Top 10 # Toán Hình Lớp 5 Nâng Cao Có Lời Giải Xem Nhiều Nhất, Mới Nhất 1/2023 # Top Trend | Caffebenevietnam.com

500 Bài Toán Nâng Cao Lớp 5 Có Lời Giải

500 bài Toán nâng cao lớp 5 có lời giải

Bồi dưỡng học sinh giỏi Toán lớp 5

Bài Toán nâng cao lớp 5 có đáp án

Giải bài tập SGK Toán lớp 5

50 bài toán bồi dưỡng học sinh giỏi lớp 5 (có lời giải)

15 đề luyện thi học sinh giỏi môn Toán lớp 5

Bộ đề bồi dưỡng học sinh giỏi môn Tiếng Việt lớp 5

500 BÀI TOÁN LỚP 5 NÂNG CAO CHỌN LỌC

Bài 1: Số có 1995 chữ số 7 khi chia cho 15 thì phần thập phân của thương là bao nhiêu?

Giải: Gọi số có 1995 chữ số 7 là A. Ta có:

Một số chia hết cho 3 khi tổng các chữ số của số đó chia hết cho 3. Tổng các chữ số của A là 1995 x 7. Vì 1995 chia hết cho 3 nên 1995 x 7 chia hết cho 3.

Do đó A = 777…77777 chia hết cho 3.

1995 chữ số 7

Một số hoặc chia hết cho 3 hoặc chia cho 3 cho số dư là 1 hoặc 2.

Chữ số tận cùng của A là 7 không chia hết cho 3, nhưng A chia hết cho 3 nên trong phép chia của A cho 3 thì số cuối cùng chia cho 3 phải là 27. Vậy chữ số tận cùng của thương trong phép chia A cho 3 là 9, mà 9 x 2 = 18, do đó số A/3 x 0,2 là số có phần thập phân là 8.

Vì vậy khi chia A = 777…77777 cho 15 sẽ được thương có phần thập phân là 8.

1995 chữ số 7

Nhận xét: Điều mấu chốt trong lời giải bài toán trên là việc biến đổi A/15 = A/3 x 0,2. Sau đó là chứng minh A chia hết cho 3 và tìm chữ số tận cùng của thương trong phép chia A cho 3. Ta có thể mở rộng bài toán trên tới bài toán sau:

Bài 2 (1*): Tìm phần thập phân của thương trong phép chia số A cho 15 biết rằng số A gồm n chữ số a và A chia hết cho 3?

Nếu kí hiệu A = chúng tôi và giả thiết A chia hết cho 3 (tức là n x a chia hết cho 3), thì khi đó tương tự như cách giải bài toán n chữ số a

1 ta tìm được phần thập phân của thương khi chia A cho 15 như sau:

– Với a = 1 thì phần thập phân là 4 (A = 111…1111, với n chia hết cho 3) n chữ số 1

– Với a = 2 thì phần thập phân là 8 (A = 222…2222, với n chia hết cho 3). n chữ số 2

– Với a = 3 thì phần thập phân là 2 (A = 333…3333 , với n tùy ý). n chữ số 3

– Với a = 4 thì phần thập phân là 6 (A = 444…4444 , với n chia hết cho 3) n chữ số 4

– Với a = 5 thì phần thập phân là 0 (A = 555…5555, với n chia hết cho 3). n chữ số 5

– Với a = 6 thì phần thập phân là 4 (A = 666…6666, với n tùy ý) n chữ số 6

– Với a = 7 thì phần thập phân là 8 (A = 777…7777, với n chia hết cho 3) n chữ số 7

– Với a = 8 thì phần thập phân là 2 (A = 888…8888, với n chia hết cho 3) n chữ số 8

– Với a = 9 thì phần thập phân là 6 (A = 999…9999, với n tùy ý). n chữ số 9

Trong các bài toán 1 và 2 (1*) ở trên thì số chia đều là 15. Bây giờ ta xét tiếp một ví dụ mà số chia không phải là 15.

Bài 4: Cho mảnh bìa hình vuông ABCD. Hãy cắt từ mảnh bìa đó một hình vuông sao cho diện tích còn lại bằng diện tích của mảnh bìa đã cho.

Bài giải:

Theo đầu bài thì hình vuông ABCD được ghép bởi 2 hình vuông nhỏ và 4 tam giác (trong đó có 2 tam giác to, 2 tam giác con). Ta thấy có thể ghép 4 tam giác con để được tam giác to đồng thời cũng ghép 4 tam giác con để được 1 hình vuông nhỏ. Vậy diện tích của hình vuông ABCD chính là diện tích của 2 + 2 x 4 + 2 x 4 = 18 (tam giác con). Do đó diện tích của hình vuông ABCD là:

18 x (10 x 10) / 2 = 900 (cm 2)

Bài 5: Tuổi ông hơn tuổi cháu là 66 năm. Biết rằng tuổi ông bao nhiêu năm thì tuổi cháu bấy nhiêu tháng. Hãy tính tuổi ông và tuổi cháu (tương tự bài Tính tuổi – cuộc thi Giải toán qua thư TTT số 1).

Giải

Giả sử cháu 1 tuổi (tức là 12 tháng) thì ông 12 tuổi.

Lúc đó ông hơn cháu: 12 – 1 = 11 (tuổi)

Nhưng thực ra ông hơn cháu 66 tuổi, tức là gấp 6 lần 11 tuổi (66 : 11 = 6).

Do đó thực ra tuổi ông là: 12 x 6 = 72 (tuổi)

Còn tuổi cháu là: 1 x 6 = 6 (tuổi)

thử lại 6 tuổi = 72 tháng; 72 – 6 = 66 (tuổi)

Đáp số: Ông: 72 tuổi

Cháu: 6 tuổi

Bài 6: Một vị phụ huynh học sinh hỏi thầy giáo: “Thưa thầy, trong lớp có bao nhiêu học sinh?” Thầy cười và trả lời:”Nếu có thêm một số trẻ em bằng số hiện có và thêm một nửa số đó, rồi lại thêm 1/4 số đó, rồi cả thêm con của quý vị (một lần nữa) thì sẽ vừa tròn 100″. Hỏi lớp có bao nhiêu học sinh?

Giải:

Theo đầu bài thì tổng của tất cả số HS và tất cả số HS và 1/2 số HS và 1/4 số HS của lớp sẽ bằng: 100 – 1 = 99 (em)

Để tìm được số HS của lớp ta có thể tìm trước 1/4 số HS cả lớp.

Giả sử 1/4 số HS của lớp là 1 em thì cả lớp có 4 HS

Vậy: 1/4 số HS của lứop là: 4 : 2 = 2 (em).

Suy ra tổng nói trên bằng : 4 + 4 + 2 + 1 = 11 (em)

Nhưng thực tế thì tổng ấy phải bằng 99 em, gấp 9 lần 11 em (99 : 11 = 9)

Suy ra số HS của lớp là: 4 x 9 = 36 (em)

Thử lại: 36 + 36 = 36/2 + 36/4 + 1 = 100

Đáp số: 36 học sinh.

Bài 7: Tham gia hội khoẻ Phù Đổng huyện có tất cả 222 cầu thủ thi đấu hai môn: Bóng đá và bóng chuyền. Mỗi đội bóng đá có 11 người. Mỗi đội bóng chuyền có 6 người. Biết rằng có cả thảy 27 đội bóng, hãy tính số đội bóng đá, số đội bóng chuyền.

Giải

Giả sử có 7 đội bóng đá, thế thì số đội bóng chuyền là:

27 – 7 = 20 (đội bóng chuyền)

Lúc đó tổng số cầu thủ là: 7 x 11 + 20 x 6 = 197 (người)

Nhưng thực tế có tới 222 người nên ta phải tìm cách tăng thêm: 222 – 197 = 25 (người), mà tổng số đội vẫn không đổi.

Ta thấy nếu thay một đội bóng chuyền bằng một đội bóng đá thì tổng số đội vẫn không thay đổi nhưng tổng số người sẽ tăng thêm: 11 – 6 = 5 (người)

Vậy muốn cho tổng số người tăng thêm 25 thì số dội bống chuyền phải thay bằng đọi bóng đá là:

25 : 5 = 3 (đội)

Do đó, số đội bóng chuyền là: 20 – 5 = 15 (đội)

Còn số đội bóng đá là: 7 + 5 = 12 (đội)

Đáp số: 12 đội bóng đá, 15 đội bóng chuyền.

Bản Mềm: Bài Tập Hình Học Nâng Cao Lớp 5 Có Lời Giải

Bản mềm: Bài tập hình học nâng cao lớp 5 có lời giải

Bản mềm: Bài tập hình học nâng cao lớp 5 có lời giải được biên soạn có hệ thống. Phân loại khoa học theo từng dạng bài cụ thể. Quá trình luyện tập học sinh có thể hệ thống hóa lời giải một cách chi tiết. Quý thầy cô giáo có thể tải về dựa theo đối tượng học sinh của mình. Để sửa đổi cho phù hợp. Ngoài ra với phương pháp dạy học tích cực. Thầy cô có thể đưa những ví dụ trực quan hơn vào câu hỏi. Qua đó kích thích sự sáng tạo của học sinh Qua Bản mềm: Bài tập hình học nâng cao lớp 5 có lời giải. Tải thêm bộ đề thi cuối kỳ 2 môn toán cấp tiểu học, tài liệu tiểu học

Chương trình cơ bản Toán 5 có gì

Để dễ dàng hơn trong làm bài tập hình học nâng cao lớp 5 các bạn cần nắm vững kiến thức cơ bản trước. Trong phần này, chúng tôi sẽ nêu tổng quát kiến thức hình học trong chương trình Toán 5:

Hình tam giác và diện tích hình tam giác

Hình thang và diện tích hình thang

Hình tròn, đường tròn

Chu vi và diện tích hình tròn

Hình hộp chữ nhật, hình lập phương

Diện tích xung quanh, diện tích toàn phần

Thể tích của một hình

Hình trụ, hình cầu

Bảng đơn vị đo thể tích

Bảng đơn vị đo thời gian

Bảng đơn vị đo khối lượng

Bảng đơn vị đo độ dài

Cộng, trừ, nhân, chia thời gian

Bài toán về tỉ lệ nghịch

Hình ảnh bản mềm

Đối với bài tập hình học nâng cao lớp 5, nội dung vẫn xoay quanh những kiến thức cơ bản trên. Tuy nhiên độ khó của nó thì khác nhau rõ rệt. Nếu như cơ bản chỉ yêu cầu áp dụng công thức thì toán nâng cao lại yêu cầu vận dụng linh hoạt tính chất hình học.

Ngoài ra còn cần những kĩ năng mới như cắt, ghép hình, chứng minh tính chất, nêu giả định,… Hình học lớp 5 được đánh giá là chương trình khó. Hy vọng tài liệu của chúng tôi sẽ trợ giúp các bạn trong quá trình học.

Những lưu ý khi làm bài tập hình học

Vẽ hình ra cả giấy nháp trước. Như vậy, các bạn có thể tránh vẽ nhầm vào vở. Nhờ vậy, hình vẽ trong bài làm luôn sạch đẹp.

Cần thể hiện những dữ liệu bài cho lên hình vẽ một cách rõ ràng. Như vậy, khi tìm cách giải không cần phải nhìn lại đề bài nữa.

Nên dùng kí hiệu thống nhất với các loại dữ liệu như đường thẳng song song, …

Nếu như cảm thấy khó trong việc giải quyết bài toán, hãy thử dùng sơ đồ ngược. Tức là đi từ yêu cầu của bài, xác định những yếu tố cần có để suy ra yêu cầu của bài.

Ngay từ lớp 5, các bạn nên tạo thói quen làm bài để khi lên Toán 6, 7, … việc làm toán hình sẽ dễ dàng hơn. Một số điều cần chú ý khi làm bài toán hình như sau:

Bài tập ví dụ:

Lời giải:

Đề bài: Cho tam giác ABC. Trên BC lấy I là trung điểm của BC. Trên đoạn thẳng AI lấy điểm M thỏa mãn AM = 2MI. Cm kéo dài cắt AB tại điểm N. So sánh diện tích hai tam giác AMN và BMN.

Do tam giác MIC và MAC có cùng đường cao kẻ từ C. AM = 2MI

Do hai tam giác MIC và MIB có cùng đường cao kẻ từ M, IC = IB

Tải tài liệu miễn phí ở đây

Do tam giác MAC và MBC có chung đáy MC nên 2 đường cao kẻ từu 2 đỉnh A và B của 2 tam giác là bằng nhau.

Các Dạng Toán Nâng Cao Lớp 6 Có Lời Giải

A. Lý thuyết 1. Tập hợp

Tập hợp là khái niệm cơ bản thường dùng trong toán học và cuộc sống. Ta hiểu tập hợp thông qua các ví dụ.

Ví dụ:

+ Tập hợp các đồ vật (sách, bút) đặt trên bàn.

+ Tập hợp học sinh lớp 6A.

+ Tập hợp các số tự nhiên lớn hơn 7.

+ Tập hợp các chữ cái trong hệ thống chữ cái Việt Nam.

2. Cách viết tập hợp

+ Tên tập hợp được viết bằng chữ cái in hoa như: A, B, C,…

+ Để viết tập hợp thường có hai cách viết:

* Liệt kê các phần tử của tập hợp

Ví dụ: Gọi A là tập hợp các số tự nhiên nhỏ hơn 5

A = {1; 2; 3; 4}

* Theo tính chất đặc trưng cho các phần tử của tập hợp đó.

N là tập hợp các số tự nhiên

Các số 0; 1; 2; 3; 4 là các phần tử của tập hợp A

+ Kí hiệu:

* 2 ∈ A đọc là 2 thuộc hoặc là 2 thuộc phần tử của A.

* 6 ∉ A đọc là 6 không thuộc A hoặc là 6 không là phần tử của A.

Chú ý:

* Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, ngăn cách nhau bởi dấu “;” (nếu có phần tử số) hoặc dấu “,” nếu không có phần tử số.

* Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý.

* Ngoài ra ta còn minh họa tập hợp bằng một vòng tròn kín, mỗi phần tử của tập hợp được biểu diễn bằng 1 dấu chấm bên trong vòng tròn kín đó.

Ví dụ: Tập hợp B trong hình vẽ là B = {0; 2; 4; 6; 8}

B. Bài tập

Câu 1: Cho tập hợp A là các chữ cái trong cụm từ: “Thành phố Hồ Chí Minh”.

a) Hãy liệt kê các phần tử trong tập hợp A.

b) Trong các kết luận sau, kết luận là đúng?

+ b thuộc tập hợp A

+ t thuộc tập hợp A

+ m thuộc tập hợp A.

Hướng dẫn giải:

a) Các phần tử trong tập hợp A là A = {t; h; a; n; p; o; c; i; m}

b) Trong các kết luận, các kết luận đúng là

+ t thuộc tập hợp A

+ m thuộc tập hợp A.

Câu 2: Cho tập hợp A = {1; 2; 3; 4; 5; 6} và B = {1; 3; 5; 7; 9}

a) Viết tập hợp C gồm các phần tử thuộc A nhưng không thuộc B

Hướng dẫn giải:

a) Các phân tử thuộc A không thuộc B là 2; 4; 6

Nên tập hợp C là C = {2; 4; 6}

b) Các phần tử vừa thuộc A vừa thuộc B là 1; 3; 5

Nên tập hợp D là D = {1; 3; 5}

c) Các phần tử thuộc B nhưng không thuộc A là 7; 9

Nên tập hợp E là E = {7; 9}

tag: những phát triển về lũy thừa kì tìm sách đáp án so sánh tap nhanh chia hết bổ trợ chương co dap an violet ôn hè lên pdf

32 Bài Toán Nâng Cao Lớp 6 Có Lời Giải

32 bài toán nâng cao lớp 6 có lời giải gồm 2 phần bài tập số học và hình học là tài liệu dành cho học sinh lớp 6 rèn luyện nâng cao kỹ năng giải toán.

*Chú ý: Các em nên tự làm bài tập trước sau đó mới kiểm tra lại đáp án bên dưới.

Câu 1: Số vừa là bội của 3 vừa là ước của 54 là?

Câu 2: Cho P là tập hợp các ước không nguyên tố của số 180. Số phần tử của tập hợp P là ?

Câu 3: Ba số nguyên tố có tổng là 106. Trong các số hạng đó,số nguyên tố lớn nhất thỏa mãn có thể là…

Câu 4: có bao nhiêu số chẵn có 4 chữ số

Câu 5: Cho đoạn thẳng OI = 6. Trên OI lấy điểm H sao cho $ displaystyle HI=frac{2}{3}OI$. Độ dài đoạn thẳng OH là…….cm. Câu 6: Số tự nhiên nhỏ nhất (khác 0) chia hết cho cả 2; 3; 5 và 9 là ………….

Câu 7: Lúc 8 giờ, một người đi xe đạp từ A đến B cách A một khoảng 10km. Biết rằng người đó đến B lúc 10 giờ 30 phút. Vận tốc của người đi xe đạp là……….km/h.

Câu 8: Một lớp học có 40 học sinh chia thành các nhóm, mỗi nhóm nhiều nhất 6 học sinh. Hỏi số nhóm ít nhất có thể là …………

Câu 9: Một người đi bộ mỗi phút được 60m, người khác đi xe đạp mỗi giờ được 24km. Tỉ số phần trăm vận tốc của người đi bộ và người đi xe đạp là ……….%.

Câu 10: Tổng số tuổi của hai anh em là 30 tuổi. Biết tuổi em bằng $ displaystyle frac{2}{3}$ tuổi anh. Tuổi anh hiện nay là ………

Câu 11: Viết liên tiếp các số tự nhiên từ 1 đến 100 ta được số có……..chữ số.

Câu 12: Một người đi quãng đường AB vận tốc 15/km trên nửa quãng đường đầu và vận tốc 10/km trên nửa quãng đường sau. Vận tốc trung bình của người đó trên cả quãng đường AB là chúng tôi Câu 13: Một tháng có ba ngày chủ nhật đều là ngày chẵn. Ngày 15 tháng đó là thứ………

Câu 14: Hiện nay tuổi anh gấp 2 lần tuổi em, cách đây 6 năm tuổi anh gấp 5 lần tuổi em. Tổng số tuổi của 2 anh em hiện nay là

Câu 15: Tính diện tích một hình tròn, biết nếu giảm đường kính hình tròn đó đi 20% thì diện tích giảm đi 113,04 cm 2 Câu 16: Hãy cho biết có bao nhiêu số thập phân có 2 chữ số ở phần thập phân mà lớn hơn 24 và nhỏ hơn 25?

Câu 17: Chia 126 cho một số tự nhiên a ta được số dư là 25. Vậy số a là

Câu 18: Có bao nhiêu số tự nhiên có 4 chữ số?

Có bao nhiêu số chẵn có 3 chữ số?

Câu 19: tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 29 thì dư 5 và chia cho 31 dư 28

Câu 20: Gọi A là tập hợp ước của 154. A có số tập hợp con là?

Câu 21:

a. Có tất cả bao nhiêu cách viết số 34 dưới dạng tổng của hai số nguyên tố? Trả lời:……cách.

b. Có……số vừa là bội của 3 và là ước của 54

c. Số các ước tự nhiên có hai chữ số của 45 là

Câu 22:

Câu A. Khi chia một số tự nhiên cho 4 được số dư là 2. Số dư trong phép chia số tự nhiên đó cho 2 là

Câu B: Một lớp học có 40 học sinh chia thành các nhóm, mỗi nhóm nhiều nhất 6 học sinh. Hỏi số nhóm ít nhất có thể là

Câu C: Cho hình chữ nhật ABCD có chiều dài là 12cm, chiều rộng là 8cm. Diện tích hình tam giác ABC là

Câu D: Trong một phép chia, nếu ta gấp đôi số chia thì thương của phép chia cũ gấp lần so với thương của phép chia mới.

Câu E: Cho tam giác ABC.Trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho AM bằng 1/3 AB. NC bằng 2/3 AC. Diện tích hình tam giác ABC gấp diện tích hình tam giác AMNsố lần là………………..

Câu F: Tổng của hai số tự nhiên là 102. Nếu thêm chữ số 0 vào bên phải số bé rồi cộng với số lớn ta được tổng mới là 417. Vậy số lớn là .

Câu G: Một người đi bộ mỗi phút được 60m, người khác đi xe đạp mỗi giờ được 24km. Tỉ số phần trăm vận tốc của người đi bộ và người đi xe đạp là %.

Câu H: Một người đi quãng đường AB vận tốc 15km/giờ trên nửa quãng đường đầu và vận tốc 10km/giờ trên nửa quãng đường sau. Vận tốc trung bình của người đó trên cả quãng đường AB là.

Câu I: Tỉ số của 2 số là 7/2, thêm 10 vào số thứ nhất thì tỉ số của chúng là 3/4. Tổng của 2 số là?

Câu K: Một tháng có ba ngày chủ nhật đều là ngày chẵn. Ngày 15 tháng đó là thứ

Câu 23: Viết số 43 dưới dạng tổng hai số nguyên tố a,b với a<b. Khi đó b=

Câu 24: Viết số 43 dưới dạng tổng của hai số nguyên tố a,b với a<b. Khi đó

Câu 25: Số các ước tự nhiên có hai chữ số của 45 là

Câu 26: Có tất cả bao nhiêu cách viết số 34 dưới dạng tổng của hai số nguyên tố ? Trả lời: Cách.

Câu 27: Cho $ displaystyle alpha $ là chữ số khác 0. Khi đó $ displaystyle overline{alpha alpha alpha alpha alpha alpha :}(3.alpha )=$

Câu 28: Có bao nhiêu hợp số có dạng $ displaystyle overline{23alpha }$ ? Trả lời: Có……….số.

Câu 29: Tìm số nguyên tố P sao cho P+2 và P+4 cũng là số nguyên tố. Kết quả là P=

Câu 30: Số 162 có tất cả………ước.

Câu 31: Cho P là tập hợp các ước không nguyên tố của số 180. Số phần tử của tập hợp P là……

Câu 32: Tổng 5 số nguyên tố đầu tiên là ………..

Giải bài tập Toán nâng cao lớp 6

Câu 1: Các số là bội của 3 là : 0; 3; 6; 9; 12; 15; 18; 21; 24; 27; 30; 33; 36; 39; 42; 45;48;51;54;57;….

Các số là ước của 54 là: 1;2;3;6;9;18;27;54.

Các số vừa là bội của 3 vừa là ước của 54 là: 3;6;9;18;27;54

Vậy có 6 số vừa là bội của 3 vừa là ước của 54

Số ước 180 là: 3x3x2=18 ước.

Các ước nguyên tố của 180 là: {2;3;5;} có 3 ước.

Số ước không nguyên tố của 180 là: 18 – 3 = 15 ước.

Câu 3: ba số nguyên tố có tổng là 106 -1 số chẵn nên trong tổng này có 1 ố hạng là 2. Vậy tổng 2 số kia là 104=101+3 nên số nguyên tố lớn nhất thỏa mãn có thể là 101

Câu 4: Số lớn nhất 9998

Số bé nhất 1000

Có: (9998 – 1000) : 2 + 1 = 4500 (số)

Câu 14: Anh 20, em 10

Câu 15: giảm đường kính đi 20% thì bán kính cũng giảm đi 20%

bán kính của hình tròn mới là 100% – 20%= 80%

diện tích hình tròn có bán kính 80% là 80% * 80% = 64%

diên tích hình tròn cũ hơn hình tròn mới là 100% * 100% – 64%= 36%

Câu 16: Số nhỏ nhất thoả mãn đề bài là: 24,01 Số lớn nhất thoả mãn đề bài là: 24,99 Từ 1 đến 99 có: (99 – 1) : 1 + 1 = 99 (số) Vậy có 99 số thoả mãn đầu bài.

Mà 101=1.101

Vậy a=101

Câu 18:

Có số các số tự nhiên có 4 chữ số là:

(9999-1000): 1+1=9000 (số)

Đáp số: 9000 số

Có số các số chẵn có 3 chữ số là:

(998-100):2+1=450 (số)

Đáp số: 450 số

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

Tương tự: A = 31q + 28 ( q ∈ N )

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

Câu 20: Để tìm tập hợp con của A ta chỉ cần tìm số ước của 154

Ta có: 154 = 2 x 7 x 11

Số ước của 154 là : ( 1 + 1 ) x ( 1 + 1 ) x ( 1 + 1 ) = 8 ( ước )

Số tập hợp con của tập hợp A là:

2 n trong đó n là số phần tử của tập hợp A

Trả lời: A có 256 tập hợp con

Câu 21: Câu 22:

A. Chia 4 dư 2m

Lấy 2:2 = 1 dư 0

B. 40 : 6 = 6 dư 4

Vậy ít nhất có 6 nhóm

C. Diện tích tam giác ABC bằng nửa diện tích hình chữ nhật ABCD 1/2 x 12 x 8 = 48 cm vuông. Đường chéo AC chia hình chữ nhật ra làm hai. Hoặc tính diện tích tam giác ABC là tam giác vuông nên diện tích của nó = 1/2 tích của hai cạnh góc vuông.

D. 2 lần

E. Nối BN.

Xét tam giác AMN và tam giác ABN có chung đường cao hạ từ đỉnh N xuống cạnh AB và có AM = 1/3AB

Xét tam giác ABN và tam giác ABC có chung đường cao hạ từ đỉnh B xuống cạnh AC và có AN = 1/3 AC

Từ (1) và (2) ta có : S AMN = 1/3.1/3 S ABC = 1/9 S ABC

Đáp số: 9 lần

F. 67

Tổng quãng đường là: 15 x 2t + 10 x 3t = 60t

Đ/S: 12 km/h

I. Gọi x và y là 2 số cần tìm:

Ta có x/y=7/12 (1) và x+10/y=3/4=9/12 (2)

Từ (1) và (2) suy ra x+10/y – x/y=9/12-7/12

10/y = 2/12 = 1/6

Suy ra: y=(12*10)/2=60

x=(60/12)*7=35

Tổng 2 số là:60+35=95

Thử lại: 35/60=7/12

x+10=35+10=45 45/60=3/4

K. Thứ 7