Top 13 # Toán Hình Học Lớp 5 Có Lời Giải Xem Nhiều Nhất, Mới Nhất 6/2023 # Top Trend | Caffebenevietnam.com

Các Bài Toán Hình Học Lớp 9 Có Lời Giải

, Working at Trường Đại học Công nghệ Thông tin và Truyền thông – Đại học Thái Nguyên

Published on

Cac bai-toan-hinh-hoc-on-thi-vao-lop-10

4. N y x O K F E M BA 3. Rõ ràng đây là câu hỏi khó đối với một số em, kể cả khi hiểu rồi vẫn không biết giải như thế nào , có nhiều em may mắn hơn vẽ ngẫu nhiên lại rơi đúng vào hình 3 ở trên từ đó nghĩ ngay được vị trí điểm C trên nửa đường tròn. Khi gặp loại toán này đòi hỏi phải tư duy cao hơn. Thông thường nghĩ nếu có kết quả của bài toán thì sẽ xảy ra điều gì ? Kết hợp với các giả thiết và các kết quả từ các câu trên ta tìm được lời giải của bài toán. Với bài tập trên phát hiện M là trực tâm của tam giác không phải là khó, tuy nhiên cần kết hợp với bài tập 13 trang 72 sách Toán 9T2 và giả thiết M là điểm chính giữa cung AC ta tìm được vị trí của C ngay. Với cách trình bày dưới mệnh đề “khi và chỉ khi” kết hợp với suy luận cho ta lời giải chặt chẽ hơn. Em vẫn có thể viết lời giải cách khác bằng cách đưa ra nhận định trước rồi chứng minh với nhận định đó thì có kết quả , tuy nhiên phải trình bày phần đảo: Điểm C nằm trên nửa đường tròn mà thì AD là tiếp tuyến. Chứng minh nhận định đó xong ta lại trình bày phần đảo: AD là tiếp tuyến thì . Từ đó kết luận. 4. Phát hiện diện tích phần tam giác ADC ở ngoài đường tròn (O) chính là hiệu của diện tích tứ giác AOCD và diện tích hình quạt AOC thì bài toán dễ tính hơn so với cách tính tam giác ADC trừ cho diện tích viên phân cung AC. Bài 3 Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F. 1. Chứng minh: 2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. 3. Gọi K là giao điểm của AF và BE, chứng minh . 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. BÀI GIẢI CHI TIẾT 1. Chứng minh: . EA, EM là hai tiếp tuyến của đường tròn (O) cắt nhau ở E nên OE là phân giác của . Tương tự: OF là phân giác của . Mà và kề bù nên: (đpcm) hình 4 2. Chứng minh: Tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. ” 0 60BC =” 0 60BC = · 0 EOF 90= MK AB⊥ 3 · 0 EOF 90= ·AOM ·BOM ·AOM·BOM· 0 90EOF =

5. Ta có: (tính chất tiếp tuyến) Tứ giác AEMO có nên nội tiếp được trong một đường tròn. Tam giác AMB và tam giác EOF có:, (cùng chắn cung MO của đường tròn ngoại tiếp tứ giác AEMO. Vậy Tam giác AMB và tam giác EOF đồng dạng (g.g). 3. Gọi K là giao điểm của AF và BE, chứng minh . Tam giác AEK có AE

6. x H Q I N M O C BA K x H Q I N M O C BA Nếu chú ý MK là đường thẳng chứa đường cao của tam giác AMB do câu 3 và tam giác AKB và AMB có chung đáy AB thì các em sẽ nghĩ ngay đến định lí: Nếu hai tam giác có chung đáy thì tỉ số diện tích hai tam giác bằng tỉ số hai đường cao tương ứng, bài toán qui về tính diện tích tam giác AMB không phải là khó phải không các em? Bài 4 Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng: a) Tứ giác AMQI nội tiếp. b) . c) CN = NH. (Trích đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của sở GD&ĐT Tỉnh Bắc Ninh) BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác AMQI nội tiếp: Ta có: MA = MC (tính chất hai tếp tuyến cắt nhau) OA = OC (bán kính đường tròn (O)) Do đó: MO AC . (góc nội tiếp chắn nửa đường tròn (O)) . Hai đỉnh I và Q cùng nhìn AM dưới Hình 5 một góc vuông nên tứ giác AMQI nội tiếp được trong một đường tròn. b) Chứng minh:. Tứ giác AMQI nội tiếp nên Hình 6 (cùng phụ ) (2). có OA = OC nên cân ở O. (3). Từ (1), (2) và (3) suy ra . c) Chứng minh CN = NH. Gọi K là giao điểm của BC và tia Ax. Ta có: (góc nội tiếp chắn nửa đường tròn(O)). AC BK , AC OM OM

8. · · · · CDB CAB CAB CFA  =  = x F E D C B O A Từ (1) và (2) suy ra: chúng tôi = chúng tôi c) Chứng minh tứ giác CDEF nội tiếp: Ta có: (hai góc nội tiếp cùng chắn cung BC) ( cùng phụ ) Do đó tứ giác CDEF nội tiếp. Cách khác và có: chung và (suy từ chúng tôi = chúng tôi nên chúng đồng dạng (c.g.c). Suy ra: . Vậy tứ giác CDEF là tứ giác nội tiếp. d) Xác định số đo của góc ABC để tứ giác AOCD là hình thoi: Ta có: (do BD là phân giác ) . Tứ giác AOCD là hình thoi OA = AD = DC = OC AD = DC = R Vậy thì tứ giác AOCD là hình thoi. Tính diện tích hình thoi AOCD theo R: . Sthoi AOCD = (đvdt). Hình 8 Lời bàn 1. Với câu 1, từ gt BD là phân giác góc ABC kết hợp với tam giác cân ta nghĩ ngay đến cần chứng minh hai góc so le trong và bằng nhau. 2. Việc chú ý đến các góc nội tiếp chắn nửa đường tròn kết hợp với tam giác AEB, FAB vuông do Ax là tiếp tuyến gợi ý ngay đến hệ thức lượng trong tam giác vuông quen thuộc. Tuy nhiên vẫn có thể chứng minh hai tam giác BDC và BFE đồng dạng trước rồi suy ra chúng tôi = chúng tôi Với cách thực hiện này có ưu việc hơn là giải luôn được câu 3. Các em thử thực hiện xem sao? 3. Khi giải được câu 2 thì câu 3 có thể sử dụng câu 2 , hoặc có thể chứng minh như bài giải. 4. Câu 4 với đề yêu cầu xác định số đo của góc ABC để tứ giác AOCD trở thành hình thoi không phải là khó. Từ việc suy luận AD = CD = R nghĩ ngay đến cung AC bằng 1200 từ đó suy ra số đo góc ABC ·FAC· ·CDB CFA⇒ = ∆DBC∆FBE∆ µBBD BC BF BE = · ·EFBCDB = · ·ABD CBD=·ABC” “AD CD⇒ = ⇔ ⇔” ” 0 60AD DC⇔ = =” 0 120AC⇔ =· 0 60ABC⇔ = · 0 60ABC = ” 0 120 3AC AC R= ⇒ = 2 1 1 3 . . . 3 2 2 2 R OD AC R R= = ·ODB·OBD ” 0 120 3AC AC R= ⇒ =

9. H N F E CB A bằng 600 . Tính diện tích hình thoi chỉ cần nhớ công thức, nhớ các kiến thức đặc biệt mà trong quá trình ôn tập thầy cô giáo bổ sung như ,…….. các em sẽ tính được dễ dàng. Bài 6 Cho tam giác ABC có ba góc nhọn. Đường tròn đường kính BC cắt cạnh AB, AC lần lượt tại E và F ; BF cắt EC tại H. Tia AH cắt đường thẳng BC tại N. a) Chứng minh tứ giác HFCN nội tiếp. b) Chứng minh FB là phân giác của . c) Giả sử AH = BC . Tính số đo góc của ∆ABC. BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác HFCN nội tiếp: Ta có : (góc nội tiếp chắn nửa đường tròn đường kính BC) Tứ giác HFCN có nên nội tiếp được trong đường tròn đường kính HC) (đpcm). b) Chứng minh FB là tia phân giác của góc EFN: Ta có (hai góc nội tiếp cùng chắn của đường tròn đường kính BC). (hai góc nội tiếp cùng chắn của đường tròn đường kính HC). Suy ra: . Vậy FB là tia phân giác của góc EFN (đpcm) c) Giả sử AH = BC. Tính số đo góc BAC của tam giác ABC: FAH và FBC có: , AH = BC (gt), (cùng phụ ). Vậy FAH = FBC (cạnh huyền- góc nhọn). Suy ra: FA = FB. AFB vuông tại F; FA = FB nên vuông cân. Do đó . Bài 7 (Các em tự giải) Cho tam giác ABC nhọn, các đường cao BD và CE cát nhau tại H. a) Chứng minh tứ giác BCDE nội tiếp. b) Chứng minh AD. AC = AE. AB. c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh OA DE. ·EFN ·BAC · · 0 90BFC BEC= = · · 0 180HFC HNC+ = · ·EFB ECB=”BE · ·ECB BFN=¼HN · ·EFB BFN= ∆∆· · 0 AFH 90BFC= =· ·FAH FBC=·ACB∆∆ ∆· 0 45BAC = ⊥

10. =

11. O P K M H A C B Bài 9 Cho tam giác ABC ( ) nội tiếp trong nửa đường tròn tâm O đường kính AB. Dựng tiếp tuyến với đường tròn (O) tại C và gọi H là chân đường vuông góc kẻ từ A đến tiếp tuyến đó. AH cắt đường tròn (O) tại M (M ≠ A). Đường vuông góc với AC kẻ từ M cắt AC tại K và AB tại P. a) Chứng minh tứ giác MKCH nội tiếp. b) Chứng minh ∆MAP cân. c) Tìm điều kiện của ∆ABC để ba điểm M, K, O thẳng hàng. BÀI GIẢI a) Chứng minh tứ giác MKCH nội tiếp: Ta có : (gt), (gt) Tứ giác MKCH có tổng hai góc đối nhau bằng 1800 nên nội tiếp được trong một đường tròn. b) Chứng minh tam giác MAP cân: AH

12. / /

13. H / / = = P O K I N M C BA a) Chứng minh tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó: Ta có (góc nội tiếp chắn nửa đường tròn (O)). Do đó: Tứ giác ICPN có nên nội tiếp được trong một đường tròn. Tâm K của đường tròn ngoại tiếp tứ giác ICPN là trung điểm của đoạn thẳng IP. b) Chứng minh KN là tiếp tuyến của đường tròn (O). Tam giác INP vuông tại N, K là trung điểm IP nên . Vậy tam giác IKN cân ở K . Do đó (1). Mặt khác (hai góc nội tiếp cùng chắn cung PN đường tròn (K)) (2) N là trung điểm cung CB nên . Vậy NCB cân tại N. Do đó : (3). Từ (1), (2) và (3) suy ra , hai góc này ở vị trí đồng vị nên KN

14. / /

15. 60° O J IN M B A a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). b) Kẻ các đường kính MOI của đường tròn (O; R) và MBJ của đường tròn (B; BM). Chứng minh N, I và J thẳng hàng và JI . JN = 6R2 c) Tính phần diện tích của hình tròn (B; BM) nằm bên ngoài đường tròn (O; R) theo R. BÀI GIẢI a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). Ta có . (góc nội tiếp chắn nửa đường tròn(O)). Điểm M và N thuộc (B;BM); AM MB và AN NB. Nên AM; AN là các tiếp tuyến của (B; BM). b) Chứng minh N; I; J thẳng hàng và JI .JN = 6R2 . (các góc nội tiếp chắn nửa đường tròn tâm O và tâm B). Nên IN MN và JN MN . Vậy ba điểm N; I và J thẳng hàng. Tam giác MJI có BO là đường trung bình nên IJ = 2BO = 2R. Tam giác AMO cân ở O (vì OM = OA), nên tam giác MAO đều. AB MN tại H (tính chất dây chung của hai đường tròn (O) và (B) cắt nhau). Nên OH = . Vậy HB = HO + OB = . Vậy JI . JN = 2R . 3R = 6R2 c) Tính diện tích phần hình tròn (B; BM) nằm ngoài đường tròn (O; R) theo R: Gọi S là diện tích phần hình tròn nằm (B; BM) nằm bên ngoài hình tròn (O; R). S1 là diện tích hình tròn tâm (B; BM). S2 là diện tích hình quạt MBN. S3 ; S4 là diện tích hai viên phân cung MB và NB của đường tròn (O; R). Ta có : S = S1 – (S2 + S3 + S4). Tính S1: . Vậy: S1 = . Tính S2: S2 = = Tính S3: S3 = Squạt MOB – SMOB. Squạt MOB = . OA = OB SMOB = SAMB = = = Vậy S3 = = S4 (do tính chất đối xứng). Từ đó S = S1 – (S2 + 2S3) · · 0 90AMB ANB= = ⊥ ⊥ · · 0 90MNI MNJ= =⊥⊥ · 0 60MAO = ⊥ 1 1 2 2 OA R= 3 2 2 R R R+ = 3 2. 3 2 R NJ R⇒ = = · “0 0 60 120MAB MB= ⇒ =3MB R⇒ = ( ) 2 2 3 3R Rπ π= · 0 60MBN = ⇒ ( ) 2 0 0 3 60 360 Rπ 2 2 Rπ · 0 120MOB = ⇒2 0 2 0 .120 360 3 R Rπ π = ⇒1 2 1 1 . . . 2 2 AM MB 1 . 3 4 R R 2 3 4 R 2 3 Rπ 2 3 4 R −

16. _

17. E I K H ON M D C BA S1 là diện tích nửa hình tròn đường kính MB. S2 là diện tích viên phân MDB. Ta có S = S1 – S2 . Tính S1: . Vậy S1 = . Tính S2: S2 = SquạtMOB – SMOB = = . S = ( ) = . Bài 15 Cho đường tròn (O) đường kính AB bằng 6cm . Gọi H làđiểm nằm giữa A và B sao cho AH = 1cm. Qua H vẽ đường thẳng vuông góc với AB , đường thẳng này cắt đường tròn (O) tại C và D. Hai đường thẳng BC và DA cắt nhau tại M. Từ M hạ đường vuông góc MN với đường thẳng AB ( N thuộc thẳng AB). a) Chứng minh MNAC là tứ giác nội tiếp. b) Tính độ dài đoạn thẳng CH và tính tg. c) Chứng minh NC là tiếp tuyến của đường tròn (O). d) Tiếp tuyến tại A của đường tròn (O) cắt NC ở E. Chứng minh đường thẳng EB đi qua trung điểm của đoạn thẳng CH. BÀI GIẢI a) Chứng minh tứ giác MNAC nội tiếp: (góc nội tiếp chắn nửa đường tròn) Suy ra . Tứ giác MNAC có nên nội tiếp được trong một đường tròn. b) Tính CH và tg ABC. AB = 6 (cm) ; AH = 1 (cm) HB = 5 (cm). Tam giác ACB vuông ở C, CH AB CH2 = AH . BH = 1 . 5 = 5 (cm). Do đó tg ABC = . c) Chứng minh NC là tiếp tuyến của đường tròn (O): Ta có (hai góc nội tiếp cùng chắn cung AN của đường tròn ngoại tiếp tứ giác MNAC). (so le trong của MN

18. / /? _ αK E H M O D C B A Gọi K là giao điểm của AE và BC; I là giao điểm của CH và EB. KE//CD (cùngvới AB) (đồng vị). (cùng chắn cung BD). (đối đỉnh) và (cùng chắn ). Suy ra: cân ở E. Do đó EK = EC. Mà EC = EA (tính chất hai tiếp tuyến cắt nhau) nên EK = EA. có CI

Bản Mềm: Bài Tập Hình Học Nâng Cao Lớp 5 Có Lời Giải

Bản mềm: Bài tập hình học nâng cao lớp 5 có lời giải

Bản mềm: Bài tập hình học nâng cao lớp 5 có lời giải được biên soạn có hệ thống. Phân loại khoa học theo từng dạng bài cụ thể. Quá trình luyện tập học sinh có thể hệ thống hóa lời giải một cách chi tiết. Quý thầy cô giáo có thể tải về dựa theo đối tượng học sinh của mình. Để sửa đổi cho phù hợp. Ngoài ra với phương pháp dạy học tích cực. Thầy cô có thể đưa những ví dụ trực quan hơn vào câu hỏi. Qua đó kích thích sự sáng tạo của học sinh Qua Bản mềm: Bài tập hình học nâng cao lớp 5 có lời giải. Tải thêm bộ đề thi cuối kỳ 2 môn toán cấp tiểu học, tài liệu tiểu học

Chương trình cơ bản Toán 5 có gì

Để dễ dàng hơn trong làm bài tập hình học nâng cao lớp 5 các bạn cần nắm vững kiến thức cơ bản trước. Trong phần này, chúng tôi sẽ nêu tổng quát kiến thức hình học trong chương trình Toán 5:

Hình tam giác và diện tích hình tam giác

Hình thang và diện tích hình thang

Hình tròn, đường tròn

Chu vi và diện tích hình tròn

Hình hộp chữ nhật, hình lập phương

Diện tích xung quanh, diện tích toàn phần

Thể tích của một hình

Hình trụ, hình cầu

Bảng đơn vị đo thể tích

Bảng đơn vị đo thời gian

Bảng đơn vị đo khối lượng

Bảng đơn vị đo độ dài

Cộng, trừ, nhân, chia thời gian

Bài toán về tỉ lệ nghịch

Hình ảnh bản mềm

Đối với bài tập hình học nâng cao lớp 5, nội dung vẫn xoay quanh những kiến thức cơ bản trên. Tuy nhiên độ khó của nó thì khác nhau rõ rệt. Nếu như cơ bản chỉ yêu cầu áp dụng công thức thì toán nâng cao lại yêu cầu vận dụng linh hoạt tính chất hình học.

Ngoài ra còn cần những kĩ năng mới như cắt, ghép hình, chứng minh tính chất, nêu giả định,… Hình học lớp 5 được đánh giá là chương trình khó. Hy vọng tài liệu của chúng tôi sẽ trợ giúp các bạn trong quá trình học.

Những lưu ý khi làm bài tập hình học

Vẽ hình ra cả giấy nháp trước. Như vậy, các bạn có thể tránh vẽ nhầm vào vở. Nhờ vậy, hình vẽ trong bài làm luôn sạch đẹp.

Cần thể hiện những dữ liệu bài cho lên hình vẽ một cách rõ ràng. Như vậy, khi tìm cách giải không cần phải nhìn lại đề bài nữa.

Nên dùng kí hiệu thống nhất với các loại dữ liệu như đường thẳng song song, …

Nếu như cảm thấy khó trong việc giải quyết bài toán, hãy thử dùng sơ đồ ngược. Tức là đi từ yêu cầu của bài, xác định những yếu tố cần có để suy ra yêu cầu của bài.

Ngay từ lớp 5, các bạn nên tạo thói quen làm bài để khi lên Toán 6, 7, … việc làm toán hình sẽ dễ dàng hơn. Một số điều cần chú ý khi làm bài toán hình như sau:

Bài tập ví dụ:

Lời giải:

Đề bài: Cho tam giác ABC. Trên BC lấy I là trung điểm của BC. Trên đoạn thẳng AI lấy điểm M thỏa mãn AM = 2MI. Cm kéo dài cắt AB tại điểm N. So sánh diện tích hai tam giác AMN và BMN.

Do tam giác MIC và MAC có cùng đường cao kẻ từ C. AM = 2MI

Do hai tam giác MIC và MIB có cùng đường cao kẻ từ M, IC = IB

Tải tài liệu miễn phí ở đây

Do tam giác MAC và MBC có chung đáy MC nên 2 đường cao kẻ từu 2 đỉnh A và B của 2 tam giác là bằng nhau.

Rèn Kĩ Năng Giải Toán Có Lời Văn Cho Học Sinh Lớp 5

Chương trình Toán của Tiểu học có vị trí rất quan trọng. Toán học góp phần quan trọng trong việc đặt nền móng cho việc hình thành và phát triển nhân cách học sinh. Trên cơ sở cung cấp những tri thức khoa học ban đầu về số học, các số tự nhiên, các số thập phân, các đại lượng cơ bản, giải toán có lời văn ứng dụng thiết thực trong đời sống và một số yếu tố hình học đơn giản.

Môn toán ở Tiểu học bước đầu hình thành và phát triển năng lực trừu tượng hoá, khái quán hoá, kích thích trí tưởng tượng, gây hứng thú học tập toán, phát triển hợp lý khả năng suy luận và biết diễn đạt đúng bằng lời, bằng viết, các suy luận đơn giản, góp phần rèn luyện phương pháp học tập và làm việc khoa học, linh hoạt sáng tạo.

Mục tiêu nói trên được thông qua việc dạy học các môn học, đặc biệt là môn Toán. Môn này có tầm quan trọng vì toán học với tư cách là một bộ phận khoa học nghiên cứu hệ thống kiến thức cơ bản và sự nhận thức cần thiết trong đời sống sinh hoạt và lao động của con người. Môn toán là ”chìa khoá” mở của cho tất cả các ngành khoa học khác, nó là công cụ cần thiết của người lao động trong thời đại mới. Vì vậy, môn toán là bộ môn không thể thiếu được trong nhà trường, nó giúp con người phát triển toàn diện, nó góp phần giáo dục tình cảm, trách nhiệm, niềm tin và sự phồn vinh của quê hương đất nước.

PHẦN I ĐẶT VẤN ĐỀ Chương trình Toán của Tiểu học có vị trí rất quan trọng. Toán học góp phần quan trọng trong việc đặt nền móng cho việc hình thành và phát triển nhân cách học sinh. Trên cơ sở cung cấp những tri thức khoa học ban đầu về số học, các số tự nhiên, các số thập phân, các đại lượng cơ bản, giải toán có lời văn ứng dụng thiết thực trong đời sống và một số yếu tố hình học đơn giản. Môn toán ở Tiểu học bước đầu hình thành và phát triển năng lực trừu tượng hoá, khái quán hoá, kích thích trí tưởng tượng, gây hứng thú học tập toán, phát triển hợp lý khả năng suy luận và biết diễn đạt đúng bằng lời, bằng viết, các suy luận đơn giản, góp phần rèn luyện phương pháp học tập và làm việc khoa học, linh hoạt sáng tạo. Mục tiêu nói trên được thông qua việc dạy học các môn học, đặc biệt là môn Toán. Môn này có tầm quan trọng vì toán học với tư cách là một bộ phận khoa học nghiên cứu hệ thống kiến thức cơ bản và sự nhận thức cần thiết trong đời sống sinh hoạt và lao động của con người. Môn toán là ''chìa khoá'' mở của cho tất cả các ngành khoa học khác, nó là công cụ cần thiết của người lao động trong thời đại mới. Vì vậy, môn toán là bộ môn không thể thiếu được trong nhà trường, nó giúp con người phát triển toàn diện, nó góp phần giáo dục tình cảm, trách nhiệm, niềm tin và sự phồn vinh của quê hương đất nước. Trong dạy - học Toán ở Tiểu học, việc giải toán có lời văn chiếm một vị trí quan trọng. Trong giải toán, học sinh phải tư duy một cách tích cực và linh hoạt, huy động tích cực các kiến thức và khả năng đã có vào tình huống khác nhau, trong nhiều trường hợp phải biết phát hiện những dữ kiện hay điều kiện chưa được nêu ra một cách tường minh và trong chừng mực nào đó, phải biết suy nghĩ năng động, sáng tạo. Vì vậy có thể coi giải toán có lời văn là một trong những biểu hiện năng động nhất của hoạt động trí tuệ của học sinh. Dạy học giải toán có lời văn ở bậc Tiểu học nhằm mục đích chủ yếu sau: - Giúp học sinh luyện tập, củng cố, vận dụng các kiến thức và thao tác thực hành đã học, rèn luyện kỹ năng tính toán bước tập dượt vận dụng kiến thức và rèn luyện kỹ năng thực hành vào thực tiễn. - Giúp học sinh từng bước phát triển năng lực tư duy, rèn luyện phương pháp và kỹ năng suy luận, khêu gợi và tập dượt khả năng quan sát, phỏng đoán, tìm tòi. - Rèn luyện cho học sinh những đặc tính và phong cách làm việc của người lao động, như: cẩn thận, chu đáo, cụ thể, ... Ở học sinh lớp 5, kiến thức toán đối với các em không còn mới lạ, khả năng nhận thức của các em đã được hình thành và phát triển ở các lớp trước, tư duy đã bắt đầu có chiều hướng bền vững và đang ở giai đoạn phát triển. Học sinh đã có vốn sống, vốn hiểu biết thực tế đã bước đầu có những hiểu biết nhất định. Tuy nhiên trình độ nhận thức của học sinh không đồng đều, yêu cầu đặt ra khi giải các bài toán có lời văn cao hơn những lớp trước, các em phải đọc nhiều, viết nhiều, bài làm phải trả lời chính xác với phép tính, với các yêu cầu của bài toán đưa ra, nên thường vướng mắc về vấn đề trình bày bài giải: sai sót do viết không đúng chính tả hoặc viết thiếu, viết từ thừa. Một số sai sót mà học sinh thường mắc là không chú ý phân tích theo các điều kiện của bài toán, ... nên đã lựa chọn sai phép tính. Với những lý do đó, học sinh Tiểu học nói chung và học sinh lớp 5 nói riêng, việc học toán và giải toán có lời văn là rất quan trọng và rất cần thiết. Để thực hiện tốt mục tiêu đó, giáo viên cần phải nghiên cứu, tìm biện pháp giảng dạy thích hợp, giúp các em giải bài toán một cách vững vàng, hiểu sâu được bản chất của vấn đề cần tìm, mặt khác giúp các em có phương pháp suy luận toán lôgic thông qua cách trình bày, lời giải đúng, ngắn gọn, sáng tạo trong cách thực hiện. Từ đó giúp các em hứng thú, say mê học toán. Từ những căn cứ đó tôi đã lựa và thực hiện sáng kiến "Rèn kĩ năng gi¶i toán có lời văn cho học sinh lớp 5 " để nghiên cứu, với mục đích là: - Tìm hiểu những kỹ năng cơ bản cần trang bị để phục vụ việc giải toán có lời văn cho học sinh lớp 5. - Hướng dẫn học sinh giải cụ thể một số bài toán, một số dạng toán có lời văn ở lớp 5, từ đó đúc rút kinh nghiệm, đề xuất một số ý kiến góp phần nâng cao chất lượng dạy - học giải toán có lời văn. PHẦN II GIẢI QUYẾT VẤN ĐỀ 1. Cơ së lý luận Giải toán là một phần quan trọng trong chương trình giảng dạy môn toán ở bậc Tiểu học. Nội dung của việc giải toán gắn chặt một cách hữu cơ với nội dung của số học, số tự nhiên, phân số, các số thập phân, các đại lượng cơ bản, các yếu tố đại số và hình học có trong chương trình. Vì vậy, việc giải toán có lời văn có một vị trí quan trọng thể hiện ở các vấn đề sau: +) Các khái niệm và các quy tắc trong sách giáo khoa nói chung đều được giảng dạy thông qua việc giải toán. Việc giải toán giúp học sinh củng cố, vận dụng các kiến thức, rèn luyện kỹ năng tính toán. Đồng thời qua việc giải toán của học sinh mà giáo viên có thể dễ dàng phát hiện những ưu điểm hoặc thiếu sót của các em về kiến thức, kỹ năng và tư duy để giúp các em phát huy hoặc khắc phục. +) Việc kết hợp học và hành, kết hợp giảng dạy với đời sống được thực hiện thông qua việc cho học sinh giải toán, các bài toán liên hệ với cuộc sống một cách thích hợp giúp học sinh hình thành và rèn luyện những kỹ năng thực hành cần thiết trong đời sống hàng ngày, giúp các em biết vận dụng những kỹ năng đó trong cuộc sống. +) Việc giải toán góp phần quan trọng trong việc xây dựng cho học sinh những cơ sở ban đầu của lòng yêu nước, tinh thần quốc tế vô sản, thế giới quan duy vật biện chứng: việc giải toán với những nội dung thích hợp, có thể giới thiệu cho các em những thành tựu trong công cuộc xây dựng CNXH ở nước ta và các nước anh em, trong công cuộc bảo vệ hoà bình của nhân dân thế giới, góp phần giáo dục các em ý thức bảo vệ môi trường, phát triển dân số có kế hoạch v.v... Việc giải toán có thể giúp các em thấy được nhiều khái niệm toán học, ví dụ: các số, các phép tính, các đại lượng v v... đều có nguồn gốc trong cuộc sống hiện thực, trong thực tiễn hoạt động của con người, thấy được các mối quan hệ biện chứng giữa các dữ kiện, giữa cái đã cho và cái phải tìm v v.. +) Việc giải toán góp phần quan trọng vào việc rèn luyện cho học sinh năng lực tư duy và những phẩm chất tốt của con người lao động mới. Khi giải một bài toán, tư duy của học sinh phải hoạt động một cách tích cực vì các em cần phân biệt cái gì đã cho và cái gì cần tìm, thiết lập các mối liên hệ giữa các dữ kiện giữa cái đã cho và cái phải tìm; Suy luận, nêu lên những phán đoán, rút ra những kết luận, thực hiện những phép tính cần thiết để giải quyết vấn đề đặt ra v.v... .Hoạt động trí tuệ có trong việc giải toán góp phần giáo dục cho các em ý chí vượt khó, tính cẩn thận, chu đáo làm việc có kế hoạch, thói quen xem xét có căn cứ, thói quen tự kiểm tra kết quả công việc mình làm, óc độc lập suy nghĩ, óc sáng tạo v.v... 2. Thực trạng của vấn đề Qua thực tế giảng dạy tôi thấy: Hướng dẫn học sinh giải toán đã khó nhưng hướng dẫn học sinh giải một bài toán có lời văn lại càng khó hơn. Mặt khác do kĩ năng đọc của các em còn yếu nên kĩ năng đọc - hiểu lại càng khó khăn hơn. Chính vì vậy môn Toán ở Tiểu học nói chung, phần toán có lời văn ở lớp 5 nói riêng sẽ đóng góp một phần không nhỏ vào việc giáo dục toàn diện và giúp học sinh học tốt ở các lớp trên. 3. Các biện pháp mới đã thực hiện để giải quyết vấn đề 3.1. NhËn thøc ®óng ®¾n vÒ viÖc ®æi míi ph­¬ng ph¸p gi¶ng d¹y m"n To¸n Đổi mới phương pháp dạy toán là một điều rất cần thiết, xuất phát từ những tư tưởng chỉ đạo của Đảng về công tác giáo dục, trong thời kỳ công nghiệp hoá - hiện đại hoá đất nước thể hiện qua Nghị quyết XI của Đảng về đổi mới căn bản Giáo dục Việt Nam theo hướng chuẩn hoá, hiện đại hoá, xã hội hoá, dân chủ hoá và hội nhập quốc tế. Qua đó tôi thấy được đổi mới phương pháp dạy học là đổi mới từ cách nghĩ, cách soạn và giảng bài. Nhưng đổi mới phương pháp dạy học không có nghĩa là loại bỏ những phương pháp dạy học truyền thống mà trên cơ sở đó chúng ta sử dụng những phương pháp dạy học tích cực, linh hoạt phù hợp với đặc trưng tiết dạy, thừa kế, phát huy những ưu điểm của phương pháp dạy học truyền thống. 3.2. Xây dựng các bước cơ bản khi dạy 1 bài toán có lời văn ở lớp 5. a/ Tìm hiểu đề Đây là bước rất quan trọng nó giúp học sinh nắm được các dữ liệu của bài toán đã cho yếu tố bài toán yêu cầu giải đáp. Do đó, khi đọc đề toán tôi hướng dẫn học sinh đọc kỹ đề bài để nắm được các dữ liệu đã cho và yếu tố bài toán yêu cầu tìm. Dựa vào đề bài tóm tắt bài toán bằng lời ngắn gọn, hoặc sơ đồ đoạn thẳng. Tóm tắt đủ ý, chính xác, ngắn gọn và cô đọng. b/ Lập kế hoạch giải Dựa vào phần tóm tắt, tôi lựa chọn câu hỏi thích hợp để giúp học sinh xác định đầy đủ. Bài toán cho biết gì? Bài toán hỏi gì? (Yêu cầu cần tìm). Bằng phương pháp gợi mở, tôi dẫn dắt học sinh bằng cách đưa ra những tình huống gợi mở để học sinh tìm ra cách giải bài toán: Làm thế nào? tại sao?, c/ Giải bài toán Đây là bước rất quan trọng bởi khi học sinh đã tìm ra được phép tính đúng nhưng khi trình bày bài giải lại chưa hoàn chỉnh ( câu trả lời chưa đúng). Vì vậy khi hướng dẫn học sinh trình bày bài giải tôi đã hướng ... m hai số khi biết hiệu và tỉ số của hai số đó Đối với dạy toán này tôi cũng hướng dẫn các em làm bài toán theo bước: - Xác định hiệu của 2 số . - Xác định tỉ số của hai số - Tìm hiệu số phần bằng nhau - Tìm giá trị 1 phần - Tìm mỗi số theo số phần biểu thị. * Ví dụ: Hiệu của hai số là 55. Số thứ nhất bằng số thứ hai. Tìm hai số đó . ( Bài 1/b - trang 18- SGK toán 5) Bước 1: Tìm hiểu đề Giáo viên yêu cầu học sinh đọc đề bài và tìm hiểu những dữ liệu đã biết của bài, yêu cầu của bài toán. +) Bài toán cho biết gì? ( Hiệu của hai số là 55. Số thứ nhất bằng số thứ hai) +) Bài toán yêu cầu tìm gì? (Tìm 2 số đó) - Tóm tắt bài toán Hãy nêu cách vẽ sơ đồ bài toán? ( Dựa vào tỉ số của hai số, ta có thể vẽ sơ đồ bài toán. Tỉ số của số thứ nhất và số thứ hai là , nếu số thứ nhất là 9 phần thì số thứ hai sẽ là 4 phần như thế ) Bước 2: Lập kế hoạch giải - Làm thế nào để tìm được hai số đó? ( Tính hiệu số phần bằng nhau, sau đó tìm số thứ nhất số thứ hai) - Làm thế nào để tìm được số thứ hai ( em hãy đi tìm giá trị của 1 phần rồi nhân với số phần biểu thị ) - Em tìm giá trị 1 phần bằng cách nào? ( lấy hiệu chia cho hiệu số phần) - Tìm được số thứ hai, muốn tìm số thứ nhất em phải làm thế nào? ( Lấy số bé cộng với hiệu ) - Bài nào có thể có mấy cách giải ( 2 cách giải ) Bước 3: Giải bài toán 55 ? ? Cách 1: Ta có sơ đồ: Số thứ hai: Số thứ nhất: Theo sơ đồ, số thứ hai là : 55 : ( 9 - 4) x 4 = 44 Số thứ nhất là : 44 + 55 = 99 Đáp số: Số thứ hai: 44 Số thứ nhất: 99 Cách 2: 55 ? ? Ta có sơ đồ: Số thứ nhất: Số thứ hai: Theo sơ đồ, số thứ nhất là : 55 : ( 9 - 4) x 9 = 99 Số thứ hai là : 99 - 55 = 44 Đáp số: Số thứ nhất: 99 Số thứ hai: 44 Bước 4: Thử lại Hướng dẫn HS thử lại bài toán. Hiệu giữa 2 số là : 99 - 44 = 55 Tỉ số của số thứ nhất bằng số thứ hai: d. Dạy bài toán tìm tỉ số phần trăm * Dạy bài toán tìm tỉ số phần trăm của hai số. Đối với dạng toán này tôi hướng dẫn học sinh giải bài toán theo các bước: - Tìm thương của hai số đó. - Nhân thương đó với 100, viết thêm kí hiệu % vào bên phải tích tìm được. * Ví dụ: Một lớp học có 25 học sinh, trong đó có 13 học sinh nữ. Hỏi số học sinh nữ chiếm bao nhiêu phần trăm số học sinh của lớp đó? ( Bài 3 trang 75 - SGK toán 5 ) Bước 1: Tìm hiểu đề - Cho học sinh tự đọc đề bài nhiều lượt. - Hướng dẫn học sinh nắm các dữ liệu bài toán. +) Bài toán cho biết gì? (Lớp học có 25 học sinh, trong đó có 13 học sinh nữ) +) Bài toán yêu cầu tìm gì? (Số học sinh nữ chiếm bao nhiêu phần trăm số học sinh của lớp) - Tóm tắt bài toán Lớp học: 25 học sinh Trong đó: 13 nữ Nữ: ...% số HS lớp? Bước 2: Lập kế hoạch giải: Muốn tính số HS nữ chiếm bao nhiêu số phần trăm số HS của lớp ta làm thế nào ? (Tìm thương của 13 và 25 sau đó nhân thương đó với 100, viết thêm kí hiệu phần trăm vào bên phải tích vừa tìm được ). Bước 3 : Giải bài toán Tỉ số phần trăm của số HS nữ và số HS cả lớp là: 13 : 25 = 0, 52 0,52 = 52% Đáp số: 52 % Bước 3: Thử lại Muốn thử lại bài toán ta làm thế nào? (Thực hiện phép tính ngược lại để kiểm tra kết quả) 52 : 100 25 = 13 * Dạy bài toán tìm một số phần trăm của một số. Đối với dạng toán này tôi hướng dẫn học sinh giải bài toán theo các bước: - Lấy số đó chia cho 100. - Nhân thương đó với số phần trăm. Hoặc: - Lấy số đó nhân với số phần trăm - Nhân tích đó với 100. * Ví dụ : Một lớp học có 32 học sinh, trong đó số học sinh 10 tuổi chiếm 75%, còn lại là học sinh 11 tuổi. Tính số học sinh 11 tuổi của lớp học đó. (Bài 1 - trang 77 - SGK toán 5) Bước 1: Tìm hiểu đề - Tôi hướng dẫn học sinh đọc đề toán nhiều lần, nhấn mạnh những dữ kiện cho trước và yếu tố cần tìm. +) Bài toán cho biết gì? ( lớp học có 32 học sinh, số học sinh 10 tuổi chiếm 75% còn lại là HS 11 tuổi). +) Bài toán yêu cầu tìm gì? (Tính số học sinh 11 tuổi của lớp học đó) - Tóm tắt bài toán: Lớp học: 32 học sinh HS 10 tuổi: 75% HS 11 tuổi:... học sinh Bước 2: Lập kế hoạch giải: - Làm thế nào để tính được số học sinh 11 tuổi? ( Ta lấy tổng số học sinh cả lớp trừ đi số học sinh 10 tuổi) - Vậy trước hết ta phải tìm gì? ( Tìm số HS 10 tuổi) Bước 3 : Giải bài toán Bài giải Cách 1: Số học sinh 10 tuổi là: 32 75 : 100 = 24 (học sinh ) Số học sinh 11 tuổi là: 32 - 24 = 8 ( học sinh) Đáp số: 8 học sinh Cách 2: Số học sinh 10 tuổi là: 32 : 100 75 = 24 (học sinh ) Số học sinh 11 tuổi là: 32 - 24 = 8 (học sinh) Đáp số: 8 học sinh Bước 4: Thử lại Hướng dẫn học sinh thử lại: 8 + 24 = 32 * Dạy bài toán tìm một số khi biết giá trị một số phần trăm của nó Đối với bài toán này tôi đã hướng dẫn học sinh giải bài toán theo các bước giải: - Lấy giá trị phần trăm chia cho số phần trăm. - Nhân thương đó với 100. Hoặc: - Lấy giá trị phần trăm nhân với 100. - Lấy tích chia cho số phần trăm. * Ví dụ: Số học sinh khá của trường Vạn Thịnh là 552 em, chiếm 92% số học sinh toàn trường. Hỏi trường Vạn Thịnh có bao nhiêu học sinh? (BT1 - trang 78 - SGK toán 5 ) Bước 1: Tìm hiểu đề - Tôi hướng dẫn các em đọc đề toán nhiều lần để tìm hiểu các dữ liệu tường minh của bài toán. +) Bài toán cho biết gì? ( Số HS khá 552 em chiếm 92% số HS cả trường) +) Bài toán yêu cầu tìm gì? ( Trường đó có bao nhiêu học sinh) - Tóm tắt bài toán HS khá trường 552 em : chiếm 92% số HS toàn trường Trường: ... học sinh? Bước 2 : Lập kế hoạch giải - Làm thế nào để tính được số HS của trường Vạn Thịnh? ( Tìm 1% số HS của trường là bao nhiêu em) - Số HS khá chiếm 92% số HS toàn trường. Vậy số HS toàn trường là bao nhiêu phần trăm? ( 100%) - Tìm số HS toàn trường ta làm thế nào? ( lấy số HS của 1% nhân với 100) Bước 3: Giải bài toán Bài giải Trường Vạn Thịnh có số học sinh là: 552 100 : 92 = 600 ( học sinh) Đáp số: 600 học sinh Bước 4: Thử lại - Hướng dẫn học sinh thử lại bài toán ( lấy số học sinh toàn trường chia cho 100 rồi nhân với 92) 600 : 100 92 = 552 4/ Hiệu quả của sáng kiến Qua quá trình hướng dẫn học sinh giải toán có lời văn theo hướng đi trên. Tôi nhận thấy năm học 1010 - 2011 học sinh ở lớp 5A đã nắm chắc được trình tự giải bài toán về Tìm số trung bình cộng; Bài toán tìm hai số khi biết tổng và tỉ số của hai số đó; Bài toán tìm hai số khi biết hiệu và tỉ số của hai số đó; Bài toán về tỉ số phần trăm. Các em đã biết tóm tắt bài toán, biết tìm lời giải và phép tính đúng theo yêu cầu của mỗi bài tập theo các dạng toán đã học. Kết quả học tập môn Toán được nâng lên đáng kể. Cụ thể như sau: Thời gian kiểm tra Tổng số học sinh Kết quả Điểm 1 - 2 Điểm 3 - 4 Điểm 5 - 6 Điểm 7 - 8 Điểm 9 - 10 SL % SL % SL % SL % SL % Giữa kỳ I 25 3 12 3 12 9 36 8 32 2 8 Cuối kỳ I 25 2 8 3 6 10 40 7 28 3 12 Giữa kỳ I 25 1 4 1 4 10 40 8 32 5 20 Cuối kì II 25 0 0 0 0 9 36 8 32 8 32 Như vậy, với việc áp dụng kinh nghiệm "Rèn kĩ năng giải toán có lời văn cho học sinh ở lớp 5" Bản thân tôi đã lựa chọn phương pháp và sử dụng các hình thức dạy học phù hợp với đặc điểm, đối tượng học sinh gắn với từng nội dung của từng bài cụ thể. Nhờ đó mà kết quả học tập môn toán của lớp tôi được nâng lên rõ rệt so với đầu năm học. PHẦN III KẾT LUẬN VÀ KIẾN NGHỊ 1. Kết luận Trong hoạt động dạy - học, người giáo viên ngoài việc tìm tòi phương pháp học đúng để lĩnh hội tri thức mới hình thành nên kỹ năng, kỹ xảo từ đó hoàn thành nhiệm vụ dạy học. Muốn học tốt môn Toán nhưng lại không có phương pháp học đúng thì kết quả học toán sẽ không cao. Do vậy, muốn có phương pháp học tốt phù hợp với môn Toán là rất cần thiết. Đặc biệt là ở lứa tuỏi học sinh Tiểu học. Có kết quả môn Toán cao là nhờ biết kết hợp các phương pháp học đúng, giúp học sinh hiểu bài nhanh và nhớ lâu. Do vậy, việc dạy toán có lời văn một cách hiệu quả giúp các em trở thành những con người linh hoạt, sáng tạo, làm chủ trong mọi lĩnh vực và trong cuộc sống thực tế hàng ngày. Những kết quả mà tôi đã thu được trong quá trình nghiên cứu không phải là cái mới so với kiến thức chung về môn Toán ở bậc Tiểu học, song lại là cái mới đối với bản thân tôi. Trong quá trình nghiên cứu, tôi đã phát hiện và rút ra nhiều điều lý thú về phương pháp dạy học giải toán có lời văn ở bậc Tiểu học. Tôi tự cảm thấy mình được bồi dưỡng thêm các kiến thức và kĩ năng sư phạm, sự ham muốn, say sưa với việc nghiên cứu. Tuy nhiên sáng kiến này của tôi là giai đoạn đầu nghiên cứu trong lĩnh vực khoa học nên không thể tránh khỏi những khiếm khuyết. Tôi mong muốn nhận được ý kiến đóng góp của các thầy cô giáo, của các bạn đồng nghiệp và những ai quan tâm đến vấn đề giải toán có lời văn cho học sinh ở bậc Tiểu học nói chung và giải Toán có lời văn ở lớp 5 nói riêng. 2. Kiến nghị 2. 1. Đối với nhà trường Nhà trường cần có đủ sách tham khảo cho giáo viên và học sinh về môn Toán. 2.2. Đối với tổ chuyên môn 2. 3. Đối với giáo viên Trước khi lên lớp phải nghiên cứu kỹ bài giảng, tìm ra phương pháp dạy phù hợp với từng bài học. Tạo không khí học tập sôi nổi, lôi cuốn học sinh tập trung chú ý nghe giảng, kích thích học sinh tư duy, suy nghĩ, sáng tạo làm cho giờ học diễn ra nhẹ nhàng, hiệu quả. 2.4. Đối với phụ huynh Mua đủ sách giáo khoa cho học sinh và các loại sách tham khảo về môn Toán. 2.5. Đối với học sinh + Chăm chỉ học tập. + Cần rèn luyện tốt phương pháp suy luận lôgic. Ph­îng Mao, ngµy 20 th¸ng 10 n¨m 2011 Ng­êi thùc hiÖn §inh ThÞ Hång H¶i Phần I: Đặc vấn đề Phần II: Giải quyết vấn đề 1. Cơ sở lý luận 2. Thực trạng của vấn đề 3. Các biện pháp mới đã thực hiện để giải quyết vấn đề 4. Hiệu quả của sáng kiến kinh nghiệm . Phần III: Kết luận và kiến nghị 1. Kết luận 2. Kiến nghị 3. Đề xuất hướng phát triển tiếp sáng kiến kinh nghiệm 4. Kết lụân và kiến nghị Phụ lục: Tài liệu tham khảo 1. Văn kiện đại hội Đảng IX Đảng cộng sản Việt Nam 2. Luật giáo dục năm 2005. 3. Chương trình Tiểu học - 2000 (Đỗ Đình Than - Nguyễn Việt Hùng) 4. Nhiệm vụ năm học. 5. Chuẩn kiến thức kĩ năng 6. Sách giáo khoa Toán 5 7. Sách hướng dẫn giảng dạy Toán 5, NXB Hà Nội năm 2010 8. Thiết kế bài giảng Toán 5 9. Tài liệu bồi dưỡng thường xuyên chu kỳ III.

Một Số Bài Tập Toán Hình Học 7 Ôn Tập Học Kì 1 Có Lời Giải

Sau khi xem xong các bài tập có lời giải, các em hãy tự làm bài tập ngay bên dưới để rèn luyện khả năng làm bài của mình. BÀI 1 :

Cho tam giác ABC. M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho BM = MD.

2.Chứng minh : AB

3.Trên DC kéo dài lấy điểm N sao cho CD =CN (C ≠ N) chứng minh : BN

MA = MC (gt)

MB = MD (gt)

(đối đinh)

Ta có :

(góc tương ứng của ?ABM = ?CDM)

Mà : ở vị trí so le trong

Nên : AB

Mà : CD = CN (gt)

AB = CN (cmt)

BC cạnh chung.

(so le trong)

Mà : ở vị trí so le trong.

Nên : BN

Cho tam giác ABC có AB = AC, trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho AM = AN. Gọi H là trung điểm của BC.

Chứng minh : ?ABH = ?ACH.

Gọi E là giao điểm của AH và NM. Chứng minh : ?AME = ?ANE

Chứng minh : MM

AB = AC (gt)

HB = HC (gt)

AH cạnh chung.

Xét ?AME và ?ANE, ta có :

AM =AN (gt)

(cmt)

AE cạnh chung

3. MM

Ta có : ?ABH = ?ACH (cmt)

Mà : (hai góc kề bù)

Hay BC AH

Cmtt, ta được : MN AE hay MN AH

Cho tam giác ABC vuông tại A. tia phân giác của góc ABC cắt AC tại D. lấy E trên cạnh BC sao cho BE = AB.

a) Chứng minh : ? ABD = ? EBD.

b) Tia ED cắt BA tại M. chứng minh : EC = AM

c) Nối AE. Chứng minh : góc AEC = góc EAM.

Xét ?ABD và ?EBD, ta có :

AB =BE (gt)

(BD là tia phân giác góc B)

BD cạnh chung

Ta có : ? ABD = ? EBD (cmt)

Suy ra : DA = DE và

Xét ?ADM và ?EDC, ta có :

DA = DE (cmt)

(cmt)

(đối đỉnh)

3.

Ta có : ?ADM = ?EDC (cmt)

Suy ra : AD = DE; MD = CD và

Hay AC = EM

Xét ?AEM và ?EAC, ta có :

AM = EC (cmt)

(cmt)

AC = EM (cmt)

Cho tam giác ABC vuông góc tại A có góc B = 53 0.

a) Tính góc C.

b) Trên cạnh BC, lấy điểm D sao cho BD = BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. cmr : ΔBEA = ΔBED.

c) Qủa C, vẽ đường thẳng vuông góc với BE tại H. CH cắt đường thẳng AB tại F. cm : ΔBHF = ΔBHC.

d) Cm : ΔBAC = ΔBDF và D, E, F thẳng hàng.

Giải.

Xét ΔBAC, ta có :

Xét ΔBEA và ΔBED, ta có :

BE cạnh chung.

(BE là tia phân giác của góc B)

BD = BA (gt)

Xét ΔBHF và ΔBHC, ta có :

BH cạnh chung.

(BE là tia phân giác của góc B)

(gt)

d. ΔBAC = ΔBDF và D, E, F thẳng hàng

xét ΔBAC và ΔBDF, ta có:

BC = BF (cmt)

Góc B chung.

BA = BC (gt)

Mà : (gt)

Nên : hay BD DF (1)

Mặt khác : (hai góc tương ứng của ΔBEA = ΔBED)

Mà : (gt)

Nên : hay BD DE (2)

Từ (1) và (2), suy ra : DE trùng DF

Hay : D, E, F thẳng hàng.

===================================

BÀI TẬP RÈN LUYỆN :

Cho ABC có Â = 90 0. Tia phân giác BD của góc B(D thuộc AC). Trên cạnh BC lấy điểm E sao cho BE = BA.

a) So sánh AD và DE

b) Chứng minh:

c) Chứng minh : AE BD

Cho ΔABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy điểm N sao cho M là trung điểm của AN.

a/. Ch/m :Δ AMB = ΔNMC

b/. Vẽ CD AB (D AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH BC (H BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD

Cho tam giác ABC có góc A =35 0 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 35 0 .

Cho tam giác ABC cân tại A và có .

Tính và

Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.

Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.

Chứng minh rằng : DE

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD

Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.

Cho tam giác ABC vuông tại A có . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Cho tam giác ABC (AB <AC). Tia phân giác của góc A cắt đường trung trực của BC tại I. kẻ IH vuông góc AB tại H. IK vuông góc AC tại K. chứng minh : BH = CK.

============================================

Thời gian làm bài 90 phút.

BÀI 1 : (2,5 điểm) tính bằng cách hợp lý :

a)

b)

c)

Tìm x, biết :

a)

b)

BÀI 3 : (1,5 điểm)

Ba đội cày làm việc trên ba cánh đồng có diện tích như nhau. Đội thứ nhất hoàn thành công việc trong 12 ngày. Đội thứ hai hoàn thành công việc trong 9 ngày. Đội thứ ba hoàn thành công việc trong 8 ngày. Hỏi mỗi đội có bao nhiêu máy cày biết Đội thứ nhất ít hơn Đội thứ hai 2 máy và năng suất của các máy như nhau.

Cho tam giác ABC vuông góc tại A có góc B = 53 0.

a) Tính góc C.

b) Trên cạnh BC, lấy điểm D sao cho BD = BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. cmr : ΔBEA = ΔBED.

c) Qủa C, vẽ đường thẳng vuông góc với BE tại H. CH cắt đường thẳng AB tại F. cm : ΔBHF = ΔBHC.

d) Cm : ΔBAC = ΔBDF và D, E, F thẳng hàng.