Top 12 # Vở Bài Tập Toán Lớp 5 Tập 2 Có Lời Giải Xem Nhiều Nhất, Mới Nhất 6/2023 # Top Trend | Caffebenevietnam.com

Vở Bài Tập Toán Lớp 1 Bài 82: Giải Toán Có Lời Văn

Bài 82: Giải toán có lời văn

Câu 1: (Vở bài tập toán 1 tập 2 trang 16). Có 1 con lợn mẹ và 8 con lợn con. Hỏi có tất cả bao nhiêu con lợn?

Tóm tắt

Có : 1 con lợn mẹ

Có : 8 con lợn con

Có tất cả : ….. con lợn?

Bài giải

Có tất cả là:

…………………………( con lợn)

Đáp số: ………….

Lời giải chi tiết:

Có tất cả là:

1 + 8 = 9 (con lợn)

Đáp số : 9 con lợn.

Câu 2: (Vở bài tập toán 1 tập 2 trang 16). Trong vườn có 5 cây chuối, bố trồng thêm 3 cây chuối nữa. Hỏi trong vườn có tất cả bao nhiêu cây chuối?

Tóm tắt

Có : … cây chuối

Thêm : … cây chuối

Có tất cả : … cây chuối?

Bài giải

……………………………….

……………………………….

Đáp số: …………………. Lời giải chi tiết:

Có tất cả là:

5 + 3 = 8 (cây chuối)

Đáp số: 8 cây chuối.

Câu 3: (Vở bài tập toán 1 tập 2 trang 16). Nhìn tranh vẽ, viết tiếp vào chỗ chấm để có bài toán rồi tóm tắt và giải bài toán đó.

Bài toán: Có …. bạn chơi đá cầu và 3 bạn chơi nhảy dây.

Hỏi ……………………………………………………..?

Tóm tắt

Có : … bạn đá cầu

Có : … bạn nhảy dây

Có tất cả : … bạn?

Bài giải

………………………..

………………………..

………………………..

Lời giải chi tiết:

Bài toán: Có 4 bạn chơi đá cầu và 3 bạn chơi nhảy dây.

Hỏi: Có tất cả bao nhiêu bạn vừa chơi đá cầu và nhảy dây.

Tóm tắt

Có : 4 bạn đá cầu

Có : 3 bạn nhảy dây

Có tất cả : … bạn?

Bài giải

Có tất cả là:

4 + 3 = 7 (bạn)

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Bài Tập Toán Có Lời Văn Lớp 5

Bài tập Toán có lời văn lớp 5

Lưu ý: Nếu không tìm thấy nút Tải về bài viết này, bạn vui lòng kéo xuống cuối bài viết để tải về.

Bài Toán có lời văn lớp 5 giúp học sinh biết ứng dụng toán học vào cuộc sống. Các bài toán có lời văn là những miếng ghép quan trọng nối thế giới toán học với thế giới thực.

Các dạng Toán lớp 5 có lời văn lớp

+ Toán có lời văn về số phần trăm

+ Toán có lời văn về thể tích, diện tích

+ Quãng đường, vận tốc, thời gian

+ Chuyển động cùng chiều, ngược chiều

+ Các bài toán về chuyển động của tàu hỏa

+ Các bài toán chuyển động qui về bài toán tổng – tỉ, hiệu – tỉ

Dạng 1: Các bài Toán về trung bình cộng

Ví dụ: Trong 2 ngày Lan đọc xong một quyển truyện. Ngày thứ nhất Lan đọc được 20 trang, ngày thứ 2 đọc được 40 trang. Hỏi nếu mỗi ngày Lan đọc được số trang sách đều như nhau thì mỗi ngày Lan đọc được bao nhiêu trang sách?

Giáo viên cho học sinh đọc kĩ đầu bài. Tìm hiểu kĩ đề bài qua câu hỏi gợi ý:

Bài toán cho biết gì? (Lan đọc ngày 1 được 20 trang sách, ngày 2 được 40 trang sách)

Bài toán hỏi gì? (Tìm trung bình mỗi ngày lan đọc được bao nhiêu trang sách)

Ta có tóm tắt bài toán như thế nào là dễ hiểu và hợp lí, thuận tiện nhất? (vẽ sơ đồ)

Ta thấy bài toán ở dạng toán cơ bản nào ta đã được học? (Tìm số trung bình cộng)

Muốn giải và trình bày bài toán TBC ta làm như thế nào? (Tìm tổng các số hạng rồi chia cho số các số hạng)- ở bài này cụ thể ta cần tính 2 ngày Lan đọc được tất cả bao nhiêu trang sách lấy số nào để thực hiện (20 + 40), số các số hạng là mấy (2)

Lời giải

Ta có sơ đồ sau:

Số trang sách Lan đọc được trong hai ngày là:

20 + 40 = 60 (trang)

Số trang sách Lan đọc đều như nhau trong mỗi ngày là:

60 : 2 = 30 (trang)

Đáp số: 30 trang

Dạng 2: Ôn và giải toán tìm 2 số khi biết tổng và tỉ số của 2 số

Với dạng toán này học sinh thuộc các bước thực hiện giải toán, ở dạng toán này các em gặp khó khăn xác định đúng tỉ số và tổng để tìm lời giải ,đặc biệt với các bài có phép tính trung gian mới tìm được tỉ số hoặc tổng.

Những bài toán này học sinh lớp 5 thường có thể giải theo bài toán với phân số, nhưng bước quan trọng các em cần xác định được tỉ số để thiết lập được phân số để thực hiện được phép tính giải toán.

Bên cạnh đó các em còn sử dụng giải bằng phương pháp chia tỉ lệ.

Song dù giải bằng phương pháp nào các em cũng cần tìm ra tỉ số và xác định đúng tỉ số và tổng của hai số.

Ví dụ :

Một vườn hoa hình chữ nhật có chu vi là 120 m . Chiều rộng bằng 5/7 chiều dài.

a-Tính chiều dài, chiều rộng vườn hoa đó?

b- Người ta sử dụng 1/25 diện tích vườn hoa để làm lối đi. Hỏi diện tích lối đi là bao nhiêu mét vuông?

Với bài này các em cần cần tìm tổng chiều dài và chiều rộng (tức nửa chu vi) rồi sẽ tính được chiều dài, chiều rộng.

Tính được diện tích của vườn hoa, tính được diện tích lối đi có thể theo giải bài toán với phân số hay với toán tổng – tỉ đều được.

Nhưng với bài này học sinh thường nhầm lấy ngay chu vi để làm tính coi đó là tổng nên bài toán sai. Một số em khi đến bước tìm diện tích lối đi , các em không biết cần tìm diện tích của vườn hoa.

Khi hướng dẫn học sinh học sinh giải bài này yêu cầu học sinh cần đọc kĩ đề bài, xác định dữ kiện đã cho biết gì (chu vi 120 m, chiều rộng bằng 5/7 chiều dài, diện tích lối đi bằng diện tích thửa ruộng)? Hỏi gì (tính chiều dài chiều rộng và diện tích lối đi)? Ta có thể giải theo dạng toán cơ bản nào (tìm hai số biết tổng của hai số hay giải bài toán với phân số) ? có những cách giải nào? Chọn cách tóm tắt theo sơ đồ đoạn thẳng hay sơ đồ cây, nhìn vào sơ đồ các em nhận ra các bước giải, tìm và chọn cách giải phù hợp với mình và khoa học, nhanh nhất:

Giải

a-Nửa chu vi của thửa ruộng là:

120 : 2 = 60 (m)

Chiều rộng của thửa ruộng là:

60 : (5 + 7 ) x 5 = 25 (m)

Chiều dài của thửa ruộng là:

60 – 25 = 35 (m)

b- Diện tích của thửa ruộng là:

35 x 25 = 875 ( m 2)

Diện tích lối đi là:

875 x = 35 (m 2 )

Đáp số : a- Chiều rộng: 25 m

Chiều dài 35 m

Ngoài ra còn cho học sinh giải bài tập dưới dạng bài trắc nghiệm điền và chọn đúng sai, bài toán vui, toán cổ… .Với hình thức đa dạng hình thức bài tập gây hứng thú học tập cho học sinh, đồng thời rèn kĩ năng thực hiện và giải toán cho học sinh.

Chẳng hạn:

Chọn câu trả lời đúng :

Tổng của hai số là số nhỏ nhất có ba chữ số. Tỉ số của hai số là . Tìm hai số đó?

A 3 và 97

B 3 và 7

C 30 và 70

D 33 và 77 .

Hướng dẫn học sinh cách chọn nhanh :

Tổng của hai số là số có 3 chữ số nên hai số đó phải có ít nhất 1 số là số có hai chữ số nên chỉ có thể là 30 và 70 hay 33 và 77, 3 và 97. Dựa theo tỉ số thì 1 trong 2 số phải là số chia hết cho 10 và cho 3 nên chọn được ngay đáp số đúng là C.

b-Ôn tập giải bài toán tìm hai số biết hiệu và tỉ số của hai số:

Cách hướng dẫn và giải tương tự chỉ khác tìm hiệu số phần và cần xác định được hiệu của hai số.

Ở 2 dạng toán này, giáo viên cần cho học sinh phối hợp với phương pháp chia tỉ lệ, với phương pháp sơ đồ đoạn thẳng.

Kết luận:

Với dạng toán thứ hai này các em cần xác định đúng tổng(hiệu) của hai số phải tìm, tỉ số của hai số phải tìm.Phân tích lựa chọn nên giải theo phương pháp chia tỉ lệ hay phương pháp giải toán về phân số để nhanh, khoa học và phù hợp, trình bày ngắn gọn và dễ hiểu, phù hợp với lớp 5 nhất. Sau đó giải và trình bày bài .

Dạng toán này học sinh có hai phương pháp giải:

+ Phương pháp rút về đơn vị

+ Phương pháp dùng tỉ số

Cần cho học sinh đây hiểu đây là hai phương pháp giải toán khác nhau nhưng đều dùng để giải một dạng toán về tương quan tỉ lệ ( thuận, nghịch). Dạng toán này thường có hai đại lượng biến thiên theo tương quan tỉ lệ (thuận hoặc nghịch), người ta thường cho biết hai giá trị của đại lượng này và một giá trị của đại lượng kia rồi bắt tìm giá trị thứ hai của đại lượng kia.Để tìm giá trị này thì dùng phương pháp rút về đơn vị hay tỉ số như sau:

a-Phương pháp rút về đơn vị :

Bước 1 : Rút về đơn vị : trong bước này ta tính một đơn vị của đại lượng thứ nhất ứng với bao nhiêu đơn vị của đại lượng thứ hai hoặc ngược lại .

Bước 2 : Tìm giá trị chưa biết của đại lượng thứ hai.Trong bước này lấy giá trị của đại lượng thứ hai tương ứng với một đơn vị của đại thứ nhất (vừa tìm được ở bước 1)nhân với (hoặc chia cho) giá trị còn lại của đại lượng thứ nhất.

b-Phương pháp tỉ số:

Khi giải bài toán này ta tiến hành :

Bước 1 : Tìm tỉ số: Ta xác định trong hai giá trị đã cho của đại lượng thứ nhất thì giá trị này gấp hoặc kém giá trị kia mấy lần .

Bước 2; Tìm giá trị chưa biết của đại lượng thứ hai.

Ví dụ :

Bài 1:

Để hút hết nước ở một cái hồ, phải dùng 3 máy bơm làm việc liên tục trong 4 giờ. Vì muốn công việc hoàn thành sớm hơn người ta dùng 6 máy bơm nước như thế. Hỏi sau mấy giờ sẽ hút hết nước ở hồ?

Phân tích :

Trong bài này ta thấy có 3 đại lượng: Nước ở hồ là đại lượng không đổi.

Số máy bơm và thời gian là hai đại lượng biến thiên theo tỉ lệ nghịch ?

Ta thấy :

3 máy bơm hút hết 4 giờ.

1 máy bơm hút hết ? giờ.

6 máy bơm hút hết ? giờ.

Bài này ta có thể giải được bằng cả hai phương pháp. Chẳng hạn:

Phương pháp dùng rút về đơn vị:

Học sinh đọc đề và phân tích như trên để tìm hiểu đề và tóm tắt sau đó giải như sau:

1 máy bơm hút cạn nước hồ cần thời gian là :

4 x 3 = 12( giờ )

6 máy bơn hút cạn hồ nước hết thời gian là:

12 : 6 = 2 (giờ)

Đáp số : 2 giờ

Phương pháp dùng tỉ số:

Học sinh tìm xem số máy bơm tăng lên so với lúc đầu mấy lần , thì thời gian bơm sẽ giảm đi bấy nhiêu lần và giải như sau :(Vì hai đại lượng số máy bơm và thời gian là hai đại lượng biến thiên theo tỉ lệ nghịch)

6 máy bơm so với 3 máy bơm lớn gấp:

6 : 3 = 2 (lần)

Thời gian để 6 máy bơm hút cạn nước hồ là :

4 : 2 = 2 (giờ).

Đáp số : 2 giờ

Dạng 4: Toán về tỉ số phần trăm

Với dạng toán này học sinh vận dụng tính tỉ số phần trăm của 2 số, tìm một số khi biết giá trị phần trăm của số đó.

Giáo viên cần cho học sinh hiểu thế nào là tỉ số phần trăm , giá trị của đại lượng đó là 100%. Từ đó có cách làm tương ứng cho mỗi bài tập.

Ví dụ:

Một người bỏ ra 42 000 đồng tiền vốn mua rau. Sau khi bán rau người đó thu được

52 500 đồng.Hỏi:

a- Tiền bán rau bằng bao nhiêu phần trăm tiền vốn?

b- Người đó đã lãi bao nhiêu phần trăm?

Phân tích:

a-Để tìm được số tiền bán rau bằng bao nhiêu phần trăm tiền vốn chính là đi tìm tỉ số phần trăm của tiền vốn và tiền sau khi bán thu được.

b- Chính là tìm tỉ số của số tiền lãi với tiền vốn.

Qua đó ta thấy cần biết giá trị nào là tiền vốn(42 000 đồng), giá trị nào là tiền sau khi bán (52 500 đồng).

Giải :

a-Số phần trăm của tiền bán rau và tiền vốn là:

52 500: 42 000 = 1,25

1,25 = 125 %

b- Tỉ số tiền vốn là 100% thì số tiền bán rau là 125%. Do đó số lãi là:

125% – 100% = 25%

Đáp số a- 125%, b- 25%

Ví dụ 2 :

Cuối năm 2000 số dân của một phường là 15 625 người.Cuối năm 2001 số dân của phường đó là 15 875 người.

Hỏi :

a-Từ cuối năm 2000 đến cuối năm 2001 số dân của phường đó tăng thêm bao nhiêu phần trăm?

b-Nếu từ cuối năm 2001 đến cuối năm 2002 số dân của phường đó cũng tăng bấy nhiêu phần trăm thì cuối năm 2002 số dân của phường đó là bao nhiêu người?

Phân tích:

Để tìm được số dân tăng thêm năm 2001 là bao nhiêu % ta cần tìm được số dân tăng là bao nhiêu người?

Tìm số người tăng thêm của năm 2002, mới tìm được số người dân cuối năm 2002 của phường đó.

Từ đó học sinh tìm ra các phép tính tương ứng và giải:

a-Từ cuối năm 2000 đến cuối năm 2001 số người tăng thêm là:

15875 – 15 625 – 250 (người)

Tỉ số phần trăm số dân tăng thêm là:

250 : 15 635 = 0,016

0,016 = 1,6%

b- Từ cuối năm 2001 đến cuối năm 2002 số người tăng thêm là:

15875 x 1,6 : 100 = 254 (người)

Cuối năm 2002 số dân của phường đó là:

15875 + 254 = 16 129 (người).

Đáp số : a- 1,6%.

b- 16 129 người.

Tham khảo các dạng bài tập Toán lớp 5

Ôn Tập Giải Toán Có Lời Văn Lớp 2

Ôn tập giải toán có lời văn lớp 2

ÔN TẬP GIẢI TOÁN CÓ LỜI VĂN LỚP 2 1. Ấp Phong Phú có 513 người là nữ và 485 người là nam. Hỏi ấp Phong Phú có bao nhiêu người? 2. Một trang trại nuôi 376 con ngựa và 253 con bò. Hỏi số con nào nhiều hơn và nhiều hơn bao nhiêu con? 3. Tết trồng cây năm nay, trường em trồng được 345 cây tràm và một số cây bạch đàn nhiều hơn số cây tràm là 213 cây. Hỏi trường em trồng được bao nhiêu cây bạch đàn? 4. Sau khi bán được 142kg muối thì cửa hàng còn lại 236kg muối. Hỏi trước khi bán cửa hàng có bao nhiêu kilogam muối? 5. Tring tủ sách của bố có 568 cuốn sách tiếng Việt Nam. Số sách tiếng nước ngoài ít hơn số sách tiếng Việt 428 cuốn. Hỏi trong tủ có bao nhiêu cuốn sách tiếng nước ngoài? 6. Ngày hôm nay qua một siêu thị điện máy có 185 chiếc ti-vi. Nhưng ngày hôm nay siêu thị đó chỉ còn lại 124 chiếc ti-vi. Hỏi số ti-vi đã bán? 7. Mẹ mua cả bao thư lẫn tem hết 1000 đồng. Giá của con tem là 800 đồng. Hỏi giá tiền của bao thư? 8. Trong kho có 758kg gạo tẻ. Số gạo tẻ nhiều hơn số gạo nếp 634kg. Hỏi có bao nhiêu kilogam gạo nếp? 9. Đường quốc lộ chạy trước cửa nhà em gồm 6 làn xem. Mỗi làn xe rộng 4m. Hỏi mặt đường rộng bao nhiêu mét? 10. Trong vường có 27 cây ăn quả. Số cây cam chiếm 1 số cây trong vườn. Hỏi có bao 3 nhiêu cây cam. 11. Một toàn nhà chung cư gồm có 5 tầng. Mỗi tầng có 20 căn hộ. Hỏi toàn nhà có tất cả bao nhiêu căn hộ? 12. Số đậu xanh, đậu đen, đậu nành bằng nhau. Biết rằng có 30kg đậu xanh, hỏi có tất cả bao nhiêu kilogam đậu? 13. Trong phòng có 40 người ngồi họp trên các ghế băng, mỗi ghế 5 người. Hỏi phải xếp mấy ghế băng? 14. Lớp trưởng điều khiển cả lớp xếp hàng tư thì được mỗi hàng 10 học sinh. Hỏi lớp em có bao nhiêu học sinh? 15. Trong vườn trồng 80 cây xanh, chia đều thành 4 hàng. Hỏi mỗi hàng có bao nhiêu cây? 16. Quãng đường từ Hà Nội đến Hải Phòng dài 100m. Quãng đường từ Hà Nội đến Như Quỳnh dài bằng 1 quãng đường từ Hà Nội đến Hải Phòng. Hỏi quãng đường từ Hà Nội 5 đến Như Quỳnh dài bao nhiêu kilomet? 17. Cuốn sách Toán 2 dày 6mm. Hỏi 10 cuốn sách Toán 2 xếp chồng lên nhau thì được một chồng sách dày mấy xăngtimet? 18. Một quyển từ điển Anh – Việt dày 20mm. Chúng xếp lên nhau thanhg một chồng cao 1dm 8cm. Hỏi chồng sách đó gồm mấy quyển từ điển? 19. Anh Ba là sinh viên. Trong ngày chủ nhật vừa qua, thời gian anh Ba dùng để ngủ, để học tập, để nghỉ ngơi bằng nhau. Hỏi hôm ấy anh đã học tập trong mấy giờ? 20. Một năm được chia đều thành 4 mùa: Xuân, Hạ, Thu, Đông. Hỏi mỗi mùa gồm mấy tháng? 21. Một hình tứ giác có 4 cạnh bằng nhau. …

Skkn Giải Toán Có Lời Văn Lớp 5

SÁNG KIẾN KINH NGHIỆMĐề tài

HƯỚNG DẪN HỌC SINH THỰC HIỆN TỐT CÁCH GIẢI BÀI TOÁN CÓ LỜI VĂN – LỚP 5( Dạng toán : ” Toán chuyển động đều ” )

I /- ĐẶT VẤN ĐỀ :Toán học có vị trí rất quan trọng phù hợp với cuộc sống thực tiễn, đó cũng là công cụ cần thiết cho các môn học khác và để giúp cho học sinh nhận thức thế giới xung quanh, để hoạt động có hiệu quả trong mọi lĩnh vực.Khả năng giáo dục nhiều mặt của môn toán rất to lớn: Nó phát triển tư duy, trí tuệ, có vai trò quan trọng trong việc rèn luyện tính suy luận, tính khoa học toàn diện, chính xác, tư duy độc lập sáng tạo, linh hoạt, góp phần giáo dục tính nhẫn nại, ý chí vượt khó khăn.Từ vị trí và nhiệm vụ vô cùng quan trọng của môn toán, vấn đề đặt ra cho người thầy là làm thế nào để giờ dạy – học toán có hiệu quả cao, học sinh phát triển tính tích cực, chủ động sáng tạo trong việc chiếm lĩnh kiến thức toán học. Theo tôi, các phương pháp dạy học bao giờ cũng phải xuất phát từ vị trí, mục đích và nhiệm vụ, mục tiêu giáo dục của bài học môn toán. Nó không phải là cách thức truyền thụ kiến thức, cách giải toán đơn thuần mà là phương tiện tinh vi để tổ chức hoạt động nhận thức tích cực, độc lập và giáo dục phong cách làm việc một cách khoa học, hiệu quả.Hiện nay, giáo dục tiểu học đang thực hiện yêu cầu đổi mới phương pháp dạy học theo hướng phát huy tính tích cực của học sinh, làm cho hoạt động dạy học trên lớp “nhẹ nhàng, tự nhiên, hiệu quả”. Để đạt được yêu cầu đó, giáo viên phải có phương pháp và hình thức dạy học để vừa nâng cao hiệu quả cho học sinh, vừa phù hợp với đặc điểm tâm sinh lý của lứa tuổi tiểu học và trình độ nhận thức của học sinh, để đáp ứng với công cuộc đổi mới của đất nước nói chung và của ngành giáo dục tiểu học nói riêng.Trong chương trình môn toán tiểu học, giải toán có lời văn giữ một vai trò quan trọng . Thông qua việc giải toán, học sinh tiểu học thấy được nhiều khái niệm trong toán học như các số, các phép tính, các đại lượng, các yếu tố hình học . . . đều có nguồn gốc trong cuộc sống hiện thực, trong thực tiễn hoạt động của con người, thấy được mối quan hệ biện chứng giữa các sự kiện, giữa cái đã cho và cái phải tìm. Qua việc giải toán sẽ rèn luyện cho học sinh năng lực tư duy và những đức tính của con người mới, có ý thức vượt khó khăn, đức tính cẩn thận, làm việc có kế hoạch, thói quen xét đoán có căn cứ, thói quen tự kiểm tra kết quả công việc mình làm và độc lập suy nghĩ, óc sáng tạo giúp học sinh vận dụng các kiến thức, rèn luyện kĩ năng tính toán, kĩ năng ngôn ngữ. Đồng thời qua việc giải toán của học sinh mà giáo viên có thể dễ dàng phát hiện những ưu điểm, thiếu sót của các em về kiến thức, kĩ năng, tư duy để giúp học sinh phát huy những mặt được và khắc phục những mặt thiếu sót.Chính vì vậy, tôi chọn đề tài ” Hướng dẫn học sinh thực hiện tốt cách giải bài toán có lời văn lớp 5 ( Dạng: Toán chuyển động đều ) ” với mong muốn đưa ra giải pháp nhằm nâng cao chất lượng học toán và giúp học sinh lớp 5 biết cách giải bài toán có lời văn đạt hiệu quả cao hơn. Nhưng trong thực tế giảng dạy môn Toán – giải bài toán có lời văn, bản thân tôi cũng gặp nhiều khó khăn như sau :

II / – KHÓ KHĂN: Đa số học sinh xem môn toán là môn học khó khăn, dễ chán. Trình độ nhận thức của học sinh không đồng đều : một số học sinh còn chậm, nhút nhát, kĩ năng tóm tắt bài toán còn hạn chế, chưa có thói quen đọc và tìm hiểu bài toán, dẫn tới thường nhầm lẫn giữa các dạng toán, lựa chọn phép tính còn sai, chưa bám sát vào yêu cầu bài toán để tìm lời giải thích hợp với các phép tính. Một số em tiếp thu bài một cách thụ động, ghi nhớ bài còn máy móc nên còn chóng quên các dạng bài toán.Từ những khó khăn trên, để giúp học sinh có kĩ năng giải bài toán có lời văn ở lớp 5, với dạng bài toán ” chuyển động đều ” đạt hiệu quả, bản thân tôi đã thực hiện và tổ chức các hoạt động như sau:

III / – GIẢI PHÁP KHẮC PHỤC:Giải toán đối với học sinh là một hoạt động trí tuệ khó khăn, phức tạp. Việc hình thành kĩ năng giải toán khó hơn nhiều so với kĩ năng tính vì bài