 1 cng logic duy nht. F = (A + B) C ⊕⊕ B C = ((A + B) C) (B C) + ((A + B) C) (B C) ⊕⊕ = (A + B) B C + ((A + B) + C) (B + C) = A B C + B C + (A B + C) ( B + C) = B C (A + 1) + A B + B C + A BC + C = B C + A B + C (B + A B + 1) = A B + B C + C = A B + B + C = A + B + C : Cng OR b. Cho 3 hàm F (A, B, C), G (A, B, C), và H (A, B, C) có quan h logic vi nhau: F = G ⊕⊕ H ⊕⊕ Vi hàm F (A, B, C) = (0, 2, 5) và G (A, B, C)= (0, 1, 5, 7). Hãy xác nh d ng hoc ca hàm H (A, B, C) (1,0 im) A B C F G H F = G ⊕⊕ H = G H + G H = G ⊕⊕ H ⊕⊕ ⊕⊕ 0 0 0 0 1 0 F = 1 khi G ging H 0 0 1 1 1 1 F = 0 khi G khác H 0 1 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 H (A, B, C) = (1, 2, 7) = ∏∏ (0, 3, 4, 5, 6) ∏∏ Câu 4 Rút g n các hàm sau bng bìa Karnaugh (chú thích các liên k t) (3, 4, 11, 12) a. F1 (W, X, Y, Z) = theo d ng P.O.S (tích các tng) F1 WX YZ 00 01 11 10 (X + Y) 00 0 0 F1 = ( X + Y ) ( X + Z ) ( Y + Z ) 01 0 0 0 0 (X + Z) Hoc F1 = ( X + Z ) ( Y + Z ) ( X + Y ) 11 0 0 (Y + Z) 10 0 0 0 0 2 Nguyễn Trọng Luật – BM Điện Tử – Khoa Điện-Điện Tử – ĐH Bách Khoa TP. HCM b. F2 (A, B, C, D, E) = (1, 3, 5, 6, 7, 8, 12, 17, 18, 19, 21, 22, 24) + d (2, 9, 10, 11, 13, 16, 23, 28, 29) F2 A 0 1 BC 00 01 11 10 10 11 01 00 DE 00 1 1 1 X X B D E 01 1 1 X X X 1 1 B E F2 = B D E + B D + B E 11 1 1 X X 1 B D 10 X 1 X 1 1 c. Thc hin hàm F2 ã rút g n câu b ch bng IC Decoder 74138 và 1 cng logic F2 (B, D, E) = B D E + B D + B E = ( 1, 2, 3, 4) IC 74138 B C (MSB) Y0 D B Y1 E A (LSB) Y2 F2 Y3 Y4 1 G1 Y5 0 G2A Y6 0 G2B Y7 Câu 5 A B C D F A B C D F Ch s dng 3 b MUX 4 →→ 1, →→ 0 0 0 0 IN0 0 1 0 1 IN5 hãy thc hin b MUX 10 →→ 1 0 0 0 1 IN1 0 1 1 0 IN6 →→ 0 0 1 0 IN2 0 1 1 1 IN7 có b ng hot ng: 0 0 1 1 IN3 1 0 0 0 IN8 0 1 0 0 IN4 1 0 0 1 IN9 Sp x p li b ng hot ng: MUX 4 1 A D B C F IN0 D0 0 0 0 0 IN0 IN2 D1 0 0 0 1 IN2 IN4 D2 Y 0 0 1 0 IN4 IN6 D3 MUX 4 1 0 0 1 1 IN6 C S0 (lsb) D0 0 1 0 0 IN1 B S1 0 1 0 1 IN3 D1 MUX 4 1 0 1 1 0 IN5 IN8 D2 Y F 0 1 1 1 IN7 IN1 D0 IN9 D3 1 0 0 0 IN8 IN3 D1 D S0 (lsb) 1 1 0 0 IN9 IN5 D2 Y A S1 IN7 D3 Ngõ vào IN8 và IN9 c chn C S0 (lsb) ch ph thuc vào A và D B S1 3 Nguyễn Trọng Luật – BM Điện Tử – Khoa Điện-Điện Tử – ĐH Bách Khoa TP. HCM Câu 6 Mt hàng gh gm 4 chic gh ư!c xp theo s như hình v: G1 G2 G3 G4 Nu chic gh có ngư”i ngi thì Gi = 1, ngư!c l i nu còn trng thì bng Gi = 0 (i = 1, 2, 3, 4). Hàm F (G1, G2, G3, G4) có giá tr 1 ch khi có ít nht 2 gh k nhau còn trng trong hàng. Hãy thc hin hàm F ch bng các cng NOR 2 ngõ vào. G1 G2 F G G Lp b ng hot ng: 1 2 GG 3 4 00 01 11 10 G1 G2 G3 G4 F 00 1 1 1 1 0 0 0 0 1 G3 G4 0 0 0 1 1 01 1 0 0 1 G2 G3 0 0 1 0 1 0 0 1 1 1 11 1 0 0 0 0 1 0 0 1 10 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 F = G1 G2 + G2 G3 + G3 G4 1 0 0 0 1 1 0 0 1 1 = G1 + G2 + G2 + G3 + G3 + G4 1 0 1 0 0 1 0 1 1 0 G1 1 1 0 0 1 F 1 1 0 1 0 G2 1 1 1 0 0 1 1 1 1 0 G3 G4 4
Top 10 # Toan 7 On Tap Chuong 1 So Hoc Loi Giai Hay Xem Nhiều Nhất, Mới Nhất 3/2023 # Top Trend
Tổng hợp các bài viết thuộc chủ đề Toan 7 On Tap Chuong 1 So Hoc Loi Giai Hay xem nhiều nhất, được cập nhật mới nhất trên website Caffebenevietnam.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung Toan 7 On Tap Chuong 1 So Hoc Loi Giai Hay để bạn nhận được thông tin nhanh chóng và chính xác nhất.
Giai Cung Em Hoc Toan Lop 5 Tap 2 Trang 31 32 33 34 35
Giai Cung Em Hoc Toan Lop 5 Tap 2 Trang 31 32 33 34 35, Bài Giải Cùng Em Học Toán Lớp 5 Tập 1 Trang 60, Giải Cùng Em Học Toán 5 Tập 2 Trang 16, Giải Bài 4 Trang 56 Sách Cùng Em Học Toán Lop 3 Tập 2, Bài 1 Trang 12 Cùng Em Học Toán Lớp 5 Tập Hai, Cùng Em Học Toan Lop 3 Trang 25, Cung Em Hoc Toan Lop 5 Tap 2 Trang 56, Cung Em Hoc Toan Lop 5 Tap 2 Trang 78, Cùng Em Học Toán Lớp 5 Tập 1 Trang 65, Cung Em Hoc Toan Trang 22, Bài 4 Trang 6 Sách Cung Em Học Toan Lớp 5 Tập 2, Nghiên Cứu Thực Trạng Cấp Cứu, Đề Xuất Các Giải Pháp Cũng Cố Nâng Cao Chất Lượng Cấp Cứu Tại Khoa Cấ, Nghiên Cứu Thực Trạng Cấp Cứu, Đề Xuất Các Giải Pháp Cũng Cố Nâng Cao Chất Lượng Cấp Cứu Tại Khoa Cấ, Nghiên Cứu Thực Trạng Cấp Cứu, Đề Xuất Các Giải Pháp Cũng Cố Nâng Cao Chất Lượng Cấp Cứu Tại Khoa Cấ, Bài Giải Cùng Em Học Toán Lớp 3 Tập 1, Bài Giải Cùng Em Học Toán Lớp 3, Bài Giải Cùng Em Học Toán Lớp 3 Tập 2, Bài Giải Cùng Em Học Toán Lớp 5 Tập 1, Giải Bài Tập Toán Góc ở Tâm Số Đo Cung, Bài Giải Cùng Em Học Toán Lớp 5 Tập 2, Bai Giai Cung Em Hoc Toan 5 Tap 2, Giải Cùng Em Học Toán Lớp 5 Tập 2, Giai Cung Em Học Toan Lớp 5 Tạp 1, Giai Cung Em Hoc Toan Lop 5, Giải Cùng Em Học Toán Lớp 3 Tập 2, Giải Vở Cùng Em Học Toán Lớp 5 Tập 2 Tuần 28, Giai Cung Em Hoc Toan Tap 2 Tuan 31, Củng Cố Và ôn Luyện Toán 9 Giải, Giai Cung Em Hoc Toan Lop5 Tap 2, Bai Giai Cung Em Hoc Toan Lop 5 Tap 2 Nha Xuat Ban Ha Noi, Bai-giai-cung-em-hoc-toan-5-tap-2 Trang164, Giai Tiet 1 Cung Em Hoc Toan Tuan 27, Giải Bài Tập 3 Trang 156 Toán 11, Giải Bài Tập 2 Trang 30 Toán 12, Giải Bài Tập 1 Trang 112 Toán 12, Giải Bài Toán Lớp 5 Trang 99, Giải Bài Tập 2 Trang 112 Toán 12, Giải Bài Tập 5 Trang 142 Toán 11, Giải Bài Tập 1 Trang 121 Toán 12, Giải Bài Tập 2 Trang 28 Toán 11, Giải Bài Tập 1 Trang 140 Toán 11, Giải Bài Tập 5 Trang 37 Toán 9, Giải Bài Tập 11 Trang 72 Sgk Toán 9 Tập 2, Giải Bài Tập 2 Trang 18 Toán 12, Giải Bài Tập 7 Trang 122 Toán 11, Giải Bài Tập Toán Lớp 4 Trang 114, Giải Bài Tập Toán Lớp 4 Trang 116, Giải Bài 47 Sgk Toán 8 Tập 2 Trang 84, Giải Bài Tập Toán Lớp 4 Trang 19, Giải Bài Tập 2 Trang 105 Toán 10, Giải Bài Tập 2 Trang 94 Toán 10, Giải Bài Tập 56 Trang 89 Toán 9, Giải Bài Toán Lớp 6 Trang 87, Giải Bài Tập 3 Trang 132 Toán 11, Giải Bài Tập 2 Trang 133 Toán 12, Giải Bài Tập 3 Trang 113 Toán 12, Giải Bài Tập 2 Trang 10 Toán 12, Giải Bài Tập Toán Lớp 6 Trang 95, Giải Bài Tập Toán Lớp 6 Trang 97, Giải Bài Tập 9 Trang 39 Toán 9 Tập 2, Giải Bài Tập 4 Trang 112 Toán 12, Giải Bài Toán Lớp 3 Trang 101, Giải Bài Toán Lớp 3 Trang 104, Giải Bài Toán Lớp 4 Trang 114, Giải Bài Toán Lớp 3 Trang 105, Giải Bài Toán Lớp 3 Trang 106, Giải Bài Toán Lớp 3 Trang 114, Giải Bài Toán Lớp 3 Trang 98, Giải Bài Tập 6 Trang 133 Toán 11, Giải Bài Toán Lớp 4 Trang 100, Giải Bài Toán Lớp 4 Trang 108, Giải Bài Tập 58 Sgk Toán 8 Trang 92, Giải Bài Toán Lớp 4 Trang 110, Giải Toán 9 Sgk Tập 1 Trang 6, Giải Toán 9 Sgk Tập 1 Trang 7, Giải Bài Toán Lớp 4 Trang 116, Giải Bài Tập 70 Trang 141 Toán 7, Giải Bài Tập 1 Trang 100 Toán 12, Giải Bài Toán Lớp 5 Trang 102, Giải Bài Toán Lớp 5 Trang 95, Giải Bài Tập 4 Trang 138 Toán 12, Giải Bài Toán Lớp 5 Trang 111, Giải Bài Toán Lớp 5 Trang 100, Giải Bài Tập 8 Trang 40 Toán 8 Tập 2, Giải Bài Tập 4 Trang 105 Toán 10, Giải Bài Toán Lớp 5 Trang 110, Giải Bài Toán Lớp 5 Trang 106, Giải Toán 9 Trang 7, Giải Bài Toán Lớp 4 Trang 117, Giải Bài Tập 7 Trang 143 Toán 11, Giải Bài Toán Lớp 4 Trang 112, Giải Bài Tập 1 Trang 18 Toán 12, Giải Bài Tập 5 Trang 92 Toán 11, Giải Bài Tập 5 Trang 156 Toán 11, Giải Bài Tập 7 Trang 127 Toán 12, Giải Toán 12 Bài 1 Trang 121, Toán 12 Giải Bài Tập Trang 89, Giải Bài Tập 3 Toán 12 Trang 10, Giải Bài Tập 3 Trang 121 Toán 11, Toán 12 Giải Bài Tập Trang 43,
Giai Cung Em Hoc Toan Lop 5 Tap 2 Trang 31 32 33 34 35, Bài Giải Cùng Em Học Toán Lớp 5 Tập 1 Trang 60, Giải Cùng Em Học Toán 5 Tập 2 Trang 16, Giải Bài 4 Trang 56 Sách Cùng Em Học Toán Lop 3 Tập 2, Bài 1 Trang 12 Cùng Em Học Toán Lớp 5 Tập Hai, Cùng Em Học Toan Lop 3 Trang 25, Cung Em Hoc Toan Lop 5 Tap 2 Trang 56, Cung Em Hoc Toan Lop 5 Tap 2 Trang 78, Cùng Em Học Toán Lớp 5 Tập 1 Trang 65, Cung Em Hoc Toan Trang 22, Bài 4 Trang 6 Sách Cung Em Học Toan Lớp 5 Tập 2, Nghiên Cứu Thực Trạng Cấp Cứu, Đề Xuất Các Giải Pháp Cũng Cố Nâng Cao Chất Lượng Cấp Cứu Tại Khoa Cấ, Nghiên Cứu Thực Trạng Cấp Cứu, Đề Xuất Các Giải Pháp Cũng Cố Nâng Cao Chất Lượng Cấp Cứu Tại Khoa Cấ, Nghiên Cứu Thực Trạng Cấp Cứu, Đề Xuất Các Giải Pháp Cũng Cố Nâng Cao Chất Lượng Cấp Cứu Tại Khoa Cấ, Bài Giải Cùng Em Học Toán Lớp 3 Tập 1, Bài Giải Cùng Em Học Toán Lớp 3, Bài Giải Cùng Em Học Toán Lớp 3 Tập 2, Bài Giải Cùng Em Học Toán Lớp 5 Tập 1, Giải Bài Tập Toán Góc ở Tâm Số Đo Cung, Bài Giải Cùng Em Học Toán Lớp 5 Tập 2, Bai Giai Cung Em Hoc Toan 5 Tap 2, Giải Cùng Em Học Toán Lớp 5 Tập 2, Giai Cung Em Học Toan Lớp 5 Tạp 1, Giai Cung Em Hoc Toan Lop 5, Giải Cùng Em Học Toán Lớp 3 Tập 2, Giải Vở Cùng Em Học Toán Lớp 5 Tập 2 Tuần 28, Giai Cung Em Hoc Toan Tap 2 Tuan 31, Củng Cố Và ôn Luyện Toán 9 Giải, Giai Cung Em Hoc Toan Lop5 Tap 2, Bai Giai Cung Em Hoc Toan Lop 5 Tap 2 Nha Xuat Ban Ha Noi, Bai-giai-cung-em-hoc-toan-5-tap-2 Trang164, Giai Tiet 1 Cung Em Hoc Toan Tuan 27, Giải Bài Tập 3 Trang 156 Toán 11, Giải Bài Tập 2 Trang 30 Toán 12, Giải Bài Tập 1 Trang 112 Toán 12, Giải Bài Toán Lớp 5 Trang 99, Giải Bài Tập 2 Trang 112 Toán 12, Giải Bài Tập 5 Trang 142 Toán 11, Giải Bài Tập 1 Trang 121 Toán 12, Giải Bài Tập 2 Trang 28 Toán 11, Giải Bài Tập 1 Trang 140 Toán 11, Giải Bài Tập 5 Trang 37 Toán 9, Giải Bài Tập 11 Trang 72 Sgk Toán 9 Tập 2, Giải Bài Tập 2 Trang 18 Toán 12, Giải Bài Tập 7 Trang 122 Toán 11, Giải Bài Tập Toán Lớp 4 Trang 114, Giải Bài Tập Toán Lớp 4 Trang 116, Giải Bài 47 Sgk Toán 8 Tập 2 Trang 84, Giải Bài Tập Toán Lớp 4 Trang 19, Giải Bài Tập 2 Trang 105 Toán 10,
Skkn Giai Toan Hinh Hoc Lop 5
Khi dạy về hình tam giác việc xây dựng công thức còn mang tính áp đặt,học sinh phải công nhận trong khi học sinh chưa hiểu vì sao lại làm thế; hoặc có hướng dẫn thì chỉ dựa vào gợi ý của sách bài soạn, sách thiết kế bài giảng còn việc mở rộng kiến thức phát triển tư duy cho học sinh còn ít được chú ý đến nên học sinh chưa hiểu được bản chất của công thức và chưa nắm được mối quan hệ giữa các yếu tố trong hình tam giác, các nhận xét được rút ra từ quy tắc tính diện tích hình tam giác. Trong thời gian giảng dạy, giáo viên chỉ đề cập nội dung trong sách, về phương pháp chủ yếu là giải bài tập rồi làm rõ kết quả. Phương pháp dạy giải các bài toán nâng cao đôi khi giáo viên chưa đi sâu nghiên cứu để phân dạng bài, để lựa chọn những phương pháp giải hay nhất phù hợp với đặc điểm tâm lí và khả năng tiếp thu của học sinh. Một số giáo viên có trình độ chuyên môn cao thì lại áp dụng các tính chất của các yếu tố trong hình tam giác ở nội dung Sách giáo khoa lớp 7 (như đường trung bình, đường trung trực, đường trung tuyến, trọng tâm, trực tâm, Định lí Pi-ta-go,….) và áp đặt điều đó là hiển nhiên có để học sinh giỏi so sánh và tính diện tích hình tam giác.
Đặc biệt, ghi nhớ của học sinh không được tốt nên giáo viên gặp nhiều khó khăn lúng túng, chưa đưa được hệ thống bài tập phát triển tư duy, chưa rèn cho học sinh phương pháp tư duy cho học sinh.. 1.Về phía giáo viên:2.Về phía học sinh:
Học sinh giải bài tập tư duy chưa có hệ thống, đặc biệt là xác định đường cao, diện tích hình tam giác. Trong các đề thi học sinh giỏi, hầu hết đều đề cập đến hình tam giác và diện tích hình tam giác. Song số lượng học sinh làm được không nhiều, có em được học bài như đề thi rồi nhưng lại quên, không nhớ cách giải. Phần thứ hai: nội dungI- THỰC TRẠNG VỀ VIỆC DẠY GIẢI TOÁN LIÊN QUAN ĐẾN DIỆN TÍCH HÌNH TAM GIÁCII- NỘI DUNG LÝ LUẬN LIÊN QUAN TRỰC TIẾP ĐẾN HÌNH TAM GIÁC VÀ DIỆN TÍCH HÌNH TAM GIÁC:Nhận diện các yếu tố của hình tam giác và vẽ hình.
Mục tiêu: Giúp học sinh nắm chắc về khái niệm hình tam giác, các yếu tố của hình tam giác (cạnh, góc, đỉnh, đáy, đường cao, chiều cao), nhận diện được hình tam giác dựa vào góc, chỉ ra và vẽ được đường cao của hình tam giác bất kì khi biết cạnh đáy. Đối với học sinh giỏi, cần giới thiệu cho các em biết cách nhận diện hình tam giác dựa theo cạnh: hình tam giác đều (hình tam giác có 3 cạnh dài bằng nhau), hình tam giác cân (hình tam giác có hai cạnh dài bằng nhau) Hình tam giác *Hình tam giác có 3 cạnh, 3 đỉnh, 3 góc.Hình tam giác có 3 góc nhọnHình tam giác có 1 góc tù và 2 góc nhọnHình tam giác có 1 góc vuông và 2 góc nhọn* Hình tam giác có đáy và đường cao.Dùng công cụ ê-ke để vẽ và xác định đường cao. AH là đường cao ứng với đáy BCAB là đường cao ứng với đáy BC B Sách giáo khoa Toán 5 trang 87 đã trình bày rõ phần lí thuyết cơ bản, cách hình thành quy tắc và công thức tính diện tích hình tam giác: Cụ thể: Cho hai hình tam giác bằng nhau. Lấy một hình tam giác đó, cắt theo đường cao để thành hai mảnh tam giác 1 và 2. Ghép hai mảnh 1 và 2 vào tam giác còn lại để được hình chữ nhật (như hình vẽ): Dựa vào hình vẽ ta có: Hình chữ nhật ABCD có chiều dài bằng độ dài đáy DC của hình tam giác EDC, có chiều rộng bằng chiều cao EH của hình tam giác EDC. Diện tích hình chữ nhật ABCD gấp 2 lần diện tích hình tam giác EDC.Diện tích hình chữ nhật ABCD là DC x AD = DC x EH.
Vậy diện tích hình tam giác EDC là DC x EH 22. Diện tích hình tam giác
* Quy tắc, công thức tính diện tích hình tam giác. Quy tắc: Muốn tính diện tích hình tam giác ta lấy độ dài cạnh đáy nhân với chiều cao (cùng một đơn vị đo) rồi chia cho 2.
Công thức: S =
(S là diện tích, a là độ dài cạnh đáy,
h là chiều cao, a và h cùng đơn vị đo) h
– Tính độ dài cạnh đáy hình tam giác:Quy tắc: Muốn tính độ dài cạnh đáy của hình tam giác ta lấy hai lần diện tích chia cho chiều cao tương ứng
Công thức: a =
(S là diện tích hình tam giác, a là độ dài cạnh đáy, h là chiều cao tương ứng)
* Tính độ dài cạnh đáy và chiều cao của hình tam giác.
– Tính chiều cao hình tam giác: Quy tắc: Muốn tính chiều cao của hình tam giác ta lấy hai lần diện tích chia cho độ dài cạnh đáy tương ứng)
Công thức: h =
(S là diện tích hình tam giác, a là độ dài cạnh đáy, h là chiều cao tương ứng) 3. Các nhận xét được rút ra từ quy tắc tính diện tích tam giác: (Thực chất là mối quan hệ tỉ lệ giữa diện tích, đáy, chiều cao của hình tam giác)*Vậy hai hình tam giác có chung chiều cao, độ dài cạnh đáy tương ứng với chiều cao bằng nhau thì diện tích bằng nhau.
Ví dụ 1 S ABD = ; S ADC =
Mà BD = DC nên S ABD = S ADC D BHC AD BHC A(BD = DC)SADC= ; SBDC= AH x DC2BK x DC2Ví dụ 2: Cho hình thang ABCD. Nối A với C, B với D. So sánh SADC và SBDC * Vậy hai hình tam giác có chung cạnh đáy, chiều cao tương ứng với cạnh đáy bằng nhau thì diện tích bằng nhau.BKHCDA Mà AH = BK nên SADC = SBDC Ví dụ 3: Hình chữ nhật ABCD, E là trung điểm của DC. Nối A với E, B với E. So sánh SADE và SBCE
Mà AD = BC; DE = CE
nên SADE = SBCE * Vậy hai hình tam giác có độ dài cạnh đáy bằng nhau, chiều cao tương ứng với cạnh đáy bằng nhau thì diện tích bằng nhau.B ED C A Qua 3 trường hợp vừa nêu, ta có:
Nhận xét 1: Hai (hay nhiều) hình tam giác có chiều cao bằng nhau (hoặc có chung chiều cao), độ dài cạnh đáy tương ứng với đường cao bằng nhau (hoặc có chung đáy) thì diện tích hai (hay nhiều) hình tam giác đó bằng nhau. SADE = = =
Vậy SHDC = SADE
Ví dụ 4: Hình chữ nhật ABCD. E là trung điểm của DC, H là trung điểm của BC. So sánh SHDC và SADE Nhận xét 2: Khi diện tích hai hình tam giác không đổi, độ dài cạnh đáy tăng (hoặc giảm) bao nhiêu lần thì chiều cao tương ứng giảm (hoặc tăng) bấy nhiêu lần.SHDC = H ED CB AVí dụ 5: Cho tứ giác ABCD vuông ở C và D, có AD = BC. Nối A với C, B với D. Hãy so sánh diện tích tam giác ADC và BDCNhận xét 3: Khi độ dài cạnh đáy của hai hình tam giác bằng nhau thì tỉ số diện tích hai hình tam giác bằng tỉ số hai chiều cao tương ứng với đáy.
SADC = ; SBDC =
Mà AD = BC nên SADC = SBDC Ví dụ 6: Cho tam giác ABC, EC = BE. So sánh SACE và SABE Nhận xét 4: Khi chiều cao của hai hình tam giác bằng nhau thì tỉ số diện tích hai hình tam giác bằng tỉ số độ dài hai cạnh đáy tương ứng .1) Khi h1 = h2 , a1 = a2 thì S1 = S2 2) Khi S1 = S2 thì
3) Khi a1 = a2 thì
4) Khi h1 = h2 thì * Các nhận xét được rút ra từ mối quan hệ tỉ lệ giữa diện tích, đáy, chiều cao của hình tam giác: * Các quy tắc, công thức và những nhận xét trên là công cụ quan trọng để giải các bài toán về diện tích hình tam giác. Nhưng khi vào các bài toán cụ thể, phải biết vận dụng linh hoạt các công thức tính, các nhận xét đó và phải biết vẽ hình phụ trợ để giải được các bài toán từ đơn giản đến phức tạp.
Bước 2: Lập kế hoạch giải bài toán (Dựa vào công thức, các nhận xét được rút ra từ quy tắc tính diện tích hình tam giác để phân tích bài toàn và tìm hướng giải bài toán).
Bước 3: Thực hiện kế hoạch giải bài toán (Trình bày bài giải)
Bước 4: Tự kiểm tra đánh giá kết quảKhi hướng dẫn học sinh giải bài tập cần thực hiện các bước như sau:
Phần thứ hai: nội dungI- THỰC TRẠNG VỀ VIỆC DẠY GIẢI TOÁN LIÊN QUAN ĐẾN DIỆN TÍCH HÌNH TAM GIÁCII- NỘI DUNG LÝ LUẬN LIÊN QUAN TRỰC TIẾP ĐẾN HÌNH TAM GIÁC VÀ DIỆN TÍCH HÌNH TAM GIÁC:III- CÁC GIẢI PHÁP THỰC HIỆN1. Nhận diện các yếu tố của hình tam giác và vẽ hình. Hình tam giác 1) Hình tam giác có 3 cạnh, 3 đỉnh, 3 góc.C BA Hình tam giác ABC có:Ba cạnh: cạnh AB, cạnh BC, cạnh ACBa đỉnh: Đỉnh A, đỉnh B, đỉnh CBa góc: Góc đỉnh A cạnh AB và AC (góc A) Góc đỉnh B cạnh BA và BC (góc B) Góc đỉnh C cạnh CA và CB (góc C) 2.1. Hình tam giác có ba góc nhọn: Hình tam giác ABC:AH là đường cao ứng với đáy BCBI là đường cao ứng với đáy ACCK là đường cao ứng với đáy AB 2.2. Hình tam giác có một góc tù và hai góc nhọn: Hình tam giác MNP:ME là đường cao ứng với đáy PNNH là đường cao ứng với đáy MPPG là đường cao ứng với đáy MN 2.3. Hình tam giác có một góc vuông và hai góc nhọn: Hình tam giác EGH:HE là đường cao ứng với đáy EGGE là đường cao ứng với đáy EHEB là đường cao ứng với đáy HG2) Xác định đường cao và đáy của hình tam giác HGEPNM HGEPNM– Đường cao của hình tam giác là đoạn thẳng hạ từ một đỉnh và vuông góc với cạnh đối diện (cạnh đối diện gọi là cạnh đáy). Độ dài đường cao là chiều cao của hình tam giác.Chú ý: – Cả ba cạnh của hình tam giác đều có thể chọn làm cạnh đáy của hình tam giác đó. – Như vậy, trong mỗi hình tam giác có 3 cạnh đáy, 3 chiều cao, mỗi cạnh đáy có một chiều cao tương ứng, không thể chọn cạnh đáy và chiều cao tùy ý.Mở rộng: Đường cao của nhiều hình tam giác có chung một đỉnh
* Hình (1) gồm 3 tam giác chung đỉnh A: ABC, ACD và ABD đều có chung đường cao AH. * Hình (2) gồm 6 tam giác chung đỉnh A: ABM, AMN, ANC, ABN, AMC và ABC đều có chung đường cao AH. AACDHHình (1)B * Hình (3) gồm 2 tam giác vuông chung đỉnh A: ABC, ABD và 1 tam giác có một góc tù ADC có chung đường cao AB (là một cạnh của góc vuông đỉnh B). * Hình (4) gồm 3 tam giác có một góc tù chung đỉnh A: ABD, ADC và ABC có chung đường cao AH (nằm ngoài các tam giác đó). ABCDAB CHDHình (3)Hình (4) * Đường cao của nhiều hình tam giác không chung đỉnh. A M N B D H K CHình (1) A H M K N I D B E CHình (2) HS cần chỉ ra được đường cao và dùng ê-ke vẽ được đường cao hình tam giác. AH là đường cao ứng với đáy BC AH là đường cao ứng với đáy BC AB là đường cao ứng với đáy BC Thực tế trong quá trình hướng dẫn học sinh vẽ đường cao trong tam giác, học sinh rất lúng túng khi đặt thước ê-ke để vẽ đường cao. Chúng ta cần mô tả ê-ke, chỉ rõ cho học sinh đâu là góc vuông của ê-ke, đâu là cạnh góc vuông của ê-ke. Khi vẽ đường cao trong tam giác cần đặt ê ke vào hình vẽ sao cho một cạnh góc vuông của ê-ke trùng với cạnh đáy của tam giác, cạnh góc vuông còn lại đi qua đỉnh của tam giác. Vừa mô tả bằng hình vẽ trực quan, vừa mô tả bằng đồ dùng dạy học: Cần tránh để HS đặt thước ê-ke để vẽ đường cao như các trường hợp sau: Bài tập áp dụng:
Bài 1: Vẽ đường cao tương ứng với các cạnh đáy cho mỗi tam giác sau:BAB
Bài 2: Cho hình vẽ sau:a. Nêu tên những tam giác có chung chiều cao BG.b. Nêu tên những tam giác có chung chiều cao DH.c. Nêu tên các tam giác có chung cạnh đáy AC. 2. Hình thành quy tắc, công thức tính diện tích hình tam giác:Bước 1: Dựa vào cách tính diện tích của các hình đã học (hình vuông, hình chữ nhật, hình bình hành, hình thoi), kết hợp sử dụng đồ dùng trực quan hoặc suy luận tư duy qua cắt ghép trên giấy nháp, học sinh tự tìm cách tính diện tích hình tam giác.
Ở bước này, đối với học sinh khá giỏi, giáo viên nên để tự học sinh khám phá và tìm ra kiến thức; đối với học sinh trung bình và yếu, giáo viên nên gợi ý, hướng dẫn học sinh học sinh để tất cả học sinh đều tự mình tìm ra kiến thức và chiếm lĩnh được kiến thức.2.1. Quy tắc, công thức tính diện tích hình tam giác: Cách 2: Từ một hình tam giác, cắt và ghép lại được một hình chữ nhật: Cách 3: Ghép hai hình tam giác bằng nhau thành một hình bình hành, cạnh đáy của hình tam giác là cạnh đáy của hình bình hành thì chiều cao tương ứng của hình tam giác cũng là chiều cao của hình bình hành.Cách 1: Thực hiện như sách giáo khoa Toán 5 trang 87– Cắt lấy 2 hình tam giác bằng nhau, dùng ê ke vẽ đường cao của mỗi hình tam giác (như hình vẽ)Bước 2: Giáo viên thực hiện lại thao tác một cách làm dễ hiểu và nhanh nhất để tìm ra quy tắc tính diện tích hình tam giác
S = S là diện tích, a là độ dài đáy, h là chiều cao (a và h cùng đơn vị đo) Bước 3: Lập công thức tính diện tích hình tam giác* Với hình tam giác vuông: Diện tích hình tam giác vuông bằng tích của hai cạnh góc vuông (cùng đơn vị đo) chia cho 2.h
Xuất phát từ công thức tính diện tích hình tam giác HS đã học:
(Trong đó S là diện tích hình tam giác, a là độ dài cạnh đáy, h là chiều cao tương ứng với đáy; a, h cùng đơn vị đo) GV hướng dẫn HS cách tính độ dài cạnh đáy và chiều cao của hình tam giác như sau:
2.2. Cách tính độ dài cạnh đáy và chiều cao của hình tam giác.
S = * Tính chiều cao hình tam giác: Quy tắc: Muốn tính chiều cao của hình tam giác ta lấy hai lần diện tích chia cho độ dài cạnh đáy tương ứng.
Công thức: h =
(S là diện tích hình tam giác, a là độ dài cạnh đáy, h là chiều cao tương ứng)
* Tính độ dài cạnh đáy hình tam giác: Quy tắc: Muốn tính độ dài cạnh đáy của hình tam giác ta lấy hai lần diện tích chia cho chiều cao tương ứng
Công thức: a =
(S là diện tích hình tam giác, a là độ dài cạnh đáy, h là chiều cao tương ứng)
Trường hợp 2: Kẻ đoạn thẳng đi qua hai cạnh của tam giác chia hình tam giác thành các phần theo tỉ số diện tích.
A
*Tiết học lí thuyết – ngay sau khi hình thành quy tắc tính diện tích hình tam giác, chúng ta hướng dẫn HS vận dụng công thức tính diện tích hình tam giác để giải bài tập theo các dạng và rèn kĩ năng giải toán như SGK
*Tiết luyện tập chung về tính diện tích – Bài tập vận dụng công thức tính ngược về diện tích hình tam giác Rèn cho HS kỹ năng tính độ dài cạnh đáy và tính chiều cao của hình tam giác. Bài 1: Cho tam giác ABC có đáy BC dài 8cm. Kéo dài BC về phía C một đoạn CD dài 4cm thì diện tích tam giác tăng thêm 12cm2 (như hình vẽ). Tính diện tích hình tam giác ABC – Để tính diện tích hình tam giác ABC khi mới biết đáy BC dài 8cm thì cần biết chiều cao AH của tam giác. – Nhận xét chiều cao tam giác ABC (ứng với đáy BC) và chiều cao tam giác tam giác ACD) ứng với đáy CD: Hai tam giác ABC và ACD có chung chiều cao hạ từ A (Chiều cao AH). – Để tính được chiều cao AH, dựa vào quy tắc tính chiều cao và các dữ kiện đã cho ở hình tam giác ACD (Hình tam giác ACD đã biết diện tích và đáy thì tính được chiều cao). * Bài tập củng cố, bồi dưỡng kiến thức dành cho học sinh đại trà trong các tiết học buổi 2: GV ra bài tập tương tự các bài tập nêu trên và phát triển thêm:Với học sinh khá giỏi: Hướng dẫn học sinh tìm lời giải khác theo hướng sau: Như vậy: – Trước hết cần xác định tỉ số giữa số đo hai cạnh đáy của hai tam giác:Tỉ số của cạnh đáy CD và cạnh đáy BC là: 4 : 8 = (hay CD= BC)
– Tiếp theo, xác định được tỉ số diện tích tam giác ACD và ABC:
SACD = S ABC(vì chung chiều cao hạ từ đỉnh A và đáy CD= BC)
Từ đó tính diện tích tam giác ABC: 12 : = 24 (cm2) Nhận xét về chiều cao của hai hình tam giác HS nắm được mối quan hệ giữa hai hình tam giác ABC và ACD có chung chiều cao hạ từ đỉnh A. Như vậy áp dụng nhận xét 4 về diện tích tam giác, học sinh giải được một cách dễ dàng. (Nhận xét 4: Khi chiều cao của hai hình tam giác bằng nhau thì tỉ số diện tích hai hình tam giác bằng tỉ số hai độ dài cạnh đáy tương ứng)Bài 2: Cho tam giác ABC có đáy BC dài 8cm. Kéo dài BC về phía C một đoạn CD dài 4cm. Biết diện tích tam giác ABC là 24 cm2. Tính diện tích phần tăng thêm.Đề bài: Cho tam giác ABC có cạnh BC dài 30cm. Chiều cao AH bằng độ dài đáy BC.Tính diện tích tam giác ABCKéo dài BC về phía C một đoạn CM (như hình vẽ). Tính độ dài đoạn CM, biết diện tích tam giác ACM bằng 20% diện tích tam giác ABC(Đề khảo sát đầu vào lớp 6 năm học 2013-2014)Đề bài: Cho hình thang ABCD (như hình vẽ), đáy lớn bằng 3,6cm, đáy nhỏ bằng đáy lớn, chiều cao AH = 2cm.Tính diện tích hình thang ABCD.Tính độ dài DH, biết diện tích tam giác ADH bằng 25% diện tích tam giác AHC. (Đề khảo sát đầu vào lớp 6 năm học 2011-2012)
Đây là dạng bài tập hay gặp trong các đề thi khảo sát đầu vào lớp 6M C HBABài 2: Cho hình vẽ bên
KM = KN = 4cm. Tính diện tích
hình tam giác ABC.Bước 1: Tìm hiểu cái đã cho và cái cần tìm:Bước 2: Hướng dẫn học sinh phân tích bài toán bằng sơ đồ:Bước 3: Trình bày bài giảiBước 4: Tự kiểm tra lại kết quảBiết AB + AC = 20cm;Biết AB = 5,2cm; AC = 6,5cm;(Đề kiểm tra định kỳ cuối kỳ I năm học 2012-2013, Huyện Ninh Giang)Giải lao Mức độ 2: Nâng cao kiến thức
1. Tính diện tích hình tam giác khi phải giải bài toán phụ để tìm chiều cao hoặc độ dài cạnh đáy.
Bài 1: Cho tam giác ABC có góc vuông tại A, AB = 5cm, AC = 6cm. Trên AB lấy điểm M sao cho AM = 1cm. Từ M kẻ đường thẳng song song với AC cắt BC tại N. Tính diện tích tam giác BMN.
Bước 1: Vẽ hình. Xác định cái đã cho và cái cần tìm theo mẫu sau:
Bước 2. Phân tích bài toán, suy luận để tìm lời giải:Bước 3: Trình bày bài giải
Bước 4: Kiểm tra lại kết quảBài 2: Cho tam giác ABC có diện tích là 48cm2. Cạnh AB = 16cm, AC = 10cm. Kéo dài AB về phía B một đoạn BM, kéo dài AC về phía C một đoạn CN, sao cho BM = CN = 2cm. Nối M với N. Tính diện tích hình tứ giác BCNM.Phân tích bài toán để tìm lời giải: Vận dụng linh hoạt các bài toán tính ngược (Tính độ dài đáy khi biết diện tích tam giác và chiều cao tương ứng, hoặc tính chiều cao khi biết diện tích tam giác và độ dài đáy tương ứng) để suy luận tìm hướng giải.
Tính HB Tính AN và SANB Tính NK Tính SAMN Tính SBCNMA2. Tính diện tích hình tam giác dựa vào nhận xét 1: Hai (hay nhiều) hình tam giác có chiều cao bằng nhau, độ dài cạnh đáy tương ứng với đường cao bằng nhau thì diện tích hai (hay nhiều) hình tam giác đó bằng nhau.Bài 3: Cho tam giác ABC có diện tích là 12cm2. Kéo dài AB về phía A một đoạn AE, AC về phía C một đoạn CG và BC về phía B một đoạn BH, sao cho AE = AB; AC = CG; BC = BH. Tính diện tích hình tam giác EGH Dựa vào nhận xét 1 đã nêu, nhìn hình vẽ và các dữ kiện bài toán đã cho, ta dễ dàng chứng minh được các cặp hình tam giác có diện tích bằng nhau. Đó là:SABC = SAEC; SAEC = SGEC; SABC = SABH; SABH = SAEH; SABC = SAEC = SGEC = SABH = SAEH = SGBC =SABC = SGBC; SGBC = SGBH; 3. Tính diện tích hình tam giác dựa vào nhận xét 2: Khi diện tích hai hình tam giác không đổi, độ dài cạnh đáy tăng (hoặc giảm) bao nhiêu lần thì chiều cao tương ứng giảm (hoặc tăng) bấy nhiêu lần.Bài 4: Cho hình thang vuông ABCD, vuông tại A và D. Đáy AB = CD. Trên AD lấy M sao cho AM = MD. Tính diện tích tam giác MCD biết diện tích tam giác ABD bằng 15cm2Hai tam giác ABD và MCD có:Đáy DC = AB x 2. Chiều cao AD = MD x 2. Suy ra diện tích ABD = diện tích MCD. Vậy diện tích MCD là 15 cm24. Tính diện tích hình tam giác dựa vào nhận xét 3: Khi độ dài cạnh đáy của hai hình tam giác bằng nhau thì tỉ số diện tích hai hình tam giác bằng tỉ số hai chiều cao tương ứng với đáy.Bài 5: Cho hình thang vuông ABCD (vuông tại A và D). Độ dài đáy AB bằng độ dài đáy CD. Kéo dài hai cạnh bên AD và BC về phía A và B cắt nhau tại K. Tính diện tích tam giác KDC, biết diện tích hình tam giác KBD là 90cm25. Tính diện tích hình tam giác dựa vào nhận xét 4: Khi chiều cao của hai hình tam giác bằng nhau thì tỉ số diện tích hai hình tam giác bằng tỉ số hai độ dài cạnh đáy tương ứng .Bài 6: Cho tam giác ABC có diện tích 450 m2. Trên BC, AC lấy hai điểm M, N sao cho CM = BC, NC = AC. Tính diện tích tam giác MNC?Cách 1:Cách 2:Nối AMBài 7: Cho tam giác ABC. Trên cạnh AB lấy điểm M sao cho AM gấp rưỡi MB; trên cạnh AC lấy điểm N sao cho AN bằng một nửa AC. Biết diện tích tam giác AMN là 36 cm2. Tính diện tích tứ giác BMNC. (Đề thi Olympic học sinh tiểu học tỉnh Hải Dương năm học 2010-2011)36 cm2Đây là hai bài toán ngược nhau giữa cái đã cho và cái cần tìm. Song về cơ bản cách tư duy tương tự như nhau. GV chỉ cần thay đổi vị trí của điểm M, N để HS luyện kỹ năng tính toán phát triển tư duy rất tốt.Bài 6: Cho tam giác ABC có diện tích 450 m2. Trên BC, AC lấy hai điểm M, N sao cho CM = BC, NC = AC. Tính diện tích tam giác MNC?Bài 7: Cho tam giác ABC. Trên cạnh AB lấy điểm M sao cho AM gấp rưỡi MB; trên cạnh AC lấy điểm N sao cho AN bằng một nửa AC. Biết diện tích tam giác AMN là 36 cm2. Tính diện tích tứ giác BMNC. (Đề thi Olympic học sinh tiểu học tỉnh Hải Dương năm học 2010-2011)4) Khi h1 = h2 thìBài 8: Cho tam giác ABC. Trên cạnh AC lấy điểm M sao cho MC gấp đôi MA. Nối B với M, gọi D là trung điểm của BM. Nối A với D. Tính diện tích tam giác ABC biết diện tích tam giác ADM là 4,5cm2. (Đề Olympic học sinh tiểu học cấp huyện, thị xã, thành phố năm học 2011-2012_ Tỉnh Hải Dương)Tương tự bài 6Bài 9: Cho tam giác ABC có diện tích là 48cm2. Trên AC lấy điểm M sao cho AM = MC. Nối B với M. Kéo dài BM một đoạn MD = BM. Tính diện tích tứ giác ABCD.(* Lưu ý: Trong các bài toán cho tỉ số độ dài các đoạn thẳng, giúp học sinh dễ nhận ra cách so sánh để xác định tỉ số diện tích dựa vào tỉ số độ dài đáy hoặc tỉ số chiều cao của tam giác, tôi thường dùng điểm chấm vạch rõ số phần bằng nhau ở đáy hay đường cao của tam giác như hình vẽ trên)– Đối với bài toán yêu cầu tính diện tích một tam giác (ta chưa biết cụ thể số đo độ dài đáy và chiều cao tương ứng với nó) nhưng có mối quan hệ với các tam giác khác thì ta phải xét mối quan hệ giữa các yếu tố của các tam giác đó để tìm ra cách tính. Bài 10: Cho tam giác ABC. Trên AC lấy điểm M sao cho MC = MA,
trên BC lấy điểm N sao cho NC = NB. BM cắt AN tại O. Tính diện
tích tam giác ABC, biết diện tích tam giác ABO là 12cm2.* Lưu ý: Trong giảng dạy các bài toán 5, 6,7, 8,9,10 GV chỉ cần thay vị trí các điểm M,N theo tỉ lệ khác nhau để HS thực hành rèn kỹ năng giải toán nhanh và phát triển tư duy cho HS rất hiệu quả..6.1.Tính độ dài đoạn thẳng và so sánh độ dài đoạn thẳng Bài 11: Cho hình tam giác ABC có diện tích 90cm2, cạnh BC dài 24cm. Trên cạnh BC có điểm M sao cho diện tích tam giác ABM bằng 30cm2. Hỏi M cách B bao nhiêu xăng- ti -mét?6. Một số bài toán sử dụng linh hoạt 4 nhận xét ở trên để giải.Bài 12: Cho tam giác ABC. Trên AB lấy điểm M sao cho MA = MB. Trên AC lấy N sao cho NC = NA; MN cắt BC tại D. So sánh BC và CDLưu ý: Trong trường hợp cần so sánh độ dài hai đoạn thẳng hay tính độ dài một đoạn thẳng nào đó trong hình, ta cần so sánh diện tích hai hình tam giác có chung đỉnh và hai cạnh đáy là hai cạnh cần so sánh.6.2.So sánh diện tích các hình tam giác SADC = SBDC SABD = SABCSAOD = SBOC Bài 13: Cho hình thang ABCD có đáy bé là AB, đáy lớn DC. Hai đường chéo AC và BD cắt nhau tại O. Chứng tỏ rằng SAOD = SBOCPhương pháp so sánh “phần bù” trong giải toán hình họcBài 14: Cho tam giác ABC. D là điểm chính giữa của BC, E là điểm chính giữa của AC. AD cắt BE tại I. a) Hãy so sánh diện tích tam giác IAE và diện tích tam giác IBD. b) Hãy so sánh diện tích tam giác IAB và diện tích tứ giác EIDC. Phân tích bài toán
Ta có: SIAE + SABI = SABE; SIBD + SABI = SABD
Hai tam giác ABE và ABD có phần chung là tam giác ABI.
Để so sánh SIAE và SIBD , cần so sánh SABE và SABD Trong thực tế giảng dạy, rất nhiều học sinh khi chưa nắm được bản chất vấn đề này thì nhìn hình vẽ bài 2 và hiển nhiên cho rằng ED song song với AB nên tứ giác ABDE là hình thang rồi so sánh SABD = SABE một cách dễ dàng tương tự như bài toán 1 như vậy là chưa chính xác.. Là giáo viên trực tiếp giảng dạy và bồi dưỡng học sinh giỏi chúng ta cần phân biệt rõ vấn đề vừa nêu để học sinh không mắc sai lầm trong việc so sánh diện tích hai hình tam giác. Bài 13:Bài 14:So sánh diện tích tam giác hình tam giác thường xuất hiện nhiều ở hình thang với nhiều tình huống khác nhau. Điều quan trọng là học sinh cần chỉ ra được hình nào chắc chắn chứng tỏ được là hình thang thì mới được vận dụng tương tự như bài toán 1. Thay đổi vị trí các điểm trên mỗi cạnh tam giác, ta có một số bài toán: Bài 15: Cho hình chữ nhật ABCD. Điểm M nằm trên đoạn thẳng AB, MC cắt BD ở O (như hình vẽ bên). So sánh diện tích tam giác MODvà BOC.Bài 16: Cho tam giác ABC. Trên BC lấy hai điểm M, N sao cho BM = MN = NC. Từ M kẻ đường song song với AB, từ N kẻ đường songsong với AC chúng cắt nhau tại H. So sánh SAHB và SAHC.Luyện giải một số bài toán dạng 3:Luyện giải một số bài toán dạng 3:Bài 17: Cho tam giác ABC. Lấy điểm M trên BC sao cho BM=MC, trên Ac lấy điểm N sao cho AN = NC. MN cắt BN tại E.So sánh diện tích hai tam giác AEN và BEM.b) Cho diện tích tam giác AEN bằng 12cm2. Tính diện tích tam giác ABC. (Đề khảo sát chọn học sinh giỏi lớp 5- Huyện Ninh Giang năm học 2012-2013)a)b)Bài 19: . Cho hình vẽ:Biết diện tích hình vu
Giai Sach Bai Tap Xstk Dh Ktqd Chuong 1 Full V1
Published on
1. 2015 TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 7/21/2015 GIẢI SÁCH BÀI TẬP XÁC SUẤT THỐNG KÊ ĐH KINH TẾ QD- chương 1
2. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 2 Giải bài tập sách ”Bài tập Xác suất và Thống Kê toán” trường ĐH KTQD 07/2015 Bài tập có sự giúp đỡ của SV K52, K53. Có nhiều chỗ sai sót mong được góp ý : nnvminh@yahoo.com §1 Định nghĩa cổ điển về xác suất Bài 1.1 Gieo một con xúc xắc đối xứng và đồng chất. Tìm xác suất để được: a. Mặt sáu chấm xuất hiện. b. Mặt có số chẵn chấm xuất hiện. Giải: a) Không gian mẫu là {1,2,…,6} Gọi A=biến cố khi gieo con xúc xắc thì được mặt 6 chấm Số kết cục duy nhất đồng khả năng: n=6 Số kết cục thuận lợi : m=1 P(A) = m n = 1 6 . b) Gọi B=biến cố khi gieo xúc xắc thí mặt chẵn chấm xuất hiện Tương tự ta có: P(B) = m n = 3 6 = 0,5. Bài 1.2 Có 100 tấm bìa hình vuông như nhau được đánh số từ 1 đến 100. Ta lấy ngẫu nhiên một tấm bìa. Tìm xác suất : a. Được một tấm bìa có số không có số 5. b. Được một tấm bìa có số chia hết cho 2 hoặc cho 5 hoặc cả cho 2 và cho 5. Giải: a) Không gian mẫu là {1,2,…,100}. Gọi A là biến cố khi lấy ngẫu nhiên một tấm bìa có số có số 5. Số kết cục duy nhất đồng khả năng là n = 100. Số kết cục thuận lợi m = 19 (10 số có đơn vị là 5, 10 số có hàng chục là 5, lưu ý số 55 được tính 2 lần) Do đó 19 ( ) 0,19 100 P A . Vậy xác suất để lấy ngẫu nhiên một tấm bìa có số không có số 5 là 1 ( ) 1 0,19 0,81P A . b) Gọi A là biến cố khi lấy ngẫu nhiên một tấm bìa có số chia hết cho 2 hoặc cho 5 hoặc cả cho 2 và cho 5. Số kết cục duy nhất đồng khả năng là n = 100.
3. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 3 Số kết cục thuận lợi m = 60 (trong đó có 50 số chia hết cho 2, 20 số chia hết cho 5, chú ý có 10 số chia hết cho 10 được tính 2 lần) do đó 60 ( ) 0,6 100 P A . Bài 1.3 Một hộp có a quả cầu trắng và b quả cầu đen. Lấy ngẫu nhiên lần lượt hai quả cầu. a) Tìm xác suất để quả cầu thứ nhất trắng. b) Tìm xác suất để quả cầu thứ hai trắng biết rằng quả cầu thứ nhất trắng. c) Tìm xác suất để quả cầu thứ nhất trắng biết rằng quả cầu thứ hai trắng. Giải: a) Đánh số a quả cầu trắng là 1, 2,…, a và b quả cầu đen là a+1,…,a+b. Không gian mẫu là {1,2,…,a+b} Số kết cục duy nhất đồng khả năng là a b . A là biến cố khi lấy ngẫu nhiên được quả cầu thứ nhất trắng, số kết cục thuận lợi là a do đó ( ) a P A a b . b) Đánh số a quả cầu trắng là 1, 2,…, a và b quả cầu đen là a+1,…,a+b. Không gian mẫu là tập các bộ số (u,v) với 1 ,1 ;u a v a b u v . Số kết cục duy nhất đồng khả năng là ( 1)a a b . Nếu quả thứ nhất trắng thì số cách chọn nó là a cách, vậy số cách chọn quả thứ 2 là a-1. Số kết cục thuận lợi là a(a-1). do đó ( 1) 1 ( 1) 1 b a a a P a a b a b . c) Đánh số a quả cầu trắng là 1, 2,…, a và b quả cầu đen là a+1,…,a+b. Không gian mẫu là tập các bộ số (u,v) với 1 ,1 ;u a b v a u v . Số kết cục duy nhất đồng khả năng là ( 1)a a b . Nếu quả thứ hai trắng thì số cách chọn nó là a cách, vậy số cách chọn quả thứ 1 trắng là a-1. Số kết cục thuận lợi là a(a-1). do đó ( 1) 1 ( 1) 1 c a a a P a a b a b . Bài 1.4 Một hộp có a quả cầu trắng và b quả cầu đen. Lấy ngẫu nhiên ra lần lượt từng quả cầu. Tìm xác suất để: a. Quả cầu thứ 2 là trắng
4. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 4 b. Quả cầu cuồi cùng là trắng. Giải: a) Đánh số a quả cầu trắng là 1, 2,…, a và b quả cầu đen là a+1,…,a+b. Không gian mẫu là tập các bộ số (u,v) với 1 , ;u v a b u v . Số kết cục duy nhất đồng khả năng là ( )( 1)a b a b . Số cách chọn quả thứ 2 là a, sau đó có a+b-1 cách chọn quả thứ nhất vậy số kết cục thuận lợi là: ( 1)a a b . do đó ( 1) ( )( 1) a a a b a P a b a b a b . a) Đánh số a quả cầu trắng là 1, 2,…, a và b quả cầu đen là a+1,…,a+b. Không gian mẫu là tập các bộ số ( 1 2, ,…, a bu u u ) là hoán vị của 1,2,…,a+b. Số kết cục duy nhất đồng khả năng là ( )!a b . Số cách chọn quả cuối cùng là a, sau đó có a+b-1 cách chọn quả 1, a+b-2 cách chọn quả 2,…,và cuối cùng là 1 cách chọn quả thứ a+b-1. Do đó số kết cục thuận lợi là ( 1)!a a b . do đó ( 1)! ( )! b a a b a P a b a b . Bài 1.5 Gieo đồng thời hai đồng xu. Tìm xác suất để được a) Hai mặt cùng sấp xuất hiện b) Một sấp, một ngửa c) Có ít nhất một mặt sấp Giải: Không gian mẫu là (N,N), (S,N), (N,S), (S,S). a) Số kết cục thuận lợi là 1: (S,S) nên 1 0,25 4 aP . b) Số kết cục thuận lợi là 2: (S,N) và (N,S) nên 2 0,5 4 bP . b) Số kết cục thuận lợi là 3: (S,N), (N,S) và (S,S) nên 3 0,75 4 bP . Bài 1.6 Gieo đồng thời hai con xúc xắc. Tìm xác suất để được hai mặt a) Có tổng số chấm bằng 7 b) Có tổng số chấm nhỏ hơn 8 c) Có ít nhất một mặt 6 chấm Giải: Đánh dấu 2 con xúc xắc là W (trắng) và B (đen) các mặt tương ứng với 1 6…,W W và 1 6…,B B
5. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 5 Không gian mẫu là tất cả các cặp ( , )i jW B , Số kết cục duy nhất đồng khả năng là 36. a) Có 6 cặp có tổng số chấm bằng 7 là 1 6( , )W B , …, 6 1( , )W B vậy 6 1 36 6 aP . b) Có 0 cặp có tổng số chấm bằng 1, Có 1 cặp có tổng số chấm bằng 2, Có 2 cặp có tổng số chấm bằng 3, Có 3 cặp có tổng số chấm bằng 4, Có 4 cặp có tổng số chấm bằng 5, Có 5 cặp có tổng số chấm bằng 6, Có 6 cặp có tổng số chấm bằng 7. Do đó có 1+2+…+6 = 21 cặp có tổng số chấm nhỏ hơn 8, vậy 21 7 36 12 bP . c) Có ít nhất một mặt 6 chấm nên số kết cục thuận lợi đồng khả năng là 11 gồm : 1 6( , )W B , …, 6 6( , )W B và 6 1( , )W B ,…, 6 5( , )W B , vậy 11 36 cP Bài 1.7 Ba người khách cuối cùng ra khỏi nhà bỏ quên mũ. Chủ nhà không biết rõ chủ của những chiếc mũ đó nên gửi trả họ một cách ngẫu nhiên. Tìm xác suất để: a) Cả 3 người cùng được trả sai mũ b) Có đúng một người được trả đúng mũ c) Có đúng hai người được trả đúng mũ d) Cả ba người đều được trả đúng mũ Giải: Gọi 3 cái mũ tương ứng của 3 người đó là 1, 2, 3. Không gian mẫu là 6 hoán vị của 1, 2, 3 gồm các bộ (i,j,k): (1,2,3), …, (3,2,1). Ta hiểu là đem mũ i trả cho người 1, mũ j trả cho người 2, mũ k trả cho người 3. a) số các bộ (i,j,k) mà 1, 2, 3i j k chỉ có 2 bộ thuận lợi như vậy là (2,3,1), (3,1,2), vậy 2 1 6 3 aP . b) Nếu chỉ người 1 được trả đúng mũ thì chỉ có một khả năng thuận lợi (1,3,2). Nếu chỉ người 2 được trả đúng mũ thì chỉ có một khả năng thuận lợi (3,2,1). Nếu chỉ người 3 được trả đúng mũ thì chỉ có một khả năng thuận lợi (2,1,3), vậy 3 1 6 2 bP . c) Nếu có đúng 2 người được trả đúng mũ thì người còn lại cũng phải trả đúng mũ, không có khả năng thuận lợi nào, vậy 0 0 6 cP . d) Có duy nhất một khả năng thuận lợi là (1, 2, 3), vậy 1 6 dP .
6. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 6 Bài 1.8 Một lớp sinh viên có 50% học tiếng Anh, 40% học tiếng Pháp, 30% học tiếng Đức, 20% học tiếng Anh và Pháp, 15% học tiếng Anh và Đức, 10% học tiếng Pháp và Đức, 5% học cả ba thứ tiếng. Tìm xác suất khi lấy ngẫu nhiên 1 sinh viên thì người đó: a) Học ít nhất một trong 3 ngoại ngữ b) Chỉ học tiếng Anh và tiếng Đức c) Chỉ học tiếng Pháp d) Học tiếng Pháp biết người đó học tiếng Anh Giải: Vẽ biểu đồ Ven. Gọi A, B, C tương ứng là biến cố lấy ngẫu nhiên 1 sinh viên thì sinh viên đó học tiếng Anh, Pháp, Đức. a) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )aP P A B C P A P B P C P A B P B C P C A P A B C 50% 40% 30% 20% 15% 10% 5% 80% 0,8 b) ( ) ( )bP P A C P A B C = 15% 5% 0,1 c) ( ) ( ) ( ) ( ) 40% 20% 10% 5% 0,15cP P B P A B P B C P A B C d) ( ) 20% 0,4 ( ) 50% d P B A P P A chính là tỷ lệ diện tích của A B với diện tích của A với qui ước hình tròn lớn có diện tích là 1. Bài 1.9 Một người gọi điện thoại cho bạn nhưng quên mất 3 chữ số cuối và chỉ nhớ rằng chúng khác nhau. Tìm xác suất để người đó quay số một lần được đúng số điện thoại của bạn. Giải: Không gian mẫu là tập con của tập các số 000, 001, …, 999 mà có 3 chữ số khác nhau. Ta phải tìm số các cặp (a,b,c) với a,b,c nhận từ 0,…, 9 mà a, b, c khác nhau đôi một. a có 10 cách chọn, sau đó b có 9 cách chọn, sau đó c có 8 cách chọn , vậy số các cặp như vậy là 10.9.8 = 720. xác suất để người đó quay số một lần được đúng số điện thoại của bạn là 1 720 . Bài 1.10 Trong một hòm đựng 10 chi tiết đạt tiêu chuẩn và 5 chi tiết phế phẩm. Lấy đồng thời 3 chi tiết. Tính xác suất: a) Cả 3 chi tiết lấy ra thuộc tiêu chuẩn b) Trong số 3 chi tiết lấy ra có 2 chi tiết đạt tiêu chuẩn. Giải: Gọi các chi tiết đạt tiêu chuẩn là 1, …, 10, các chi tiết phế phẩm là 11, …, 15. Không gian mẫu là tập các tập con {a, b, c} với a, b, c khác nhau đôi 1 nhận giá trị từ 1 đến 15. Số các kết cục đồng khả năng là 3 15 15.14.13 5.7.13 3.2.1 C .
7. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 7 a) Số các kết cục thuận lợi là 3 10 10.9.8 5.3.8 3.2.1 C (lấy 3 số trong 10 số không cần xếp thứ tự), vậy 3 10 3 15 5.3.8 0,264 5.7.13 a C P C b) Số các kết cục thuận lợi là 2 1 10 5 10.9 . .5 5.9.5 2.1 C C (lấy 2 số trong 10 số và số còn lại trong 5 số, không cần xếp thứ tự), vậy 5.9.5 0,495 5.7.13 bP . Bài 1.11 Một nhi đồng tập xếp chữ. Em có các chữ N, Ê, H, G, H, N. Tìm xác suất để em đó trong khi sắp xếp ngẫu nhiên được chữ NGHÊNH. Giải: Đầu tiên ta xếp chữ N : có 2 6 6.5 15 2.1 C cách xếp 2 chữ N vào 6 vị trí. Còn lại 4 vị trí. Sau đó đến chữ H : có 2 4 4.3 6 2.1 C cách xếp 2 chữ H vào 4 vị trí. Còn lại 2 vị trí. Sau đó đến chữ Ê có 2 cách xếp, còn vị trí cuối cùng cho chữ G. Vậy số cách xếp có thể có là 15.6.2.1 = 180, vậy 1 180 P . Bài 1.12 Thang máy của một tòa nhà 7 tầng xuất phát từ tầng một với 3 khách. Tìm xác suất để : a) Tất cả cùng ra ở tầng 4. b) Tất cả cùng ra ở một tầng. c) Mỗi người ra ở một tầng khác nhau. Giải: Mỗi khách có thể ra ở một trong 6 tầng, vậy số các trường hợp có thể xảy ra là 6.6.6 = 216. a) số kết cục thuận lợi là 1, vậy 1 216 aP . b) số kết cục thuận lợi là 6, vậy 6 1 216 36 bP . c) người thứ nhất có 6 cách ra thang máy, người thứ 2 còn 5 ra thang máy, người thứ 3 có 4 cách ra thang máy, số các kết cục thuận lợi là 3 6 6.5.4A , vậy 6.5.4 5 216 9 cP . Bài 1.13 Trên giá sách có xếp ngẫu nhiên một tuyển tập của tác giả X gồm 12 cuốn. Tìm xác suất để các tập được xếp theo thứ tự hoặc từ trái sang phải, hoặc từ phải sang trái. Giải: Số cách xếp sách là: 12! Gọi A là biến cố “xếp theo thứ tự từ trái sang phải hoặc từ phải sang trái”.
8. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 8 vì A có 2 khả năng 2 12! P A . Bài 1.14 Lấy ngẫu nhiên 3 quân bài từ một cỗ bài 52 quân. Tìm xác suất để : a) Được 3 quân át b) Được 1 quân át Giải: Số các kết cục đồng khả năng là 3 52C . a) Số cách chọn 3 quân át từ 4 quân át là : 3 4C , vậy 3 4 3 52 4.3.2 1 52.51.50 5525 a C P C . b) Số cách chọn 1 quân át từ 4 quân át là 1 4 4C , hai quân còn lại có số cách chọn là 2 48C . Vậy 2 48 3 52 4 4.48.47.3.2.1 1128 52.51.50.2 5525 b C P C . Bài 1.15 Một lô hàng có 6 chính phẩm và 4 phế phẩm được chia ngẫu nhiên thành 2 thành phần bằng nhau. Tìm xác suất để mỗi phần có số chính phẩm bằng nhau. Giải: Mỗi phần sẽ có 5 sản phẩm. Chỉ cần xét phần 1 vì phần 2 là phần bù của phần 1. Để mỗi phần có số chính phẩm bằng nhau thì phần một phải là (3 chính phẩm+2 phế phẩm). Các kết cục đồng khả năng của phần 1 là (5 chính phẩm), (4 chính phẩm+1 phế phẩm), (3 chính phẩm+2 phế phẩm), (2 chính phẩm+3 phế phẩm), (1 chính phẩm+4 phế phẩm). Do đó 1 5 P . Bài 1.16 Mỗi vé xổ số có 5 chữ số. Tìm xác suất để một người mua một vé được vé : a) Có 5 chữ số khác nhau b) Có 5 chữ số đều lẻ Giải: Không gian mẫu là {00000,00001, …, 99999} là các số có 5 chữ số từ 0 đến 99999 (nếu thiếu số thì viết số 0 vào đầu). Số các kết cục đồng khả năng là 100000. a) Chữ số thứ 1 có 10 cách chọn, chữ số thứ 2 có 9 cách chọn, chữ số thứ 3 có 8 cách chọn, chữ số thứ 4 có 7 cách chọn, chữ số thứ 5 có 6 cách chọn. Số các kết cục thuận lợi là : 10.9.8.7.6. Do đó 10.9.8.7.6 189 0,3024 100000 625 aP . b) Mỗi chữ số có 5 cách chọn là 1,3,5,7,9. Số các kết cục thuận lợi là : 55 . Do đó 5 5 1 0,03125 100000 32 bP .
9. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 9 Bài 1.17 Năm người A, B, C, D, E ngồi một cách ngẫu nhiên vào một chiếc ghế dài. Tìm xác suất để : a) C ngồi chính giữa b) A và B ngồi ở hai đầu ghế Giải: Giả sử ghế dài được chia thành 5 ô, mỗi người ngồi vào một ô. Có 5 cách xếp cho người A ngồi, sau đó còn 4 cách xếp cho người B, 3 cách xếp cho người C, 2 cách xếp cho người D và cuối cùng 1 cách duy nhất cho người E. Số các kết cục đồng khả năng là 5.4.3.2.1=120. a) C ngồi chính giữa, vậy có 1 cách xếp cho C, còn 4 cách xếp cho A, 3 cách xếp cho B, 2 cách xếp cho D, 1 cách xếp cho E. Số các kết cục thuận lợi là 1.4.3.2.1=24. Vậy 24 1 0,2 120 5 aP . b) A và B ngồi hai đầu ghế nên có 2 cách xếp cho A, B cùng ngồi là A B hoặc B A ở hai đầu ghế, sau đó có 3 cách xếp cho C, 2 cách xếp cho D, và 1 cách xếp duy nhất cho E. Số các kết cục thuận lợi là : 2.3.2.1=12. Vậy 12 0,1 120 aP . Bài 1.18 Trong một chiếc hộp có n quả cầu được đánh số từ 1 tới n. Một người lấy ngẫu nhiên cùng một lúc ra hai quả. Tính xác suất để người đó lấy được một quả có số hiệu nhỏ hơn k và một quả có số hiệu lớn hơn k (1<k<n). Giải: Chọn 2 quả cầu trong n quả cầu, số kết cục đồng khả năng là 2 nC . Số cách chọn 1 quả cầu có số hiệu nhỏ hơn k là 1k . Số cách chọn quả cầu có số hiệu lớn hơn k là n k . Số kết cục thuận lợi là ( 1)( )k n k . Vậy 2 ( 1)( ) 2( 1)( ) ( 1)n k n k k n k P C n n . Bài 1.19 Gieo n con xúc xắc đối xứng và đồng chất. Tìm xác suất để được tổng số chấm là 1n . Giải: Gieo n con xúc xắc thì ta có số kết cục đồng khả năng là 6n . Nếu tổng số chấm là 1n thì chỉ có trường hợp 1n mặt 1 và 1 mặt 2. Số kết cục thuận lợi là: n. Vậy 6n n P . §2 Định nghĩa thống kê về xác suất Bài 1.20 Tần suất xuất hiện biến cố viên đạn trúng đích của một xạ thủ là 0,85. Tìm số viên đạn trúng đích của xạ thủ đó nếu người bắn 200 viên đạn. Giải: Có 0,85 = 85% số viên đạn trúng đích. Vậy bắn 200 viên thì có 85%.200 = 170 viên trúng đích.
11. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 11 sản phẩm đánh rơi nếu là chính phẩm thì chỉ có thể là 1a chính phẩm Số khả năng của sản phẩm đánh rơi là a + b – 1 (1 là sản phẩm chọn tại kho) Xác suất sản phẩm đánh rơi là chính phẩm là 1 1 a P a b Bài 1.24 Số lượng nhân viên của công ty A được phân loại theo lứa tuổi và giới tính như sau: Giới tính Tuổi Nam Nữ Dưới 30 120 170 Từ 30-40 260 420 Trên 40 400 230 Tìm xác suất để lấy ngẫu nhiên một người của công ty đó thì được: a. Một nhân viên từ 40 tuổi trở xuống b. Một nam nhân viên trên 40 c. Một nữ nhân viên từ 40 tuổi trở xuống Giải: a. Xác suất chọn được 1 nhân viên từ 40 tuổi trở xuống: Pa = 120 170 260 420 97 0,61 1600 160 b. Xác suất chọn được 1 nam nhân viên trên 40 tuổi: Pb= 400 1 0,25 1600 4 c. Xác suất chọn được 1 nữ nhân viên từ 40 tuổi trở xuống: Pc= 170 420 59 0,37 1600 160 Bài 1.25 Một cửa hàng đồ điện nhập lô bóng điện đóng thành từng hộp, mỗi hộp 12 chiếc. Chủ cửa hàng kiểm tra chất lượng bằng cách lấy ngẫu nhiên 3 bóng để thử và nếu cả 3 bóng cùng tốt thì hộp bóng điện đó được chấp nhận. Tìm xác suất để một hộp bóng điện được chấp nhận nếu trong hộp đó có 4 bóng bị hỏng. Giải: Xét một hộp 12 bóng, trong đó có 4 bóng hỏng. Gọi A là biến cố ” 3 bóng điện được lấy ra trong hộp có 4 bóng hỏng đều tốt” Số kết hợp đồng khả năng xảy ra là số tổ hợp chập 3 từ 12 phần tử. Như vậy ta có: n= 3 12 220C Trong hộp có 4 bóng hỏng, 8 bóng tốt nên số khả năng thuận lợi lấy được 3 bóng tốt là m = 3 8 56C
12. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 12 Vậy xác suất hộp điện được chấp nhận là: P(A) = 56 0,254 220 Bài 1.26 Giả sử xác suất sinh con trai và con gái là như nhau. Một gia đình có 3 con. Tính xác suất để gia đình đó có: a. Hai con Gái b. Ít nhất hai con gái. c. Hai con gái biết đứa con đầu lòng là gái. d. Ít nhất hai con gái biết rằng gia đình đó có ít nhất một con gái Giải: Xác suất sinh con trai và con gái là như nhau và đều bằng 1 2 . Mỗi lần gia đình đó sinh con sẽ có hai khả năng xảy ra hoặc là con trai hoặc là con gái, mà gia đình đó có ba con nên số khả năng là có thể xảy ra là 8. Không gian mẫu là các bộ ( 1 2 3, ,c c c ) mà ic nhận giá trị trai hoặc gái. a) A là biến cố gia đình đó sinh hai con gái P(A)= 2 3 3 8 8 C b) B là biến cố gia đình đó sinh ít nhất hai con gái. Do gia đình đó sinh ít nhất hai con gái nên gia đình đó có thể sinh hai con gái hoặc ba con gái. Nếu gia đình đó sinh hai con gái có 3 khả năng xảy ra (như câu a)), gia đình đó sinh ba con gái có một khả năng xảy ra. P(B)= 4 8 c) Gia đình đó sinh hai con gái biết đứa con đầu là con gái Đứa thứ hai là con gái thì đứa thứ ba là con trai, đứa thứ hai là con trai thì đứa thứ ba là con gái. Vậy xác suất sinh hai con gái mà đứa con đầu lòng là con gái là: P= 1 1 1 1 1 . . 2 2 2 2 2 d) D=Biến cố gia đình đó sinh ít nhất hai con gái biết gia đình đó có ít nhất 1 con gái. Gia đình đó có ít nhất một con gái vậy số khả năng xảy ra là 8-1=7 (bỏ đi 1 trường hợp 3 nam). Không gian mẫu còn 7 giá trị. Gia đình đó có ít nhất hai con gái nên hoặc có hai con gái hoặc có ba con gái Nếu gia đình đó có hai con gái sẽ có một con trai có ba khả năng xảy ra, nếu gia đình đó có ba con gái có môt khả năng xảy ra P(D)= 4 7 .
14. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 14 P(B) = 6 0.06 100 Gọi C là biến cố sp bị sứt vòi biết rằng nó bị vỡ nắp P(C) = 6 1 9 6 4 1 = 0.35 Bài 1.29 Biết rằng tại xí nghiệp trong 3 tháng cuối năm đã có 6 vụ tai nạn lao động. Tìm xác suất để không có ngày nào có quá 1 vụ tai nạn lao động. Giải: Vì 3 tháng cuối năm có 31+30+31=92 ngày, ta gọi là ngày 1,…, ngày 92. Không gian mẫu là tập các bộ số tự nhiên ( 1 2 6, ,…,a a a ) sao cho ka nhận giá trị từ 1, 2,..,92 (tai nạn thứ k xảy ra ở ngày ka ). Số các trường hợp đồng khả năng là n = 6 92 . Gọi A là biến cố “không có ngày nào có quá 1 vụ tai nạn lao động”. Có nghĩa một ngày có 1 vụ tai nạn hoặc không. Số kết cục thuận lợi cho biến cố A là số chỉnh hợp chập 6 của từ 92 phần tử (các ka đôi một khác nhau): m = 6 92A . Vậy: P(A) = 6 92 6 92 A . Bài 1.30 Có n người trong đó có m người trùng tên xếp hàng một cách ngẫu nhiên. Tìm xác suất để m người trùng tên đứng cạnh nhau nếu: a, Họ xếp hàng ngang. b, Họ xếp vòng tròn. Giải: a) Vì có n người xếp thành hàng ngang nên sẽ có n! cách xếp. Gọi A là biến cố “m người trùng tên đứng cạnh nhau khi họ xếp hàng ngang”. Nếu coi m người trùng tên đứng cạnh nhau này là 1 người thì ta có (n – m + 1)! cách xếp. Và trong đó lại có m! cách xếp cho m người trùng tên. Vậy xác suất để m người trùng tên đứng cạnh nhau khi họ xếp hàng ngang là: P(A) = !( 1)! ! m n m n b) Ví có n người xếp thành vòng tròn nên sẽ có (n – 1)! cách sắp xếp. Gọi b là biến cố “m người trùng tên đứng cạnh nhau khi họ xếp thành vòng tròn”.
15. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 15 Nếu coi m người trùng tên đứng cạnh nhau là 1 người thì khi xếp n người thành vòng tròn ta có (n – m)! cách xếp. Số kết quả thuận lợi cho B là: m!(n – m)!. Vậy xác suất để m người trùng tên đứng cạnh nhau khi họ xếp vòng tròn là: P(B) = !( )! ( 1)! m n m n Bài 1.31 Ba nữ nhân viên phục vụ A, B, C thay nhau rửa đĩa chén và giả thiết ba người này đều “khéo léo” như nhau. Trong một tháng có 4 chén bị vỡ. Tìm xác suất: a. Chị A đánh vỡ 3 chén và chị B đánh vỡ 1 chén b. Một trong 3 người đánh vỡ 3 chén c. Một trong 3 người đánh vỡ cả 4 chén Giải: Không gian mẫu là các bộ số (a,b,c,d) ở đó với a, b, c, d nhận giá trị 1, 2, 3 (giá trị 1, 2 ,3 nếu chén đó được chị A, B, C tương ứng đánh vỡ.). Số các trường hợp đồng khả năng là 3 4 . a) Chị A đánh vỡ 3 chén và chị B đánh vỡ 1 chén, có nghĩa có 3 số 1 và 1 số 2. Số các trường hợp thuận lợi là 3 4 .1 4C nên 3 4 1 4 16 aP . b) Một trong 3 người đánh vỡ 3 chén nên có 6 khả năng là (3,1,0); (3,0,1) ;(1,3,0);(0,3,1);(1,0,3);(0,1,3). Vậy 6 2 15 5 bP . c) Một trong 3 người đánh vỡ cả 4 chén nên có 3 khả năng là (4,0,0);(0,4,0):(0,0,4) nên 3 1 15 5 cP Bài 1.32 Có 10 khách ngẫu nhiên bước vào 1 cửa hàng có 3 quầy. Tìm xác suất để có 3 người đến quầy số 1. Giải: Mỗi vị khách đều có 3 sự lựa chọn vào 1 trong 3 quầy bất kỳ của cửa hàng. Vậy 10 vị khách sẽ có 310 sự lựa chọn vào 1 trong 3 quầy bất kỳ của cửa hàng. Không gian mẫu là các bộ số ( 1 2 10, ,…,a a a ) trong đó ka nhận giá trị 1,2,3 nếu khách k vào quầy 1,2,3 tương ứng. Gọi A là biến cố 3 vị khách đến quầy số 1 (có nghĩa có 3 số ka bằng 1). Số cách chọn 3 vị trí trong 10 vị trí để gán giá trị 1 là 3 10C . Ta thấy , 7 vị khách còn lại sẽ xếp vào 2 quầy còn lại (quầy 2 và 3). Mỗi vị khách có 2 sự lựa chọn vào 2 quầy 2 và 3. Vậy số trường hợp xếp được là 27 Số cách chọn 3 vị khách vào quầy 1 và 7 vị khách vào 2 quầy 2 và 3 là 7 3 102 .C Vậy xác suất 3 vị khách vào quầy số 1 là
16. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 16 P(A) = 7 3 10 10 2 . 3 C = 0,26. §4 Quan hệ giữa các biến cố Bài 1.33 Một chi tiết được lấy ngẫu nhiên có thể là chi tiết loại 1(ký hiệu là A) hoặc chi tiết loại 2(ký hiệu là B) hoặc chi tiết loại 3(ký hiệu là C). Hãy mô tả các biến cố sau đây: a) A B b) AB C c) A B d) AC Giải: Gọi A là biến cố “chi tiết lấy ra thuộc loại I” B là biến cố “chi tiết lấy ra thuộc loại II” C là biến cố “chi tiết lấy ra thuộc loại III” a) A + B là biến cố lấy ra chi tiết loại A hoặc loại B. b) A B là biến cố không lấy ra được chi tiết loại A hoặc loại B , hay chính là lấy ra chi tiết loại C. c) AB+C là biến cố lấy ra hoặc chi tiết loại C hoặc vừa là chi tiết A vừa là chi tiết B. d) AC là biến cố lấy ra chi tiết vừa là loại A vừa là loại C. Bài 1.34 Ba người cùng bắn vào 1 mục tiêu. Gọi Ak là biến cố người thứ k bắn trúng mục tiêu. Hãy viết bằng ký hiệu các biến cố biểu thị bằng: a. Chỉ có người thứ nhất bắn trúng mục tiêu b. Chỉ có một người bắn trúng mục tiêu c. Chỉ có hai người bắn trúng mục tiêu d. Có người bắn trúng mục tiêu Giải: 3 người cùng bắn vào mục tiêu. Gọi Ak là biến cố người thứ k bắn trúng mục tiêu (k =1,3) a) Chỉ có người thứ nhất bắn trúng mục tiêu: 21 3.A A A . b) Chỉ có 1 người bắn trúng mục tiêu: 2 3 1 2 3 1 2 31A A A A A A A A A . c) Chỉ có 2 người bắn trúng mục tiêu: 1 22 3 1 3 1 2 3A A A A A A A A A . d) Có người bắn trúng mục tiêu: 1 2 3A A A . Bài 1.35 Ta kiểm tra theo thứ tự một lô hàng có 10 sản phẩm. Các sản phẩm đều thuộc một trong hai loại: Tốt hoặc Xấu. Ký hiệu Ak = (k = 1,10 ) là biến cố chỉ sản phẩm kiểm tra thứ k thuộc loại xấu. Viết bằng ký hiệu các biến cố sau: a. Cả 10 sản phẩm đều xấu. b. Có ít nhất một sản phẩm xấu c. Có 6 sản phẩm đầu kiểm tra là tốt, còn các sản phẩm còn lại là xấu. d. Các sản phẩm kiểm tra theo thứ tự chẵn là tốt, còn các sản phẩm kiểm tra theo thứ tự lẻ là xấu. Giải: a) A = 1 2 10…A A A b) B = 1 2 10…A A A c) C = 1 2 6 7 10… …A A A A A d) D = 1 2 3 9 10…A A A A A
18. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 18 A = Biến cố có đúng một lần đo sai số vượt quá tiêu chuẩn = 1 2 3 1 2 3 1 2 3A A A A A A A A A P(A) = 1 2 3 1 2 3 1 2 3( )P A A A A A A A A A = 3 . 0,4 . 0,6 . 0,6 = 0,432 . Bài 1.41 Một hộp chứa 3 bi trắng, 7 bi đỏ và 15 bi xanh. Một hộp khác chứa 10 bi trắng, 6 bi đỏ và 9 bi xanh. Lấy ngẫu nhiên từ mỗi hộp một bi. Tìm xác suất để hai bi lấy ra có cùng màu. Giải: Gọi A1 = biến cố lấy được bi trắng ở hộp 1 P (A1) = 3 25 B1 = biến cố lấy được bi đỏ ở hộp 1 P (B1) = 7 25 C1 = biến cố lấy được bi xanh ở hộp 1 P (C1) = 15 25 A2 = biến cố lấy được bi trắng ở hộp 2 P (A2) = 10 25 B2 = biến cố lấy được bi đỏ ở hộp 2 P (B2) = 6 25 C2 = biến cố lấy được bi xanh ở hộp 2 P (C2) = 9 25 Vì A1, B1, C1, A2, B2, C2 là các biến cố độc lập nên: A = biến cố lấy được 2 bi màu trắng P (A) = P (A1) .P (A2) = 3 25 . 10 25 = 6 125 B = biến cố lấy được 2 bi màu đỏ P (B) = P(B1) . P (B2) = 7 6 . 25 25 = 42 625 C = biến cố lấy được 2 bi màu xanh P(C) = P(C1) .P (C2) = 15 9 . 25 25 = 27 125 D = biến cố lấy được 2 bi cùng màu A, B, C là các biến cố độc lập nên ta có xác suất để 2 bi lấy ra có cùng màu là: P (D) = P (A) + P (B) + P (C) = 6 125 + 42 625 + 27 125 = 207 625 . Bài 1.42 Hai người cùng bắn vào 1 mục tiêu. Khả năng bắn trúng của từng người là 0,8 và 0,9. Tìm xác suất: a, Chỉ có 1 người bắn trúng b, Có người bắn trúng mục tiêu c, Cả 2 người bắn trượt Giải: Gọi A1 là biến cố người thứ nhất bắn trúng mục tiêu. Vậy P(A1) = 0,8; P( 1A )=1-0,8= 0,2 Gọi A2 là biến cố người thứ hai bắn trúng mục tiêu. Vậy P(A2) = 0,9 Vậy P(A2) = 0,9; P( 2A )=1-0,9= 0,1 a, Gọi A là biến cố chỉ có 1 người bắn trúng Có 2 trường hợp xảy ra
19. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 19 TH1: Người 1 bắn trúng và người 2 không bắn trúng. P(A1 2A )= P(A1). P( 2A )=0,8.0,1=0,08 TH2: Người 1 không bắn trúng và người 2 bắn trúng. P( 1A A2)= P( 1A ). P(A2)=0,2.0,9=0,18 Vậy xác suất chỉ có 1 người bắn trúng mục tiêu là: P(A) = P(A1 2A ) + P( 1A A2) = 0,08 + 0,18 = 0,26 b) Gọi B là biến cố có người trúng mục tiêu. B là biến cố cả hai người đều bắn trượt. Vậy nên P( B ) = P( 1A ). P( 2A )= 0,2.0,1 = 0,02 Vậy nên P(B)= 1- P( B ) = 1 – 0,02 = 0,98 Bài 1.43 Chi tiết được gia công qua k công đoạn nối tiếp nhau và chất lượng chi tiết chỉ được kiểm tra sau khi đã được gia công xong. Xác suất gây ra khuyết tật cho chi tiết ở công đoạn thứ i là ( 1,…, )iP i k . Tìm xác suất để sau khi gia công xong chi tiết có khuyết tật. Giải: Sản phẩm được gia công qua k công đoạn. Sản phẩm có thể có chi tiết khuyết tật ở bất cứ công đoạn nào. Ta có xác suất để chi tiết công đoạn 1 khuyết tật là P1 nên xác suất để chi tiết công đoạn 1 không khuyết tật là 1 11P P Tương tự, xác suất để chi tiết công đoạn i không khuyết tật là 1i iP P Vậy xác suất để sản phẩm không khuyết tật là 1 2… …i kP P P P P nên xác suất để sản phẩm có chi tiết khuyết tật là 1 2 11 1 … … 1 (1 )…(1 )i k kP P P P P P P . Bài 1.44 Trong hộp có n quả bóng bàn mới. Người ta lấy ra k quả để chơi ( 2 n k ) sau đó lại bỏ vào hộp. Tìm xác suất để lần sau lấy k quả để chơi thì lấy được toàn bóng mới. Giải: Sau khi lấy ra k quả để chơi, rồi lại bỏ lại thì số bóng bàn mới còn lại trong hộp là n – k quả và số bóng cũ sẽ là k quả. Gọi A là “biến cố lấy được k quả mới lần 2”. Khi đó, xác suất lấy được k quả mới là (chú ý 2 n k ): P(A)= 2 !! ! : ! 2 ! ! ! ! 2 ! k n k k n n kn kC n C k n k k n k n n k .
21. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 21 Bài 1.48 Một nồi hơi được lắp van bảo hiểm với xác suất hỏng của các van tương ứng là 0,1 và 0,2. Nồi hơi sẽ hoạt động an toàn khi có van không hỏng. Tìm xác suất để nồi hơi hoạt động: a. An toàn b. Mất an toàn Giải: Gọi A1 là biến cố van 1 không hỏng : P(A1)=0,1 Gọi A2 là biến cố van 2 không hỏng : P(A2)=0,2 Gọi A là biến cố nồi hơi hoạt động không an toàn khi có van bị hỏng. P(A)=P(A1.A2)=P(A1).P(A2)=0,1.0,2=0,02. Vậy xác suất để nồi hơi hoạt động an toàn là: P=1 – 0,02=0,98. Bài 1.49 Bắn liên tiếp vào 1 mục tiêu cho đến khi viên đạn đầu tiên trúng mục tiêu thì dừng. Tính xác suất sao cho phải bắn đến viên thứ 6, biết rằng xác suất trúng mục tiêu của mỗi viên đạn là 0,2 và các lần bắn độc lập nhau. Giải: Gọi A là biến cố “Phải bắn đến viên thứ 6 mới trúng đích” Ak là biến cố “Viên thứ k trúng đích” : P(Ak) = 0,2. Phải bắn đến viên thứ 6 mới trúng đích. Vậy, phải bắn trượt 5 lần đầu và lần thứ sáu thì trúng. Ta lại có các lần bắn có kết quả độc lập với nhau, vì vậy các biến cố A1, A2, …, A6 là các biến cố độc lập. Vậy xác suất để lần thứ 6 trúng đích là: P(A) = P( ).P( ).P( ).P( ).P( ).P(A6) = (1 − 0,2) . 0,2 = 0,065536. Bài 1.50 Một thủ kho có chùm chìa khóa gồm 9 chiếc trong đó chỉ có một chiếc mở cửa kho. Anh ta thử ngẫu nhiên từng chìa khóa một, chiếc nào đã được thử thì không thử lại. Tính xác suất anh ta mở được đã ở lần thử thứ tư. Giải: Gọi A1 là biến cố: “Lần thứ nhất không mở được cửa kho”. A2 là biến cố: “Lần thứ hai không mở được cửa kho”. A3 là biến cố: “Lần thứ ba không mở được cửa kho”. A4 là biến cố: “Lần thứ tư mở được cửa kho”. Theo đầu bài, thủ kho thử ngẫu nhiên từng chìa một, chiếc nào đã được thử thì không thử lại. Do đó A1, A2, A3, A4 là các biến cố phụ thuộc. Xét biến cố A1, chùm chìa khóa có 9 chìa trong đó chỉ có một chìa mở được, 8 chìa còn lại không mở được. Lần thứ nhất không mở được. Vậy biến cố A1 có xác suất: P(A1) =
25. TS. Nguyễn Văn Minh ĐH Ngoại Thương Hà nội 25 a. Gọi A là biến cố người đó bán được hàng ở 2 nơi. P(A)= .0,22 .0,88 =0,3 b. Gọi B là xác suất người đó không bán được ở nơi nào. P(B)= .0,20 .0,810 Vậy xác suất để người đó bán được ở ít nhất một nơi là: P= 1 – P(B) =0,8926 Bài 1.59 Tỷ lệ phế phẩm của 1 máy là 5%. Tìm xác suất để trong 12 sản phẩm do máy đó sản xuất ra có: a. 2 phế phẩm. b. Không quá 2 phế phẩm. Giải: a) Xác suất để sản xuất ra 2 phế phẩm đó là: (2) = . 0,05 . 0,95 ≈ 0,0988 ≈ 9,88% b) Gọi B là biến cố để “máy đó sản xuất ra có không quá 2 phế phẩm”, ta có: ( ) = (0) + (1) + (2) = 0,05 . 0,95 + 0,05 . 0,95 + 0,05 . 0,95 ≈ 0,9804 ≈ 98,04% Bài 1.60 Đề thi trắc nghiệm có 10 câu hỏi , mỗi câu hỏi có 5 cách trả lời , trong đó chỉ có một cách trả lời đúng . Một thí sinh chọn cách trả lời một cách hoàn toàn hú họa . Tìm xác suất để người đó thi đỗ , biết rằng để đỗ phải trả lời đúng ít nhất 8 câu . Giải: Coi việc trả lời mỗi câu hỏi của người đó là một phép thử độc lập , ta có 10 phép thử độc lập . Mỗi phép thử có 5 cách trả lời nên xác suất để trả lời đúng mỗi câu hỏi là 0,2 . Vậy bài toán thỏa mãn lược đồ Bernoulli . Theo công thức Bernoulli : P10(8) = . 0,28 . 0,82 = 0,000078 . Bài 1.61 Một siêu thị lắp 4 chuông báo cháy hoạt động độc lập với nhau. Xác suất để khi có cháy mỗi chuông kêu là 0,95. Tìm xác suất để có chuông kêu khi cháy. Giải: Gọi A là biến cố chuông kêu khi có cháy Ta có là biến cố không có chuông nào kêu khi cháy. Coi 4 chuông báo cháy là 4 phép thử, ta có 4 phép thử độc lập. Trong mỗi phép thử có 2 khả năng xảy ra chuông kêu hoặc không kêu khi có cháy. Xác suất chuông kêu khi có cháy là p = 0,95. P( )=P4(0)= 0,054 =6,25. 10-6 Vậy P(A)=1-P( )=1- 6,25. 10-6 =0,999994.
Bạn đang xem chủ đề Toan 7 On Tap Chuong 1 So Hoc Loi Giai Hay trên website Caffebenevietnam.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!