Top 10 # Toán Hình Lớp 5 Có Lời Giải Xem Nhiều Nhất, Mới Nhất 4/2023 # Top Trend | Caffebenevietnam.com

Các Bài Toán Hình Học Lớp 9 Có Lời Giải

, Working at Trường Đại học Công nghệ Thông tin và Truyền thông – Đại học Thái Nguyên

Published on

Cac bai-toan-hinh-hoc-on-thi-vao-lop-10

4. N y x O K F E M BA 3. Rõ ràng đây là câu hỏi khó đối với một số em, kể cả khi hiểu rồi vẫn không biết giải như thế nào , có nhiều em may mắn hơn vẽ ngẫu nhiên lại rơi đúng vào hình 3 ở trên từ đó nghĩ ngay được vị trí điểm C trên nửa đường tròn. Khi gặp loại toán này đòi hỏi phải tư duy cao hơn. Thông thường nghĩ nếu có kết quả của bài toán thì sẽ xảy ra điều gì ? Kết hợp với các giả thiết và các kết quả từ các câu trên ta tìm được lời giải của bài toán. Với bài tập trên phát hiện M là trực tâm của tam giác không phải là khó, tuy nhiên cần kết hợp với bài tập 13 trang 72 sách Toán 9T2 và giả thiết M là điểm chính giữa cung AC ta tìm được vị trí của C ngay. Với cách trình bày dưới mệnh đề “khi và chỉ khi” kết hợp với suy luận cho ta lời giải chặt chẽ hơn. Em vẫn có thể viết lời giải cách khác bằng cách đưa ra nhận định trước rồi chứng minh với nhận định đó thì có kết quả , tuy nhiên phải trình bày phần đảo: Điểm C nằm trên nửa đường tròn mà thì AD là tiếp tuyến. Chứng minh nhận định đó xong ta lại trình bày phần đảo: AD là tiếp tuyến thì . Từ đó kết luận. 4. Phát hiện diện tích phần tam giác ADC ở ngoài đường tròn (O) chính là hiệu của diện tích tứ giác AOCD và diện tích hình quạt AOC thì bài toán dễ tính hơn so với cách tính tam giác ADC trừ cho diện tích viên phân cung AC. Bài 3 Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F. 1. Chứng minh: 2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. 3. Gọi K là giao điểm của AF và BE, chứng minh . 4. Khi MB = .MA, tính diện tích tam giác KAB theo a. BÀI GIẢI CHI TIẾT 1. Chứng minh: . EA, EM là hai tiếp tuyến của đường tròn (O) cắt nhau ở E nên OE là phân giác của . Tương tự: OF là phân giác của . Mà và kề bù nên: (đpcm) hình 4 2. Chứng minh: Tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng. ” 0 60BC =” 0 60BC = · 0 EOF 90= MK AB⊥ 3 · 0 EOF 90= ·AOM ·BOM ·AOM·BOM· 0 90EOF =

5. Ta có: (tính chất tiếp tuyến) Tứ giác AEMO có nên nội tiếp được trong một đường tròn. Tam giác AMB và tam giác EOF có:, (cùng chắn cung MO của đường tròn ngoại tiếp tứ giác AEMO. Vậy Tam giác AMB và tam giác EOF đồng dạng (g.g). 3. Gọi K là giao điểm của AF và BE, chứng minh . Tam giác AEK có AE

6. x H Q I N M O C BA K x H Q I N M O C BA Nếu chú ý MK là đường thẳng chứa đường cao của tam giác AMB do câu 3 và tam giác AKB và AMB có chung đáy AB thì các em sẽ nghĩ ngay đến định lí: Nếu hai tam giác có chung đáy thì tỉ số diện tích hai tam giác bằng tỉ số hai đường cao tương ứng, bài toán qui về tính diện tích tam giác AMB không phải là khó phải không các em? Bài 4 Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng: a) Tứ giác AMQI nội tiếp. b) . c) CN = NH. (Trích đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của sở GD&ĐT Tỉnh Bắc Ninh) BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác AMQI nội tiếp: Ta có: MA = MC (tính chất hai tếp tuyến cắt nhau) OA = OC (bán kính đường tròn (O)) Do đó: MO AC . (góc nội tiếp chắn nửa đường tròn (O)) . Hai đỉnh I và Q cùng nhìn AM dưới Hình 5 một góc vuông nên tứ giác AMQI nội tiếp được trong một đường tròn. b) Chứng minh:. Tứ giác AMQI nội tiếp nên Hình 6 (cùng phụ ) (2). có OA = OC nên cân ở O. (3). Từ (1), (2) và (3) suy ra . c) Chứng minh CN = NH. Gọi K là giao điểm của BC và tia Ax. Ta có: (góc nội tiếp chắn nửa đường tròn(O)). AC BK , AC OM OM

8. · · · · CDB CAB CAB CFA  =  = x F E D C B O A Từ (1) và (2) suy ra: chúng tôi = chúng tôi c) Chứng minh tứ giác CDEF nội tiếp: Ta có: (hai góc nội tiếp cùng chắn cung BC) ( cùng phụ ) Do đó tứ giác CDEF nội tiếp. Cách khác và có: chung và (suy từ chúng tôi = chúng tôi nên chúng đồng dạng (c.g.c). Suy ra: . Vậy tứ giác CDEF là tứ giác nội tiếp. d) Xác định số đo của góc ABC để tứ giác AOCD là hình thoi: Ta có: (do BD là phân giác ) . Tứ giác AOCD là hình thoi OA = AD = DC = OC AD = DC = R Vậy thì tứ giác AOCD là hình thoi. Tính diện tích hình thoi AOCD theo R: . Sthoi AOCD = (đvdt). Hình 8 Lời bàn 1. Với câu 1, từ gt BD là phân giác góc ABC kết hợp với tam giác cân ta nghĩ ngay đến cần chứng minh hai góc so le trong và bằng nhau. 2. Việc chú ý đến các góc nội tiếp chắn nửa đường tròn kết hợp với tam giác AEB, FAB vuông do Ax là tiếp tuyến gợi ý ngay đến hệ thức lượng trong tam giác vuông quen thuộc. Tuy nhiên vẫn có thể chứng minh hai tam giác BDC và BFE đồng dạng trước rồi suy ra chúng tôi = chúng tôi Với cách thực hiện này có ưu việc hơn là giải luôn được câu 3. Các em thử thực hiện xem sao? 3. Khi giải được câu 2 thì câu 3 có thể sử dụng câu 2 , hoặc có thể chứng minh như bài giải. 4. Câu 4 với đề yêu cầu xác định số đo của góc ABC để tứ giác AOCD trở thành hình thoi không phải là khó. Từ việc suy luận AD = CD = R nghĩ ngay đến cung AC bằng 1200 từ đó suy ra số đo góc ABC ·FAC· ·CDB CFA⇒ = ∆DBC∆FBE∆ µBBD BC BF BE = · ·EFBCDB = · ·ABD CBD=·ABC” “AD CD⇒ = ⇔ ⇔” ” 0 60AD DC⇔ = =” 0 120AC⇔ =· 0 60ABC⇔ = · 0 60ABC = ” 0 120 3AC AC R= ⇒ = 2 1 1 3 . . . 3 2 2 2 R OD AC R R= = ·ODB·OBD ” 0 120 3AC AC R= ⇒ =

9. H N F E CB A bằng 600 . Tính diện tích hình thoi chỉ cần nhớ công thức, nhớ các kiến thức đặc biệt mà trong quá trình ôn tập thầy cô giáo bổ sung như ,…….. các em sẽ tính được dễ dàng. Bài 6 Cho tam giác ABC có ba góc nhọn. Đường tròn đường kính BC cắt cạnh AB, AC lần lượt tại E và F ; BF cắt EC tại H. Tia AH cắt đường thẳng BC tại N. a) Chứng minh tứ giác HFCN nội tiếp. b) Chứng minh FB là phân giác của . c) Giả sử AH = BC . Tính số đo góc của ∆ABC. BÀI GIẢI CHI TIẾT a) Chứng minh tứ giác HFCN nội tiếp: Ta có : (góc nội tiếp chắn nửa đường tròn đường kính BC) Tứ giác HFCN có nên nội tiếp được trong đường tròn đường kính HC) (đpcm). b) Chứng minh FB là tia phân giác của góc EFN: Ta có (hai góc nội tiếp cùng chắn của đường tròn đường kính BC). (hai góc nội tiếp cùng chắn của đường tròn đường kính HC). Suy ra: . Vậy FB là tia phân giác của góc EFN (đpcm) c) Giả sử AH = BC. Tính số đo góc BAC của tam giác ABC: FAH và FBC có: , AH = BC (gt), (cùng phụ ). Vậy FAH = FBC (cạnh huyền- góc nhọn). Suy ra: FA = FB. AFB vuông tại F; FA = FB nên vuông cân. Do đó . Bài 7 (Các em tự giải) Cho tam giác ABC nhọn, các đường cao BD và CE cát nhau tại H. a) Chứng minh tứ giác BCDE nội tiếp. b) Chứng minh AD. AC = AE. AB. c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh OA DE. ·EFN ·BAC · · 0 90BFC BEC= = · · 0 180HFC HNC+ = · ·EFB ECB=”BE · ·ECB BFN=¼HN · ·EFB BFN= ∆∆· · 0 AFH 90BFC= =· ·FAH FBC=·ACB∆∆ ∆· 0 45BAC = ⊥

10. =

11. O P K M H A C B Bài 9 Cho tam giác ABC ( ) nội tiếp trong nửa đường tròn tâm O đường kính AB. Dựng tiếp tuyến với đường tròn (O) tại C và gọi H là chân đường vuông góc kẻ từ A đến tiếp tuyến đó. AH cắt đường tròn (O) tại M (M ≠ A). Đường vuông góc với AC kẻ từ M cắt AC tại K và AB tại P. a) Chứng minh tứ giác MKCH nội tiếp. b) Chứng minh ∆MAP cân. c) Tìm điều kiện của ∆ABC để ba điểm M, K, O thẳng hàng. BÀI GIẢI a) Chứng minh tứ giác MKCH nội tiếp: Ta có : (gt), (gt) Tứ giác MKCH có tổng hai góc đối nhau bằng 1800 nên nội tiếp được trong một đường tròn. b) Chứng minh tam giác MAP cân: AH

12. / /

13. H / / = = P O K I N M C BA a) Chứng minh tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó: Ta có (góc nội tiếp chắn nửa đường tròn (O)). Do đó: Tứ giác ICPN có nên nội tiếp được trong một đường tròn. Tâm K của đường tròn ngoại tiếp tứ giác ICPN là trung điểm của đoạn thẳng IP. b) Chứng minh KN là tiếp tuyến của đường tròn (O). Tam giác INP vuông tại N, K là trung điểm IP nên . Vậy tam giác IKN cân ở K . Do đó (1). Mặt khác (hai góc nội tiếp cùng chắn cung PN đường tròn (K)) (2) N là trung điểm cung CB nên . Vậy NCB cân tại N. Do đó : (3). Từ (1), (2) và (3) suy ra , hai góc này ở vị trí đồng vị nên KN

14. / /

15. 60° O J IN M B A a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). b) Kẻ các đường kính MOI của đường tròn (O; R) và MBJ của đường tròn (B; BM). Chứng minh N, I và J thẳng hàng và JI . JN = 6R2 c) Tính phần diện tích của hình tròn (B; BM) nằm bên ngoài đường tròn (O; R) theo R. BÀI GIẢI a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). Ta có . (góc nội tiếp chắn nửa đường tròn(O)). Điểm M và N thuộc (B;BM); AM MB và AN NB. Nên AM; AN là các tiếp tuyến của (B; BM). b) Chứng minh N; I; J thẳng hàng và JI .JN = 6R2 . (các góc nội tiếp chắn nửa đường tròn tâm O và tâm B). Nên IN MN và JN MN . Vậy ba điểm N; I và J thẳng hàng. Tam giác MJI có BO là đường trung bình nên IJ = 2BO = 2R. Tam giác AMO cân ở O (vì OM = OA), nên tam giác MAO đều. AB MN tại H (tính chất dây chung của hai đường tròn (O) và (B) cắt nhau). Nên OH = . Vậy HB = HO + OB = . Vậy JI . JN = 2R . 3R = 6R2 c) Tính diện tích phần hình tròn (B; BM) nằm ngoài đường tròn (O; R) theo R: Gọi S là diện tích phần hình tròn nằm (B; BM) nằm bên ngoài hình tròn (O; R). S1 là diện tích hình tròn tâm (B; BM). S2 là diện tích hình quạt MBN. S3 ; S4 là diện tích hai viên phân cung MB và NB của đường tròn (O; R). Ta có : S = S1 – (S2 + S3 + S4). Tính S1: . Vậy: S1 = . Tính S2: S2 = = Tính S3: S3 = Squạt MOB – SMOB. Squạt MOB = . OA = OB SMOB = SAMB = = = Vậy S3 = = S4 (do tính chất đối xứng). Từ đó S = S1 – (S2 + 2S3) · · 0 90AMB ANB= = ⊥ ⊥ · · 0 90MNI MNJ= =⊥⊥ · 0 60MAO = ⊥ 1 1 2 2 OA R= 3 2 2 R R R+ = 3 2. 3 2 R NJ R⇒ = = · “0 0 60 120MAB MB= ⇒ =3MB R⇒ = ( ) 2 2 3 3R Rπ π= · 0 60MBN = ⇒ ( ) 2 0 0 3 60 360 Rπ 2 2 Rπ · 0 120MOB = ⇒2 0 2 0 .120 360 3 R Rπ π = ⇒1 2 1 1 . . . 2 2 AM MB 1 . 3 4 R R 2 3 4 R 2 3 Rπ 2 3 4 R −

16. _

17. E I K H ON M D C BA S1 là diện tích nửa hình tròn đường kính MB. S2 là diện tích viên phân MDB. Ta có S = S1 – S2 . Tính S1: . Vậy S1 = . Tính S2: S2 = SquạtMOB – SMOB = = . S = ( ) = . Bài 15 Cho đường tròn (O) đường kính AB bằng 6cm . Gọi H làđiểm nằm giữa A và B sao cho AH = 1cm. Qua H vẽ đường thẳng vuông góc với AB , đường thẳng này cắt đường tròn (O) tại C và D. Hai đường thẳng BC và DA cắt nhau tại M. Từ M hạ đường vuông góc MN với đường thẳng AB ( N thuộc thẳng AB). a) Chứng minh MNAC là tứ giác nội tiếp. b) Tính độ dài đoạn thẳng CH và tính tg. c) Chứng minh NC là tiếp tuyến của đường tròn (O). d) Tiếp tuyến tại A của đường tròn (O) cắt NC ở E. Chứng minh đường thẳng EB đi qua trung điểm của đoạn thẳng CH. BÀI GIẢI a) Chứng minh tứ giác MNAC nội tiếp: (góc nội tiếp chắn nửa đường tròn) Suy ra . Tứ giác MNAC có nên nội tiếp được trong một đường tròn. b) Tính CH và tg ABC. AB = 6 (cm) ; AH = 1 (cm) HB = 5 (cm). Tam giác ACB vuông ở C, CH AB CH2 = AH . BH = 1 . 5 = 5 (cm). Do đó tg ABC = . c) Chứng minh NC là tiếp tuyến của đường tròn (O): Ta có (hai góc nội tiếp cùng chắn cung AN của đường tròn ngoại tiếp tứ giác MNAC). (so le trong của MN

18. / /? _ αK E H M O D C B A Gọi K là giao điểm của AE và BC; I là giao điểm của CH và EB. KE//CD (cùngvới AB) (đồng vị). (cùng chắn cung BD). (đối đỉnh) và (cùng chắn ). Suy ra: cân ở E. Do đó EK = EC. Mà EC = EA (tính chất hai tiếp tuyến cắt nhau) nên EK = EA. có CI

Skkn Giải Toán Có Lời Văn Lớp 5

SÁNG KIẾN KINH NGHIỆMĐề tài

HƯỚNG DẪN HỌC SINH THỰC HIỆN TỐT CÁCH GIẢI BÀI TOÁN CÓ LỜI VĂN – LỚP 5( Dạng toán : ” Toán chuyển động đều ” )

I /- ĐẶT VẤN ĐỀ :Toán học có vị trí rất quan trọng phù hợp với cuộc sống thực tiễn, đó cũng là công cụ cần thiết cho các môn học khác và để giúp cho học sinh nhận thức thế giới xung quanh, để hoạt động có hiệu quả trong mọi lĩnh vực.Khả năng giáo dục nhiều mặt của môn toán rất to lớn: Nó phát triển tư duy, trí tuệ, có vai trò quan trọng trong việc rèn luyện tính suy luận, tính khoa học toàn diện, chính xác, tư duy độc lập sáng tạo, linh hoạt, góp phần giáo dục tính nhẫn nại, ý chí vượt khó khăn.Từ vị trí và nhiệm vụ vô cùng quan trọng của môn toán, vấn đề đặt ra cho người thầy là làm thế nào để giờ dạy – học toán có hiệu quả cao, học sinh phát triển tính tích cực, chủ động sáng tạo trong việc chiếm lĩnh kiến thức toán học. Theo tôi, các phương pháp dạy học bao giờ cũng phải xuất phát từ vị trí, mục đích và nhiệm vụ, mục tiêu giáo dục của bài học môn toán. Nó không phải là cách thức truyền thụ kiến thức, cách giải toán đơn thuần mà là phương tiện tinh vi để tổ chức hoạt động nhận thức tích cực, độc lập và giáo dục phong cách làm việc một cách khoa học, hiệu quả.Hiện nay, giáo dục tiểu học đang thực hiện yêu cầu đổi mới phương pháp dạy học theo hướng phát huy tính tích cực của học sinh, làm cho hoạt động dạy học trên lớp “nhẹ nhàng, tự nhiên, hiệu quả”. Để đạt được yêu cầu đó, giáo viên phải có phương pháp và hình thức dạy học để vừa nâng cao hiệu quả cho học sinh, vừa phù hợp với đặc điểm tâm sinh lý của lứa tuổi tiểu học và trình độ nhận thức của học sinh, để đáp ứng với công cuộc đổi mới của đất nước nói chung và của ngành giáo dục tiểu học nói riêng.Trong chương trình môn toán tiểu học, giải toán có lời văn giữ một vai trò quan trọng . Thông qua việc giải toán, học sinh tiểu học thấy được nhiều khái niệm trong toán học như các số, các phép tính, các đại lượng, các yếu tố hình học . . . đều có nguồn gốc trong cuộc sống hiện thực, trong thực tiễn hoạt động của con người, thấy được mối quan hệ biện chứng giữa các sự kiện, giữa cái đã cho và cái phải tìm. Qua việc giải toán sẽ rèn luyện cho học sinh năng lực tư duy và những đức tính của con người mới, có ý thức vượt khó khăn, đức tính cẩn thận, làm việc có kế hoạch, thói quen xét đoán có căn cứ, thói quen tự kiểm tra kết quả công việc mình làm và độc lập suy nghĩ, óc sáng tạo giúp học sinh vận dụng các kiến thức, rèn luyện kĩ năng tính toán, kĩ năng ngôn ngữ. Đồng thời qua việc giải toán của học sinh mà giáo viên có thể dễ dàng phát hiện những ưu điểm, thiếu sót của các em về kiến thức, kĩ năng, tư duy để giúp học sinh phát huy những mặt được và khắc phục những mặt thiếu sót.Chính vì vậy, tôi chọn đề tài ” Hướng dẫn học sinh thực hiện tốt cách giải bài toán có lời văn lớp 5 ( Dạng: Toán chuyển động đều ) ” với mong muốn đưa ra giải pháp nhằm nâng cao chất lượng học toán và giúp học sinh lớp 5 biết cách giải bài toán có lời văn đạt hiệu quả cao hơn. Nhưng trong thực tế giảng dạy môn Toán – giải bài toán có lời văn, bản thân tôi cũng gặp nhiều khó khăn như sau :

II / – KHÓ KHĂN: Đa số học sinh xem môn toán là môn học khó khăn, dễ chán. Trình độ nhận thức của học sinh không đồng đều : một số học sinh còn chậm, nhút nhát, kĩ năng tóm tắt bài toán còn hạn chế, chưa có thói quen đọc và tìm hiểu bài toán, dẫn tới thường nhầm lẫn giữa các dạng toán, lựa chọn phép tính còn sai, chưa bám sát vào yêu cầu bài toán để tìm lời giải thích hợp với các phép tính. Một số em tiếp thu bài một cách thụ động, ghi nhớ bài còn máy móc nên còn chóng quên các dạng bài toán.Từ những khó khăn trên, để giúp học sinh có kĩ năng giải bài toán có lời văn ở lớp 5, với dạng bài toán ” chuyển động đều ” đạt hiệu quả, bản thân tôi đã thực hiện và tổ chức các hoạt động như sau:

III / – GIẢI PHÁP KHẮC PHỤC:Giải toán đối với học sinh là một hoạt động trí tuệ khó khăn, phức tạp. Việc hình thành kĩ năng giải toán khó hơn nhiều so với kĩ năng tính vì bài

5 Bước Giải Bài Toán Có Lời Văn Lớp 1

Để học sinh lớp 1 làm tốt bài Toán có lời văn, giáo viên/ gia sư lớp 1 Hà Nội cần dạy học sinh làm tốt 5 bước sau:

Đọc kĩ đề bài: Đề toán cho biết những gì? Đề toán yêu cầu gì?

Tóm tắt đề bài

Tìm được cách giải bài toán

Trình bày bài giải

Kiểm tra lời giải và đáp số

Khi giải bài toán có lời văn gia sư lưu ý cho học sinh hiểu rõ những điều đã cho, yêu cầu phải tìm, biết chuyển dịch ngôn ngữ thông thường thành ngôn ngữ toán học, đó là phép tính thích hợp.

Ví dụ, có một số quả cam, khi được cho thêm hoặc mua thêm nghĩa là thêm vào, phải làm tính cộng; nếu đem cho hay đem bán thì phải làm tính trừ, …

Gia sư hãy cho học sinh tập ra đề toán phù hợp với một phép tính đã cho,để các em tập tư duy ngược,tập phát triển ngôn ngữ,tập ứng dụng kiến thức vào các tình huống thực tiễn.

Ví dụ, với phép tính 3 + 2 = 5 . Có thể có các bài toán sau:

– Bạn Hà có 3 chiếc kẹo, chị An cho Hà 2 chiếc nữa. Hỏi bạn Hà có tất cả mấy chiếc kẹo?

– Nhà Nam có 3 con gà mẹ Nam mua thêm 2 con gà. Hỏi nhà Nam có tất cả mấy con gà?

– Có 3 con vịt bơi dưới ao,có thêm 2 con vịt xuống ao. Hỏi có mấy con vịt dưới ao?

– Hôm qua lớp em có 3 bạn được khen. Hôm nay có 2 bạn được khen. Hỏi trong hai ngày lớp em có mấy bạn được khen?

Có nhiều đề bài toán học sinh có thể nêu được từ một phép tính. Biết nêu đề bài toán từ một phép tính đã cho, học sinh sẽ hiểu vấn đề sâu sắc hơn, chắc chắn hơn, tư duy và ngôn ngữ của học sinh sẽ phát triển hơn.

Học sinh biết giải toán có lời văn nhưng kết quả chưa cao.

Số học sinh viết đúng câu lời giải đạt tỷ lệ thấp.

Lời giải của bài toán chưa sát với câu hỏi của bài toán.

Bài Tập Toán Có Lời Văn Lớp 5

Bài tập Toán có lời văn lớp 5

Lưu ý: Nếu không tìm thấy nút Tải về bài viết này, bạn vui lòng kéo xuống cuối bài viết để tải về.

Bài Toán có lời văn lớp 5 giúp học sinh biết ứng dụng toán học vào cuộc sống. Các bài toán có lời văn là những miếng ghép quan trọng nối thế giới toán học với thế giới thực.

Các dạng Toán lớp 5 có lời văn lớp

+ Toán có lời văn về số phần trăm

+ Toán có lời văn về thể tích, diện tích

+ Quãng đường, vận tốc, thời gian

+ Chuyển động cùng chiều, ngược chiều

+ Các bài toán về chuyển động của tàu hỏa

+ Các bài toán chuyển động qui về bài toán tổng – tỉ, hiệu – tỉ

Dạng 1: Các bài Toán về trung bình cộng

Ví dụ: Trong 2 ngày Lan đọc xong một quyển truyện. Ngày thứ nhất Lan đọc được 20 trang, ngày thứ 2 đọc được 40 trang. Hỏi nếu mỗi ngày Lan đọc được số trang sách đều như nhau thì mỗi ngày Lan đọc được bao nhiêu trang sách?

Giáo viên cho học sinh đọc kĩ đầu bài. Tìm hiểu kĩ đề bài qua câu hỏi gợi ý:

Bài toán cho biết gì? (Lan đọc ngày 1 được 20 trang sách, ngày 2 được 40 trang sách)

Bài toán hỏi gì? (Tìm trung bình mỗi ngày lan đọc được bao nhiêu trang sách)

Ta có tóm tắt bài toán như thế nào là dễ hiểu và hợp lí, thuận tiện nhất? (vẽ sơ đồ)

Ta thấy bài toán ở dạng toán cơ bản nào ta đã được học? (Tìm số trung bình cộng)

Muốn giải và trình bày bài toán TBC ta làm như thế nào? (Tìm tổng các số hạng rồi chia cho số các số hạng)- ở bài này cụ thể ta cần tính 2 ngày Lan đọc được tất cả bao nhiêu trang sách lấy số nào để thực hiện (20 + 40), số các số hạng là mấy (2)

Lời giải

Ta có sơ đồ sau:

Số trang sách Lan đọc được trong hai ngày là:

20 + 40 = 60 (trang)

Số trang sách Lan đọc đều như nhau trong mỗi ngày là:

60 : 2 = 30 (trang)

Đáp số: 30 trang

Dạng 2: Ôn và giải toán tìm 2 số khi biết tổng và tỉ số của 2 số

Với dạng toán này học sinh thuộc các bước thực hiện giải toán, ở dạng toán này các em gặp khó khăn xác định đúng tỉ số và tổng để tìm lời giải ,đặc biệt với các bài có phép tính trung gian mới tìm được tỉ số hoặc tổng.

Những bài toán này học sinh lớp 5 thường có thể giải theo bài toán với phân số, nhưng bước quan trọng các em cần xác định được tỉ số để thiết lập được phân số để thực hiện được phép tính giải toán.

Bên cạnh đó các em còn sử dụng giải bằng phương pháp chia tỉ lệ.

Song dù giải bằng phương pháp nào các em cũng cần tìm ra tỉ số và xác định đúng tỉ số và tổng của hai số.

Ví dụ :

Một vườn hoa hình chữ nhật có chu vi là 120 m . Chiều rộng bằng 5/7 chiều dài.

a-Tính chiều dài, chiều rộng vườn hoa đó?

b- Người ta sử dụng 1/25 diện tích vườn hoa để làm lối đi. Hỏi diện tích lối đi là bao nhiêu mét vuông?

Với bài này các em cần cần tìm tổng chiều dài và chiều rộng (tức nửa chu vi) rồi sẽ tính được chiều dài, chiều rộng.

Tính được diện tích của vườn hoa, tính được diện tích lối đi có thể theo giải bài toán với phân số hay với toán tổng – tỉ đều được.

Nhưng với bài này học sinh thường nhầm lấy ngay chu vi để làm tính coi đó là tổng nên bài toán sai. Một số em khi đến bước tìm diện tích lối đi , các em không biết cần tìm diện tích của vườn hoa.

Khi hướng dẫn học sinh học sinh giải bài này yêu cầu học sinh cần đọc kĩ đề bài, xác định dữ kiện đã cho biết gì (chu vi 120 m, chiều rộng bằng 5/7 chiều dài, diện tích lối đi bằng diện tích thửa ruộng)? Hỏi gì (tính chiều dài chiều rộng và diện tích lối đi)? Ta có thể giải theo dạng toán cơ bản nào (tìm hai số biết tổng của hai số hay giải bài toán với phân số) ? có những cách giải nào? Chọn cách tóm tắt theo sơ đồ đoạn thẳng hay sơ đồ cây, nhìn vào sơ đồ các em nhận ra các bước giải, tìm và chọn cách giải phù hợp với mình và khoa học, nhanh nhất:

Giải

a-Nửa chu vi của thửa ruộng là:

120 : 2 = 60 (m)

Chiều rộng của thửa ruộng là:

60 : (5 + 7 ) x 5 = 25 (m)

Chiều dài của thửa ruộng là:

60 – 25 = 35 (m)

b- Diện tích của thửa ruộng là:

35 x 25 = 875 ( m 2)

Diện tích lối đi là:

875 x = 35 (m 2 )

Đáp số : a- Chiều rộng: 25 m

Chiều dài 35 m

Ngoài ra còn cho học sinh giải bài tập dưới dạng bài trắc nghiệm điền và chọn đúng sai, bài toán vui, toán cổ… .Với hình thức đa dạng hình thức bài tập gây hứng thú học tập cho học sinh, đồng thời rèn kĩ năng thực hiện và giải toán cho học sinh.

Chẳng hạn:

Chọn câu trả lời đúng :

Tổng của hai số là số nhỏ nhất có ba chữ số. Tỉ số của hai số là . Tìm hai số đó?

A 3 và 97

B 3 và 7

C 30 và 70

D 33 và 77 .

Hướng dẫn học sinh cách chọn nhanh :

Tổng của hai số là số có 3 chữ số nên hai số đó phải có ít nhất 1 số là số có hai chữ số nên chỉ có thể là 30 và 70 hay 33 và 77, 3 và 97. Dựa theo tỉ số thì 1 trong 2 số phải là số chia hết cho 10 và cho 3 nên chọn được ngay đáp số đúng là C.

b-Ôn tập giải bài toán tìm hai số biết hiệu và tỉ số của hai số:

Cách hướng dẫn và giải tương tự chỉ khác tìm hiệu số phần và cần xác định được hiệu của hai số.

Ở 2 dạng toán này, giáo viên cần cho học sinh phối hợp với phương pháp chia tỉ lệ, với phương pháp sơ đồ đoạn thẳng.

Kết luận:

Với dạng toán thứ hai này các em cần xác định đúng tổng(hiệu) của hai số phải tìm, tỉ số của hai số phải tìm.Phân tích lựa chọn nên giải theo phương pháp chia tỉ lệ hay phương pháp giải toán về phân số để nhanh, khoa học và phù hợp, trình bày ngắn gọn và dễ hiểu, phù hợp với lớp 5 nhất. Sau đó giải và trình bày bài .

Dạng toán này học sinh có hai phương pháp giải:

+ Phương pháp rút về đơn vị

+ Phương pháp dùng tỉ số

Cần cho học sinh đây hiểu đây là hai phương pháp giải toán khác nhau nhưng đều dùng để giải một dạng toán về tương quan tỉ lệ ( thuận, nghịch). Dạng toán này thường có hai đại lượng biến thiên theo tương quan tỉ lệ (thuận hoặc nghịch), người ta thường cho biết hai giá trị của đại lượng này và một giá trị của đại lượng kia rồi bắt tìm giá trị thứ hai của đại lượng kia.Để tìm giá trị này thì dùng phương pháp rút về đơn vị hay tỉ số như sau:

a-Phương pháp rút về đơn vị :

Bước 1 : Rút về đơn vị : trong bước này ta tính một đơn vị của đại lượng thứ nhất ứng với bao nhiêu đơn vị của đại lượng thứ hai hoặc ngược lại .

Bước 2 : Tìm giá trị chưa biết của đại lượng thứ hai.Trong bước này lấy giá trị của đại lượng thứ hai tương ứng với một đơn vị của đại thứ nhất (vừa tìm được ở bước 1)nhân với (hoặc chia cho) giá trị còn lại của đại lượng thứ nhất.

b-Phương pháp tỉ số:

Khi giải bài toán này ta tiến hành :

Bước 1 : Tìm tỉ số: Ta xác định trong hai giá trị đã cho của đại lượng thứ nhất thì giá trị này gấp hoặc kém giá trị kia mấy lần .

Bước 2; Tìm giá trị chưa biết của đại lượng thứ hai.

Ví dụ :

Bài 1:

Để hút hết nước ở một cái hồ, phải dùng 3 máy bơm làm việc liên tục trong 4 giờ. Vì muốn công việc hoàn thành sớm hơn người ta dùng 6 máy bơm nước như thế. Hỏi sau mấy giờ sẽ hút hết nước ở hồ?

Phân tích :

Trong bài này ta thấy có 3 đại lượng: Nước ở hồ là đại lượng không đổi.

Số máy bơm và thời gian là hai đại lượng biến thiên theo tỉ lệ nghịch ?

Ta thấy :

3 máy bơm hút hết 4 giờ.

1 máy bơm hút hết ? giờ.

6 máy bơm hút hết ? giờ.

Bài này ta có thể giải được bằng cả hai phương pháp. Chẳng hạn:

Phương pháp dùng rút về đơn vị:

Học sinh đọc đề và phân tích như trên để tìm hiểu đề và tóm tắt sau đó giải như sau:

1 máy bơm hút cạn nước hồ cần thời gian là :

4 x 3 = 12( giờ )

6 máy bơn hút cạn hồ nước hết thời gian là:

12 : 6 = 2 (giờ)

Đáp số : 2 giờ

Phương pháp dùng tỉ số:

Học sinh tìm xem số máy bơm tăng lên so với lúc đầu mấy lần , thì thời gian bơm sẽ giảm đi bấy nhiêu lần và giải như sau :(Vì hai đại lượng số máy bơm và thời gian là hai đại lượng biến thiên theo tỉ lệ nghịch)

6 máy bơm so với 3 máy bơm lớn gấp:

6 : 3 = 2 (lần)

Thời gian để 6 máy bơm hút cạn nước hồ là :

4 : 2 = 2 (giờ).

Đáp số : 2 giờ

Dạng 4: Toán về tỉ số phần trăm

Với dạng toán này học sinh vận dụng tính tỉ số phần trăm của 2 số, tìm một số khi biết giá trị phần trăm của số đó.

Giáo viên cần cho học sinh hiểu thế nào là tỉ số phần trăm , giá trị của đại lượng đó là 100%. Từ đó có cách làm tương ứng cho mỗi bài tập.

Ví dụ:

Một người bỏ ra 42 000 đồng tiền vốn mua rau. Sau khi bán rau người đó thu được

52 500 đồng.Hỏi:

a- Tiền bán rau bằng bao nhiêu phần trăm tiền vốn?

b- Người đó đã lãi bao nhiêu phần trăm?

Phân tích:

a-Để tìm được số tiền bán rau bằng bao nhiêu phần trăm tiền vốn chính là đi tìm tỉ số phần trăm của tiền vốn và tiền sau khi bán thu được.

b- Chính là tìm tỉ số của số tiền lãi với tiền vốn.

Qua đó ta thấy cần biết giá trị nào là tiền vốn(42 000 đồng), giá trị nào là tiền sau khi bán (52 500 đồng).

Giải :

a-Số phần trăm của tiền bán rau và tiền vốn là:

52 500: 42 000 = 1,25

1,25 = 125 %

b- Tỉ số tiền vốn là 100% thì số tiền bán rau là 125%. Do đó số lãi là:

125% – 100% = 25%

Đáp số a- 125%, b- 25%

Ví dụ 2 :

Cuối năm 2000 số dân của một phường là 15 625 người.Cuối năm 2001 số dân của phường đó là 15 875 người.

Hỏi :

a-Từ cuối năm 2000 đến cuối năm 2001 số dân của phường đó tăng thêm bao nhiêu phần trăm?

b-Nếu từ cuối năm 2001 đến cuối năm 2002 số dân của phường đó cũng tăng bấy nhiêu phần trăm thì cuối năm 2002 số dân của phường đó là bao nhiêu người?

Phân tích:

Để tìm được số dân tăng thêm năm 2001 là bao nhiêu % ta cần tìm được số dân tăng là bao nhiêu người?

Tìm số người tăng thêm của năm 2002, mới tìm được số người dân cuối năm 2002 của phường đó.

Từ đó học sinh tìm ra các phép tính tương ứng và giải:

a-Từ cuối năm 2000 đến cuối năm 2001 số người tăng thêm là:

15875 – 15 625 – 250 (người)

Tỉ số phần trăm số dân tăng thêm là:

250 : 15 635 = 0,016

0,016 = 1,6%

b- Từ cuối năm 2001 đến cuối năm 2002 số người tăng thêm là:

15875 x 1,6 : 100 = 254 (người)

Cuối năm 2002 số dân của phường đó là:

15875 + 254 = 16 129 (người).

Đáp số : a- 1,6%.

b- 16 129 người.

Tham khảo các dạng bài tập Toán lớp 5